Abdelkrim Bendahmane

Abdelkrim Bendahmane
University of Sussex · Department of Physics and Astronomy

PhD in Physics

About

59
Publications
6,317
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,436
Citations

Publications

Publications (59)
Article
Full-text available
Light flow in nonlinear media can exhibit quantum hydrodynamical features which are profoundly different from those of classical fluids. Here, we show that a rather extreme regime of quantum hydrodynamics can be accessed by exploring the piston problem (a paradigm in gas dynamics) for light, and its generalization, named after the celebrated mathem...
Article
We show that geometric parametric instability (GPI) in graded-index multimode fibers is strongly influenced by higher-order dispersion. By measuring the output spectrum for different core radii, we distinguish peaks generated by GPI from other coexisting parametric processes using phase-matching arguments and numerical simulations. We highlight for...
Preprint
We report on the experimental and numerical observation of polarization modulation instability (PMI) in a nonlinear fiber Kerr resonator. This phenomenon is phased-matched through the relative phase detuning between the intracavity fields associated with the two principal polarization modes of the cavity. Our experimental investigation is based on...
Article
Full-text available
We report on the experimental and numerical observation of polarization modulation instability (PMI) in a nonlinear fiber Kerr resonator. This phenomenon is phased-matched through the relative phase detuning between the intracavity fields associated with the two principal polarization modes of the cavity. Our experimental investigation is based on...
Preprint
Full-text available
The piston problem, i.e. the dynamics in a uniform gas at rest under the action of a moving piston is fundamental problem of physics and a canonical case study in shock wave physics. We investigate theoretically and experimentally the analogous problem for a photon fluid, which turns out to be strongly influenced by the dispersive character of the...
Article
Full-text available
Spontaneous emergence of self-organized patterns and their bifurcations towards a regime of complex dynamics in nonequilibrium dissipative systems is a paradigm of phase transition. Indeed, the behavior of these patterns in the highly nonlinear regime remains less explored, even in recent high-quality-factor resonators such as Kerr-nonlinear optica...
Preprint
Spontaneous emergence of self-organized patterns and their bifurcations towards a regime of complex dynamics in non-equilibrium dissipative systems is a paradigm of phase transition. Indeed, the behavior of these patterns in the highly nonlinear regime remains less explored, even in recent high-quality-factor resonators such as Kerr-nonlinear optic...
Conference Paper
We investigate the optical analogous of the piston shock problem in gas dynamics. Using fast temporal measurements, we recorded dispersive shock waves formed by the propagation of a bi-chromatic photon fluid along an optical fiber.
Conference Paper
Full-text available
We experimentally and theoretically investigate the nonlinear evolution of an abrupt jump in frequency (Riemann problem), observing different phase transitions of the flow which agree quantitatively with predictions from Whitham modulation theory.
Article
We numerically and experimentally investigate the asymmetrically phase-detuned dual pumping of a passive inhomogeneous fiber ring cavity. This configuration originates from the fine control of frequency mismatch between the frequency spacing of the bichromatic pump and the free spectral range of the cavity. Multicomb states at offset frequencies ca...
Article
Full-text available
We experimentally and theoretically investigate the process of seeded intermodal four-wave mixing in a graded index multimode fiber, pumped in the normal dispersion regime. By using a fiber with a 100 micron core diameter, we generate a parametric sideband in the C band (1530-1565 nm), hence allowing the use of an Erbium-based laser to seed the mix...
Conference Paper
Full-text available
By controlling pump modes injected in the normal dispersion regime of few-mode graded index optical fiber, we investigated intermodal noise-seeded modulation instability and generation of highly-detuned cascaded intermodal four-wave mixing sidebands.
Conference Paper
Full-text available
We report on the observation of a polarization modulational instability process occurring in a fiber Kerr resonator. This phenomenon originates from a cross-phase modulation interaction between both circular components of the recirculating field.
Conference Paper
We investigate the optical analogous of the piston shock problem in gas dynamics. Using fast temporal measurements, we recorded dispersive shock waves formed by the propagation of a bi-chromatic photon fluid along an optical fiber.
Conference Paper
We report on the experimental observation of flipping polarization domain walls in a fiber Kerr resonator. These topological polarization knots exhibit a period-doubling behavior and can be addressed individually as bit-entities for data storage.
Conference Paper
We develop an effective 1+1D model describing nonlinear propagation in multimode graded-index fibers. The model is able to quantitatively reproduce recently observed phenomena like geometric parametric instability and broadband dispersive wave emission.
Article
Full-text available
We study a coupled cavity laser configuration where a passively Q-switched Nd:YAG microchip laser is combined with an extended cavity, including a doped multimode fiber. For appropriate coupling levels with the extended cavity, we observed that beam self-cleaning was induced in the multimode fiber thanks to nonlinear modal coupling, leading to a qu...
Article
Full-text available
We report on the experimental observation of an intermodal noise-seeded modulational instability process (MI) taking place in the normal dispersion regime of a few-mode graded-index optical fiber. Strong power dependence of the MI spectra is observed, with a peak gain modulation frequency that scales as the square root of the injected light power....
Article
Full-text available
We investigate analytically, numerically, and experimentally the spectral broadening of pulses that undergo the formation of dispersive shocks, addressing in particular pulses in the range of tens of ps generated via electro-optic modulation of a continuous-wave laser. We give an analytical estimate of the maximal spectral extension and show that s...
Article
Full-text available
We demonstrate far-detuned parametric frequency conversion processes in a few mode graded-index optical fibers pumped by a Q-switched picosecond laser at 1064 nm. Through a detailed analytical and numerical analysis, we show that the multiple sidebands are generated through a complex cascaded process involving inter-modal four-wave mixing. The resu...
Article
We experimentally demonstrate that Kerr spatial self-cleaning of a pulsed beam can be obtained in an amplifying multimode optical fiber. An input peak power of 500 W only was sufficient to produce a quasi-single-mode emission from the double-clad ytterbium doped multimode fiber (YMMF) with non-parabolic refractive index profile. We compare the self...
Article
We report numerical and experimental demonstrations of flexible group-velocity dispersion regimes in step-index tellurite fibers by fine control of the fiber core diameter. Our simple fiber design allowed us to explore various nonlinear propagation regimes beyond 2 μm, which involved careful control of four-wave mixing processes. Combined with the...
Article
We investigate the coherent or incoherent seeding of dissipative modulation instability (MI) in a nonlinear fiber ring cavity. By varying wavelength and degree of coherence of the seed signal across the MI gain band, we observe a strong sensitivity of the resulting MI sidebands in terms of bandwidth and amplification. Both spectral and temporal cha...
Article
We show femtosecond time-resolved nonlinear pump-probe spectroscopy using a fiber soliton as the probe pulse. Furthermore, we exploit soliton dynamics to record an entire transient trace with a power-encoded delay sweep. The power-encoded delay line takes advantage of the dependency of the soliton trajectory in the (λ,z) space upon input power; the...
Article
We report numerical and experimental studies of multiple four-wave mixing processes emerging from dual-frequency pumping of a passive nonlinear fiber ring cavity. We observe the formation of a periodic train of nearly background-free soliton pulses associated with Kerr frequency combs. The generation of resonant dispersive waves is also reported.
Conference Paper
We demonstrate a novel nonlinear dynamics of multimode fibers that reshapes their spectral and spatial beam profiles, based on spatiotemporal modulation instability. Sidebands ranging from the visible to the near-infrared are carried by one and the same spatial bell-shaped profile.
Article
We experimentally demonstrate that pumping a graded-index multimode fiber with sub-ns pulses from a microchip Nd:YAG laser leads to spectrally flat supercontinuum generation with a uniform bell-shaped spatial beam profile extending from the visible to the mid-infrared at 2500\,nm. We study the development of the supercontinuum along the multimode f...
Article
Full-text available
The pioneering paper 'Optical rogue waves' by Solli et al (2007 Nature 450 1054) started the new subfield in optics. This work launched a great deal of activity on this novel subject. As a result, the initial concept has expanded and has been enriched by new ideas. Various approaches have been suggested since then. A fresh look at the older result...
Article
Spatio-temporal mode coupling in highly multimode physical systems permits new routes for exploring complex instabilities and forming coherent wave structures. We present here the first experimental demonstration of multiple geometric parametric instability sidebands, generated in the frequency domain through resonant space-time coupling, owing to...
Article
Full-text available
We propose a new approach to near-infrared molecular spectroscopy, harnessing advanced concepts of optical telecommunications and supercontinuum photonics. We generate, without mode-locked lasers, two frequency combs of slightly different repetition frequencies and moderate, but rapidly tunable, spectral span. The output of a frequency-agile contin...
Conference Paper
We show experimentally a new type of parametric instability associated with the original phenomenon of beam self-cleaning in multimode fibers. Our experimental results are in good agreement with numerical solutions of the Gross-Pitaevskii equation.
Conference Paper
The reshaping of multimode waves in optical fibers is a process where the spatial and spectral degrees of freedom are inherently coupled. Our experiments demonstrate that pumping a graded-index multimode fiber with sub-ns pulses from a microchip Nd:YAG laser leads to supercontinuum generation with a uniform bell-shaped spatial beam profile.
Article
We report an original way to control simultaneously the wavelength and duration of ultrashort solitons by using topographic photonic crystal fibers. The design of these longitudinally modulated fibers is achieved by using an accurate and simple approach based on analytical and semi-analytical tools, avoiding the use of time-consuming numerical simu...
Article
Full-text available
We observe experimentally the spectral signature of the collision between a soliton and the dispersive wave initially emitted from the soliton itself. This collision, interpreted in terms of an optical event horizon, is controlled by the use of an axially varying fiber which allows us to shape both the soliton and dispersive wave trajectories so th...
Article
Full-text available
The trapping of a weak dispersive wave by an intense soliton is a complex process occurring at the early stage of supercontinuum generation. It is theoretically predicted to arise from multiple soliton-dispersive wave interactions, producing a stepwise frequency blue shift of the dispersive wave. We report here the first experimental evidence of th...
Article
Full-text available
We investigate multi-wave mixing associated with the strongly pump depleted regime of induced modulation instability (MI) in optical fibers. For a complete transfer of pump power into the sideband modes, we theoretically and experimentally demonstrate that it is necessary to use a much lower seeding modulation frequency than the peak MI gain value....
Conference Paper
Multiheterodyne frequency comb spectroscopy without mode-locked lasers is reported in the near-infrared C and L telecommunication bands. The system without active stabilization combines high signal-to-noise ratio, rapid tuning and moderate multiplex spectral span.
Article
Full-text available
We report a fiber-optic parametric amplifier with ultra-broad and flat gain band by using a longitudinally tailored optical fiber. The parametric amplifier has been designed from realistic numerical simulations combined with an inverse algorithm to obtain a flat and wide gain band through fiber dispersion management. We experimentally report ~12 TH...
Conference Paper
We investigate theoretically and experimentally basic nonlinear effects such as soliton propagation or modulation instability in what we called topographic optical fibers, i.e. fibers which parameters are longitudinally modulated.
Article
Full-text available
We provide the experimental demonstration of the generation of multiple dispersive waves from a single soliton propagating in the vicinity of the first zero-dispersion wavelength of an axially-varying optical fiber. The fiber is designed such that the Raman-shifting soliton successively hits three times the longitudinally evolving zero-dispersion w...
Thesis
Full-text available
This thesis concerns the study of the propagation of solitons, or assimilated ones, in optical fibers with tailored longitudinal profiles. The first part presents the general guiding properties of an optical fiber and introduces the main linear and non-linear process involved in solitons propagation. In Part II, spectral and then spectrotemporal so...
Article
Full-text available
Temporal solitons propagating in the vicinity of a zero-dispersion wavelength in an optical fiber emit phase-matched resonant radiations (RRs) as a result of perturbations due to higher-order dispersion effects. These RRs propagate linearly and they usually rapidly spread out in time, thus having a very low peak power. Here, we show that the use of...
Article
We investigate experimentally the dynamics of Akhmediev breathers in an optical fiber with a longitudinally tailored dispersion that allows to nearly freeze the breather evolution near their point of maximal compression. Our results are in good agreement with numerical simulations.
Article
Full-text available
We present an approach for fiber delivery of femtosecond pulses relying on pulse breakup and soliton self-frequency shift in a custom-made solid-core photonic bandgap fiber. In this scheme, the fiber properties themselves ensure that a powerful Fourier-transform-limited pulse is emitted at the fiber output, hence doing away with the need for comple...
Conference Paper
We report experimental results demonstrating the generation and the subsequent cascade of multiple dispersive waves from a single Raman-shifting soliton hitting several times the second zero dispersion wavelength of a dispersion oscillating fiber.
Article
We demonstrate that the dynamics of the soliton self-frequency shift can be accurately controlled by using tapered optical fibers with optimized longitudinal profile shape (that we term topographic fibers). The tapering profiles tailored for a targeted soliton spectral trajectory through dispersion and nonlinearity management are determined by an i...
Article
Full-text available
We report the experimental observation of scalar and cross-phase modulation instabilities by pumping a highly birefringent photonic crystal fiber in the normal dispersion regime at 45° to its principal polarization axes. Five sideband pairs (two scalar and three vector ones) are observed simultaneously in the spontaneous regime, four of which have...
Conference Paper
We demonstrate the design and use of specialty solid-core photonic bandgap fibers for the generation and delivery of short solitons tunable over 2500 cm-1 with an energy up to 700 pJ.
Conference Paper
We experimentally demonstrate that the frequency of a Raman-shifting soliton can be accurately controlled using meter-long tapered photonic crystal fibers with tailored longitudinal profiles. The optimized transition profiles are determined by an inverse algorithm.
Article
We address the long-standing issue of accurately partitioning the nonlinear response of silica glass into electronic (Kerr) and nuclear (Raman) contributions to correctly describe the propagation of ultrashort solitons in a unified way independently of their duration. This is done with a semianalytical approach leading to a modified nonlinear coeff...
Conference Paper
We provide a semi-analytical model for partitioning the nonlinear response of silica glass into electronic and nuclear contributions to describe the propagation of ultrashort solitons with a duration comparable to the Raman response time scale.

Network

Cited By