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ABSTRACT
This paper presents a new approach to design anH∞ dynamic observer (DO) formulti-delayed linear
systems subject to L2-norm disturbances. This observer generalises the existing results on the pro-
portional observer (PO), the proportional integral observer (PIO), and the DO. The proposed design
approach is derived from the solution of LMIs based on the parametrization results of algebraic
constraints. These algebraic constraints can be easily obtained from the unbiasedness conditions
of the estimation error. The obtained results are illustrated by a numerical example to show the
performances of the proposed observer.
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1. Introduction

The observer design problem has gained high interest
in the literature, due to the fact that the state cannot be
measured frequently (Sun et al., 2018). Then, it is nec-
essary to use an observer to estimate the system state
when the state cannot be determined by direct mea-
surement. For this reason, the fuzzy observer-based
controller for a class of nonlinear systems is consid-
ered in Qiu et al. (2019) and Li et al. (2016). In the
daily life, the disturbance is very common. In con-
trol process, not only the reference input can affect the
output, but also the disturbance can result in negative
influences on the output. Therefore, in the observer
design, the disturbance is taken into account by many
authors (Chang et al., 2011; Chen et al., 2016; El Haiek
et al., 2017). All the observers introduced before are
the kind of POs, which are not capable to handle
the static error. Consequently, the PIO is introduced
by duality to the PI controller to achieve the desired
performances (Kühne et al., 2017; Xu et al., 2014;
Youssef et al., 2017, 2014). We still also need an
observer that offers more extra degrees of freedom
over the PIO, which can be shown to be useful inmany
cases.

To present an alternative state estimation structure,
a new form of the observer, called DO, is developed

CONTACT El Fezazi Nabil fizazi.99@gmail.com LESSI, Department of Physics, Faculty of Sciences Dhar El Mehraz, Sidi Mohammed Ben Abdellah
University, Fes-Atlas, BP 1796, Morocco

(Li & Yang, 2012; Park et al., 2002). The proposed
observer can be considered as more general than PO
and PIO, and these latter can be considered as par-
ticular cases of this form. Different from the PO and
the PIO, the DO contains a dynamic gain in the
observer design. Then, the present paper concerns a
new formof anH∞ DOwhich has amore general form
than those presented in the literature. The proposed
observer is formed by anH∞ theory, a dynamical part,
and a static part to estimate the state of multi-delayed
linear systems in the presence of disturbances.Without
estimating the disturbances, theH∞ DOoffers a direct
method to reject the negative effect of disturbances.

On the other hand, time-delays appear in many
kinds of control systems and their presence can be
source of performances degradation and instability
(Ech-charqy et al., 2018; El Aiss et al., 2017; El Fezazi
et al., 2019, 2020, 2017; El Haoussi et al., 2011;
Lamrabet, El Fezazi et al., 2020; Lamrabet, Tissir
et al., 2020; Lamrabet et al., 2019). Due to the
fact that many practical systems present time-delays,
it becomes important to study the stability issues
regarding this kind of systems. For this reason, Lya-
punov–Krasovskii (L–K) stability theory is used in
many works to design the state observers for delayed
systems and sufficient conditions are provided (El Aiss
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et al., 2019; El Fezazi, 2019; El Fezazi et al., 2019;
Kao et al., 2016; Ma et al., 2017; Thuan et al., 2012).
Then, the design problem of an H∞ DO for multi-
delayed systems has not been fully investigated so
far, and still remains an open and unsolved prob-
lem. This topic will be investigated further in this
paper. These results can be also extended for the
systems subject to finite frequency disturbances fol-
lowing some ideas (El-Amrani, Boukili, El Hajjaji
et al., 2018; El-Amrani, Boukili, Hmamed et al., 2018;
Wang et al., 2018a, 2018b) and using specific lemma
(Kalman–Yakubovich–Popov Lemma).

The unbiasedness conditions of the estimation
error, the H∞ theory, and the DO are explicitly taken
into account in this paper using a new approach
to perfect the observer characteristics in order to
develop a practical observer where no assumption
of online measurement of the delay is required. An
effective H∞ DO is then designed for multi-delayed
systems subject to L2−norm disturbances. Then, less
conservative results are obtained using free matri-
ces, with only one of them restricted to be pos-
itive definite, in order to achieve the desired H∞
performance. Based on the parametrization of alge-
braic constraints, the proposed observer design is
derived from the solution of LMI. These constraints
are easily obtained from the analysis of the estima-
tion error. The performance and effectiveness of the
proposed method are then validated through detailed
simulations.

The paper is organised as follows. The H∞ DO
design problem is formulated in Section 2. In Section 3,
The algebraic constraints are derived through the anal-
ysis of estimation error. Then, a theorem is presented
to solve the design problem. The design procedure of
the proposed observer is presented in Section 4. In
Section 5, numerical examples are provided to illus-
trate the efficiency of the proposed approach. Finally,
Some conclusions are drawn in Section 6.

The following notations are used throughout the
paper: �n is the n dimensional Euclidean space,
L2[0,∞) is the space of square integrable vectors on
[0,∞), ‖�‖2 is theL2−norm of� where ‖�(t)‖22 =∫∞
0 �T(t).�(t) dt and w(t) ∈ L2[0,∞), rank(ν) is
the rank of matrix ν, I and 0 are respectively, the iden-
tity and zero matrices of appropriate dimensions, * is
the symmetric block in a matrix, and the superscript T

is the matrix transposition.

2. Problem formulation and preliminaries

Consider the following system:

ẋ(t) = A0x(t) +
m∑
i=1

Aix(t − τi(t))

+ Bu(t) + Bww(t)

y(t) = Cyx(t)

(1)

where x(t) ∈ �nx is the state vector, u(t) ∈ �nu is
the input vector, w(t) ∈ �nw is the disturbance vec-
tor of finite energy, and y(t) ∈ �ny is the output vec-
tor. Matrices A0, . . . ,Am, B, Bw, and Cy are known
and of appropriate dimensions. On the other hand,
the delays τ1(t), . . . , τm(t) are assumed to be time
dependent and satisfy 0 ≤ τ1(t) ≤ hτ1 , 0 ≤ τ̇1(t) ≤
d1 < 1, . . . , 0 ≤ τm(t) ≤ hτm , 0 ≤ τ̇m(t) ≤ dm < 1.

Then, let us consider the following DO:

ż(t) = N0z(t) +
m∑
i=1

Niz(t − τi(t)) + J0y(t)

+
m∑
i=1

Jiy(t − τi(t)) + Hu(t) + M0v(t)

+
m∑
i=1

Miv(t − τi(t))

v̇(t) = P0z(t) +
m∑
i=1

Piz(t − τi(t)) + Q0y(t)

+
m∑
i=1

Qiy(t − τi(t)) + G0v(t)

+
m∑
i=1

Giv(t − τi(t))

x̂(t) = Rz(t) + Sy(t)

(2)

where z(t) ∈ �nz , v(t) ∈ �nz , and x̂(t) ∈ �nx are the
state vector of the observer, the auxiliary state vec-
tor, and the estimation of the state vector, respectively.
Matrices N0, . . . ,Nm, J0, . . . , Jm, H, M0, . . . ,Mm, P0,
. . . , Pm,Q0, . . . ,Qm,G0, . . . ,Gm,R, and S are unknown
to be determined and of appropriate dimensions. The
auxiliary vector v is similar to the additional term
w(t) in PIO, which is used to realise the steady state
performance.
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Remark 2.1:

• The observer (2) is in a generalised form and gen-
eralises the existing ones. In fact:
◦ If M0 = · · · = Mm = 0, P0 = · · · = Pm = 0,

Q0
= · · · = Qm = 0, G0 = · · · = Gm = 0, S = 0,
and R = I, the observer (2) reduces to the fol-
lowing full order PO:

˙̂x(t) = N0x̂(t) +
m∑
i=1

Nix̂(t − τi(t)) + J0y(t)

+
m∑
i=1

Jiy(t − τi(t)) + Hu(t)

◦ If Q0 = · · · = Qm = I, G0 = · · · = Gm = 0,
R = I, and S = 0, we obtain the following PIO:

˙̂x(t) = N0x̂(t) +
m∑
i=1

Nix̂(t − τi(t)) + J0y(t)

+
m∑
i=1

Jiy(t − τi(t)) + Hu(t)

+ M0v(t) +
m∑
i=1

Miv(t − τi(t))

v̇(t) = P0x̂(t) +
m∑
i=1

Pix̂(t − τi(t)) + y(t)

+
m∑
i=1

y(t − τi(t))

◦ If R = I and S = 0, the following standard DO
is obtained:

˙̂x(t) = N0x̂(t) +
m∑
i=1

Nix̂(t − τi(t)) + J0y(t)

+
m∑
i=1

Jiy(t − τi(t)) + Hu(t)

+ M0v(t) +
m∑
i=1

Miv(t − τi(t))

v̇(t) = P0x̂(t) +
m∑
i=1

Pix̂(t − τi(t)) + Q0y(t)

+
m∑
i=1

Qiy(t − τi(t)) + G0v(t)

+
m∑
i=1

Giv(t − τi(t))

• Assuming rank(Cy) = p, if q = n−p, we obtain the
reduced order version of the observer (2), and if
q = n, we obtain the full order one.

Remark 2.2: The maximisation problem of the dis-
turbance rejection is addressed in this work in order
to minimise the L2−gain (measured with respect to
some norm) between w(t) and e(t) (the error esti-
mate) considering the L2−norm disturbance. This
norm is given by ‖w(t)‖22 ≤ δ−1 ≤ ∞ where δ is a
scalar (Wang et al., 2018c).

Definition 2.1: A is called a Hurwitz matrix if every
eigenvalue of A has strictly negative real part, that is,
Re[λi] < 0 for each eigenvalue λi.

The following useful lemma will be used in this
paper:

Lemma 2.1 (Gu et al., 2003): Jensen Inequality: For
any scalar b > a, the following inequality holds:

(b − a)
∫ b

a
ξT(s)R1ξ(s) ds

≥
(∫ b

a
ξ(s) ds

)T

R1

(∫ b

a
ξ(s) ds

)

The problem of the H∞ DO design is focused to find
the matrices N0, . . . ,Nm, J0, . . . , Jm, H, M0, . . . ,Mm,
P0, . . . , Pm,Q0, . . . ,Qm,G0, . . . ,Gm,R, and S such that
the ratio between the norm of the estimation error and
that of the disturbance is given by

(‖e(t)‖22/‖w(t)‖22) < γ (3)

where γ is a specified value.

3. Main results

In this section, we will present a method to design
an H∞ DO for the multi-delayed system (1). Then,
this observer is derived from the solution of LMI for-
mulations based on some algebraic constraints and
parametrization works.



4 E. FEZAZI NABIL ET AL.

3.1. Unbiasedness conditions

To present the parametrization of the observer, we
define firstly a new error variable ε(t) = z(t) − Tx(t)
where the matrix T is an arbitrary matrix. Then, the
following lemma is given:

Lemma 3.1: The system (2) is a DO for the system (1)
if there exists T such that the following constraints are
satisfied:

N0T + J0Cy − TA0 = 0
...

NmT + JmCy − TAm = 0

H = TB

P0T + Q0Cy = 0
...

PmT + QmCy = 0

RT + SCy = I

(4)

and the matrices (5) are Hurwitz.

A0 =
[

N0 M0
P0 G0

]
, . . . ,Am =

[
Nm Mm
Pm Gm

]
(5)

Proof: The dynamic of the error ε(t) is given by

ε̇(t) = ż(t) − Tẋ(t)

= N0ε(t) +
m∑
i=1

Niε(t − τi(t))

+ (N0T + J0Cy − TA0)x(t)

+
m∑
i=1

(NiT + JiCy − TAi)x(t − τi(t))

+ (H − TB)u(t) + M0v(t)

+
m∑
i=1

Miv(t − τi(t)) − TBww(t)

Then, we obtain:

v̇(t) = P0ε(t) +
m∑
i=1

Piε(t − τi(t))

+ (P0T + Q0Cy)x(t) +
m∑
i=1

(PiT + QiCy)

× x(t − τi(t)) + G0v(t) +
m∑
i=1

Giv(t − τi(t))

x̂(t) = Rε(t) + (RT + SCy)x(t)

One can clearly see that the dynamics of the error ε(t)
and the auxiliary state v(t) are independent of x(t) and
u(t) if the following constraints are satisfied:

N0T + J0Cy − TA0 = 0
...

NmT + JmCy − TAm = 0

H − TB = 0

P0T + Q0Cy = 0
...

PmT + QmCy = 0

The expression of the estimation error is e(t) = x̂(t) −
x(t) = Rε(t) if RT + SCy = I. Then, we have:

ε̇(t) = N0ε(t) +
m∑
i=1

Niε(t − τi(t)) + M0v(t)

+
m∑
i=1

Miv(t − τi(t)) − TBww(t)

v̇(t) = P0ε(t) +
m∑
i=1

Piε(t − τi(t)) + G0v(t)

+
m∑
i=1

Giv(t − τi(t))

e(t) = Rε(t)

In this case, the augmented system can be represented
as follows:

ξ̇ (t) = A0ξ(t) +
m∑
i=1

Aiξ(t − τi(t)) + Bww(t)

e(t) = Ceξ(t)

(6)

where

ξ(t) =
[

ε(t)
v(t)

]
, A0 =

[
N0 M0
P0 G0

]
, . . . ,

Am =
[

Nm Mm
Pm Gm

]
,

Bw =
[ −TBw

0

]
, Ce = [

R 0
]
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Clearly, one can say that e(t) → 0 when both ε(t) →
0 and v(t) → 0 if and only if A0, . . . ,Am are Hur-
witz. Then, the trajectories of the augmented sys-
tem (6) converge asymptotically to the origin. Finally,
the proof of Lemma 3.1 is completed. �

3.2. Synthesis of the DO

Our goal now is to determine the parameters of
the functional observer N0, . . . ,Nm, J0, . . . , Jm, H,
M0, . . . ,Mm, P0, . . . , Pm, Q0, . . . ,Qm, G0, . . . ,Gm, R,
and S.

From Equation (4), it is easy to have:⎡
⎢⎢⎢⎣

P0 Q0
...
Pm Qm
R S

⎤
⎥⎥⎥⎦
[

T
Cy

]
=

⎡
⎢⎢⎢⎣

0
...
0
I

⎤
⎥⎥⎥⎦ (7)

Equation (7) has a solution if and only if Boutat-
Baddas et al. (2019) and Gao et al. (2016)

rank

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

T
Cy
0
...
0
I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= rank
[

T
Cy

]
= n

Let E be an arbitrary matrix of full row rank such that

rank
[

E
Cy

]
= rank

[
T
Cy

]
= n (8)

Then, there exists matrices T and K such that the
following condition is verified (Boutat-Baddas et al.,
2019; Gao et al., 2016):[

T
Cy

]
=
[

I −K
0 I

] [
E
Cy

]

Notice that T = E − KCy where

[
T K

] [ I
Cy

]
= E (9)

Then, Equation (9) has a solution if

rank

⎡
⎣ I

Cy
E

⎤
⎦ = rank

[
I
Cy

]

From Equation (9), we obtain (Boutat-Baddas et al.,
2019):

T = E
[

I
Cy

]+ [ I
0

]
, K = E

[
I
Cy

]+ [ 0
I

]
(10)

On the other hand, Equation (7) becomes⎡
⎢⎢⎢⎣

P0 Q0
...
Pm Qm
R S

⎤
⎥⎥⎥⎦
[

I −K
0 I

] [
E
Cy

]
=

⎡
⎢⎢⎢⎣

0
...
0
I

⎤
⎥⎥⎥⎦
(11)

Considering the arbitrary matrix Z, a general solution
to (11) is given by Gao et al. (2016)⎡

⎢⎢⎢⎣
P0 Q0
...
Pm Qm
R S

⎤
⎥⎥⎥⎦

=
{⎡⎢⎢⎢⎣

0
...
0
I

⎤
⎥⎥⎥⎦
[

E
Cy

]+

− Z
(
I −

[
E
Cy

] [
E
Cy

]+ )}[ I K
0 I

]
(12)

Then, the matrices P0, . . . , Pm, Q0, . . . ,Qm, R, and S
are defined as follows:

P0 = −Z0β1, . . . , Pm = −Zmβ1,

Q0 = −Z0β2, . . . ,Qm = −Zmβ2,

R = α1 − Zm+1β1, S = α2 − Zm+1β2

(13)

where

Z0 = [
I 0 . . . 0

]
Z, . . . ,Zm+1

= [
0 . . . 0 I

]
Z,

� =
[
E
Cy

]
, α1 = �+

[
I
0

]
, α2 = �+

[
K
I

]
,

β1 = (I − ��+)

[
I
0

]
, β2 = (I − ��+)

[
K
I

]
(14)

Using T = E − KCy and taking into account Equation
(4), it is easy to obtain:[

N0 K0
]
� = θ0, . . . ,

[
Nm Km

]
� = θm

(15)
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where

J0 = N0K + K0, . . . , Jm = NmK + Km,

θ0 = TA0, . . . , θm = TAm (16)

As given in (12), a general solution to (15) is given by
the Equation (17) considering the arbitrary matrices
ZA0 , . . . ,ZAm .[
N0 K0

] = θ0�
+ − ZA0(I − ��+), . . . ,

[
Nm Km

]
= θm�+ − ZAm(I − ��+) (17)

Then, the matrices N0, . . . ,Nm and K0, . . . ,Km are
defined as follows:

N0 = θ0α1 − ZA0β1, . . . ,Nm = θmα1 − ZAmβ1,

K0 = θ0α3 − ZA0β3, . . . ,Km = θmα3 − ZAmβ3
(18)

where

α3 = �+
[

0
I

]
, β3 = (I − ��+)

[
0
I

]
(19)

From the results above, the matrices A0, . . . ,Am
become

A0 = A0 − Z0I, . . . ,Am = Am − ZmI

where

A0 =
[

θ0α1 0
0 0

]
, . . . ,Am =

[
θmα1 0
0 0

]
,

I =
[

β1 0
0 −I

]
,

Z0 =
[

ZA0 M0
Z0 G0

]
, . . . ,Zm =

[
ZAm Mm
Zm Gm

]

In this case, the augmented system (6) becomes as
follows:

ξ̇ (t) = (A0 − Z0I)ξ(t)

+
m∑
i=1

(Ai − ZiI)ξ(t − τi(t)) + Bww(t)

e(t) = Ceξ(t)

(20)

3.3. An LMI synthesis condition

At this stage, we can obtain the more general solu-
tion and provide an LMI condition. Then, the design
problem is reduced to study the system (20), i.e. to

determine the parameter matrices Z0, . . . ,Zm which
can be obtained from the following theorem:

Theorem 3.1: The system (20) is asymptotically stable
and verify the H∞ performance if there exist symmetric
positive definite matrices P1, Q1, . . . ,Qm, R1, . . . ,Rm,
appropriately sized matrices P2, Y0, . . . ,Ym, P11, . . . ,
P1m, P21, . . . , P2m, P31, . . . , P3m, . . . , Pkm, P31, . . . , Pk1,
. . . , Pkm where k = m + 2, and a scalar α satisfying the
following condition:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11 �12 �11 . . . �1m −PT11
∗ �22 �21 . . . �2m −PT21
∗ ∗ �31 . . . �3m −PT31
...

...
... . . . ...

...
∗ ∗ ∗ . . . �km −PTk1
∗ ∗ ∗ . . . ∗ −R1

hτ1
...

...
... . . . ...

...
∗ ∗ ∗ . . . ∗ ∗
∗ ∗ ∗ . . . ∗ ∗
∗ ∗ ∗ . . . ∗ ∗
. . . −PT1m PT2 Bw C

T
e

. . . −PT2m αPT2 Bw 0

. . . −PT3m 0 0
. . . ...

...
...

. . . −PTkm 0 0

. . . 0 0 0
. . . ...

...
...

. . .
−Rm
hτm

0 0

. . . ∗ −I 0

. . . ∗ ∗ −γ I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (21)

where

�11 = A
T
0 P2 − I

TYT
0 + PT2 A0 − Y0I + P11 + · · ·

+ P1m + PT11 + . . . + PT1m +
m∑
i=1

Qi,

�12 = αA
T
0 P2 − αI

TYT
0 + PT1

− PT2 + P21 + · · · + P2m,

�22 = −αP2 − αPT2 +
m∑
i=1

hτiRi,

�11 = PT2 A1 − Y1I − PT11 + P31 + · · · + P3m,

�21 = αPT2 A1 − αY1I − PT21,
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�31 = −P31 − PT31 − (1 − d1)Q1,

�1m = PT2 Am − YmI − PT1m + Pk1 + · · · + Pkm,

�2m = αPT2 Am − αYmI − PT2m,

�3m = −Pk1 − PT3m,

�km = −Pkm − PTkm − (1 − dm)Qm,

and Z0 = P−T
2 Y0, . . . ,Zm = P−T

2 Ym.

Proof: To prove this theorem, let us consider the fol-
lowing L–K functional:

V(t) = ξT(t)P1ξ(t) +
m∑
i=1

(∫ t

t−τi(t)
ξT(s)Qiξ(s) ds

+
∫ 0

−τi(t)

∫ t

t+θ

ξ̇T(s)Riξ̇ (s) ds dθ
)

(22)

Taking into account the derivative of the proposed L–K
functional (22), we have:

V̇(t) = 2ξT(t)P1ξ̇ (t)

+
m∑
i=1

(
ξT(t)Qiξ(t)

− ξT(t − τi(t))Qiξ(t − τi(t))

+ τi(t)ξ̇T(t)Riξ̇ (t) −
∫ t

t−τi(t)
ξ̇T(s)Riξ̇ (s) ds

)

From Equation (20) and the Newton–Leibniz formula,
we can write:

2ξT(t)P1ξ̇ (t)

= 2

⎡
⎢⎢⎢⎢⎢⎣

ξ(t)
ξ̇ (t)

ξ(t − τ1(t))
...

ξ(t − τm(t))

⎤
⎥⎥⎥⎥⎥⎦

T

×

⎡
⎢⎢⎢⎢⎢⎣

PT1 PT2 PT11 . . . PT1m
0 PT3 PT21 . . . PT2m
0 0 PT31 . . . PT3m
...

...
... . . . ...

0 0 PTk1 . . . PTkm

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

ξ̇ (t)
0
0
...
0

⎤
⎥⎥⎥⎥⎥⎦

= 2

⎡
⎢⎢⎢⎢⎢⎣

ξ(t)
ξ̇ (t)

ξ(t − τ1(t))
...

ξ(t − τm(t))

⎤
⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎣

PT1 PT2 PT11 . . . PT1m
0 PT3 PT21 . . . PT2m
0 0 PT31 . . . PT3m
...

...
... . . . ...

0 0 PTk1 . . . PTkm

⎤
⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎣

ξ̇ (t)
ϒ

ξ(t) − ξ(t − τ1(t)) − ∫ t
t−τ1(t) ξ̇ (s) ds

...
ξ(t) − ξ(t − τm(t)) − ∫ t

t−τm(t) ξ̇ (s) ds

⎤
⎥⎥⎥⎥⎥⎥⎦

where ϒ = −ξ̇ (t) + (A0 − Z0I)ξ(t) +∑m
i=1(Ai −

ZiI)ξ(t − τi(t)) + Bww(t).
Then, we have:

2ξT(t)P1ξ̇ (t)

= 2

⎡
⎢⎢⎢⎢⎢⎣

ξ(t)
ξ̇ (t)

ξ(t − τ1(t))
...

ξ(t − τm(t))

⎤
⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎣

PT1 PT2 PT11 . . . PT1m
0 PT3 PT21 . . . PT2m
0 0 PT31 . . . PT3m
...

...
... . . . ...

0 0 PTk1 . . . PTkm

⎤
⎥⎥⎥⎥⎥⎦

×

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣

0 I 0
A0 − Z0I −I A1 − Z1I

I 0 −I
...

...
...

I 0 0

. . . 0

. . . Am − ZmI

. . . 0
. . . ...
. . . −I

⎤
⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎣

ξ(t)
ξ̇ (t)

ξ(t − τ1(t))
...

ξ(t − τm(t))

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

0
0

−I
...
0

⎤
⎥⎥⎥⎥⎥⎦
∫ t

t−τ1(t)
ξ̇ (s) ds + . . .
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+

⎡
⎢⎢⎢⎢⎢⎣

0
0
0
...

−I

⎤
⎥⎥⎥⎥⎥⎦
∫ t

t−τm(t)
ξ̇ (s) ds +

⎡
⎢⎢⎢⎢⎢⎣

0
Bw
0
...
0

⎤
⎥⎥⎥⎥⎥⎦w(t)

⎞
⎟⎟⎟⎟⎟⎠

= ηT(t)
(

�η(t) + 2�1

∫ t

t−τ1(t)
ξ̇ (s) ds + · · ·

+ 2�2

∫ t

t−τm(t)
ξ̇ (s) ds + 2�3w(t)

)
(23)

where

� =

⎡
⎢⎢⎢⎢⎢⎣

�11 �12 �11 . . . �1m
∗ �22 �21 . . . �2m
∗ ∗ �31 . . . �3m
...

...
... . . . ...

∗ ∗ ∗ . . . �km

⎤
⎥⎥⎥⎥⎥⎦ ,

�1 =

⎡
⎢⎢⎢⎢⎢⎣

−PT11
−PT21
−PT31
...

−PTk1

⎤
⎥⎥⎥⎥⎥⎦ ,

�2 =

⎡
⎢⎢⎢⎢⎢⎣

−PT1m
−PT2m
−PT3m

...
−PTkm

⎤
⎥⎥⎥⎥⎥⎦ , �3 =

⎡
⎢⎢⎢⎢⎢⎣

PT2 Bw
PT3 Bw
0
...
0

⎤
⎥⎥⎥⎥⎥⎦ ,

and

�11 = (A0 − Z0I)
TP2 + PT2 (A0 − Z0I)

+ P11 + · · · + P1m + PT11 + · · · + PT1m,

�12 = (A0 − Z0I)
TP3 + PT1 − PT2 + P21

+ · · · + P2m, �22 = −P3 − PT3 ,

�11 = PT2 (A1 − Z1I) − PT11 + P31

+ · · · + P3m, �21 = PT3 (A1 − Z1I) − PT21,

�31 = −P31 − PT31, �1m = PT2 (Am − ZmI)

− PT1m + Pk1 + · · · + Pkm,

�2m = PT3 (Am − ZmI) − PT2m,

�3m = −Pk1 − PT3m, �km = −Pkm − PTkm.

Using Equation (23), the Schur complement, and
Lemma 2.1, we obtain:

V̇(t) + 1
γ
eT(t)e(t) − wT(t)w(t)

≤

⎡
⎢⎢⎢⎢⎢⎢⎣

η(t)∫ t
t−τ1(t) ξ̇ (s) ds

...∫ t
t−τm(t) ξ̇ (s) ds

w(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

T
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

� �1 . . . �2 �3

∗ −R1
hτ1

. . . 0 0

...
... . . . ...

...

∗ ∗ . . .
−Rm
hτm

0

∗ ∗ . . . ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎣

η(t)∫ t
t−τ1(t) ξ̇ (s) ds

...∫ t
t−τm(t) ξ̇ (s) ds

w(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

(24)

where

� =

⎡
⎢⎢⎢⎢⎢⎣

�11 +∑m
i=1Qi + 1

γ
C
T
e Ce �12

∗ �22 +∑m
i=1 hτiRi

∗ ∗
...

...
∗ ∗

�11 . . . �1m
�21 . . . �2m
�31 . . . �3m
... . . . ...
∗ . . . �km

⎤
⎥⎥⎥⎥⎥⎦

It is clear that if � < 0, then

V̇(t) + 1
γ
eT(t)e(t) − wT(t)w(t) < 0 (25)

Introducing some changes of variables: P3 = αP2,
PT2 Z0 = Y0, . . . , PT2 Zm = Ym, and using the Schur
complement to Equation (24), we obtain the condi-
tion (21).

Since the matrix (21) holds (using w(t) = 0),
Equation (25) implies that V̇(t) < 0 and the sys-
tem (20) is asymptotically stable. Now, integrating
both sides of Equation (25) from 0 to∞where w(t) �=
0, we have:

V(∞) − V(0)

+
∫ ∞

0

(
1
γ
eT(t)e(t) − wT(t)w(t)

)
dt < 0
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Figure 1. Control input used in the simulations.

Figure 2. Evolution of the error variables.

Then, we can conclude that Equation (3) is verified
thanks to the asymptotic stability (V(∞) = 0) and the
zero initial condition (V(0) = 0). The proof is finally
completed. �

Remark 3.1: It must be pointed out that when we
were deriving Theorem 3.1 we took into account that
P1 contains the free matrices P1, P2, P3, P11, . . . , P1m,
P21, . . . , P2m, P31, . . . , P3m, . . . , Pkm, P31, . . . , Pk1, . . . ,
Pkm. For this reason, our results is more general than
the ones of the literature (Da Silva et al., 2011; El Fezazi
et al., 2017; Zabari & Tissir, 2014) since they provide
more degree of freedom.On the other hand,we can use

a numerical optimisation algorithm to find the optimal
value of α.

4. Design algorithm

With all these results, the design procedure of the
proposed observer can be obtained as follows:

(1) Choose the matrix E according to the condi-
tion (8);

(2) Compute the matrices T and K from Equation
(10);
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Figure 3. Control input used in the simulations.

Figure 4. Disturbance used in the simulations.

(3) Compute α1, α2, α3, β1, β2, and β3 from the
conditions (14) and (19);

(4) Compute the matrices Z0, . . . ,Zm by solving
LMI (21);

(5) Deduce all the matrices N0, . . . ,Nm, J0, . . . , Jm,
H, M0, . . . ,Mm, P0, . . . , Pm, Q0, . . . ,Qm, G0, . . . ,
Gm, R, and S from the conditions (4), (13), (16),
and (18).

5. Illustrative examples

The feasibility and performance of the observer design
approach proposed in this paper are illustrated in this
section by two numerical examples.

Example 5.1: Consider the delayed system (1) where
m = 1 and:

A0 =
[ −0.2 0

0 −0.4

]
, A1 =

[ −0.5 0.2
0 −0.3

]
,

B0 =
[

1
0.5

]
,

Cy = [
1 0

]
, E =

[
0.3 0.25
0.15 0.4

]
,

α = 0.2, d1 = 0.1.

Then, Theorem 3.1 is solvable for hτ1 = 10 using the
MATLAB LMI toolbox.
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Figure 5. Evolution of the state variables (H∞ DO).

Figure 6. Evolution of the state variables (PO).

The simulation results are shown in Figures 1 and 2.
Figure 1 represents the control input and Figure 2 rep-
resents the error variables evolution where the initial
states used in this example are x0 = [−15 15]T .

From these figures we can see that the trajecto-
ries tend to zero asymptotically. Then, the simulation
results show the ability of our generalised observer to
have good performances.

Example 5.2: The system (1) is reconsidered in this
example where its matrices are given by (m = 3):

A0 =
[ −0.1 −0.4

9 −9

]
, A1 =

[ −0.2 −0.3
2 −2

]
,

A2 =
[ −0.4 −0.1

4 −4

]
,

A3 =
[ −0.3 −0.2

3 −3

]
, B =

[
10
0

]
,

Bw =
[

1
0

]
, Cy = [

1 1
]

The use of LMI tools of MATLAB, the applica-
tion of the conditions obtained in this article, and
the choice of the matrix E = [ 0.5 0.2

0.4 0.7
]
, allow us to

obtain γ = 0.0193 where hτ1 = hτ2 = hτ3 = 0.1, α =
0.9, and d1 = d2 = d3 = 0.1.
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Figure 7. Evolution of the state variables (PIO).

Figure 8. Evolution of the error (H∞ DO).

In order to study the convergence performances
of our observer, we make some simulations with the
H∞ DO, the PO, and the PIO. Then, we compare the
proposed observer with the designed PO and PIO,
in the presence of disturbance. Thus, the simulation
results are given in Figures 5–10 to represent the evo-
lution of the state and error variables where the control
input and the disturbance are given in Figures 3 and 4,
respectively. The initial states used in these simulations
are x0 = [10 5]T .

From the figures, we can clearly see that our
methodology affords better performances with a
shorter convergence time and rejects the disturbance

at a faster rate. In general, the H∞ DO adopted in this
paper has better behaviour than the existing observers
PO and PIO and finally the validity of our approach is
confirmed.

6. Conclusion

The design problem of an H∞ DO that is a gener-
alisation of the PO, the PIO, and the DO for multi-
delayed systems affected by disturbances is studied in
this paper. This problem is solved from the solution
of an LMI, based on the parametrization results of
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Figure 9. Evolution of the error (PO).

Figure 10. Evolution of the error (PIO).

algebraic constraints obtained from the unbiased esti-
mation error. The observer design approach presented
in this paper has a wide range of applicability, as the
class of systems investigated appears in many process
control applications.

The proposed approach opens new lines of research:
In the near future, we aim to extend the proposed
methodology to related systems such as singular, T-S
fuzzy, etc.
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