
RSA Cryptanalysis using multiplicative group order

Amina Miroud

Research Laboratory on Computer

Sciences Complex Systems ReLa(CS)2

University of Oum El Bouaghi

P.O. Box 358

04000 Oum El Bouaghi, Algeria

miroud.aminaa@gmail.com

Abdelhabib Bourouis

Research Laboratory on Computer

Sciences Complex Systems ReLa(CS)2

University of Oum El Bouaghi

P.O. Box 358

04000 Oum El Bouaghi, Algeria

a.bourouis@univ-oeb.dz

Lakhdar Derdouri

Research Laboratory on Computer

Sciences Complex Systems ReLa(CS)2

University of Oum El Bouaghi

P.O. Box 358

04000 Oum El Bouaghi, Algeria

derdouril@yahoo.fr

Rohallah Benaboud

Research Laboratory on Computer

Sciences Complex Systems ReLa(CS)2

University of Oum El Bouaghi

P.O. Box 358

04000 Oum El Bouaghi, Algeria

r benaboud@yahoo.fr

Mouna Nouadri

Research Laboratory on Computer

Sciences Complex Systems ReLa(CS)2

University of Oum El Bouaghi

P.O. Box 358

04000 Oum El Bouaghi, Algeria

mouna 93@live.com

Abstract—Four decades of attempts to break the RSA cryp-
tosystem produced various attacks. However, none of these
attacks is considered as mean for breaking the system, because
most of them focus on the misuse of the RSA system or the bad
choices of its parameters that could easily be avoided. Therefore,
we need generic attacks that can be applied in a reasonable
amount of time to break RSA. A generic cryptanalysis, presented
in this paper, consists in finding out the trapdoor which allows to
invert the RSA function. To determine the trapdoor, we search
for the exponent of the RSA multiplicative group. It is obtained
by calculating the ordrers of a small set of numbers then taking
the highest value. We then define the trapdoor as the inverse
of the public key modulo this found exponent. Therefore, using
this trapdoor, it is easy to decrypt any RSA ciphertext. The
interest of this attack is that it can be applied regardless of the
implementation of the RSA system. Furthermore, it can not be
thwarted using an OAEP padding.

Keywords—Cryptanalysis, RSA cryptosystem, Attack, Modu-
lus, Trapdoor.

I. INTRODUCTION

Since the use of written communication, people have been

interested in trying to find means to protect the content of

their communications assuming that an adversary can read

all of their messages. This has led to the introduction of

numerous methods and techniques for secret communication,

a science known as cryptography. Public key cryptography

(or asymmetric cryptography) has been the most significant

and striking development in the history of cryptography. This

revolutionary concept has been introduced in the famous paper

”New Directions in Cryptography” [1]. Nowadays, There are

many asymmetric schemes for generating keys to encrypt and

decrypt messages. The RSA public key cryptosystem was the

first practical realization of a public key encryption scheme.

A secure public key cryptosystem requires a mathematical

operation which is easy to compute (encryption) but compu-

tationally difficult to reverse (decryption) in a realistic time

without knowing a special secret information, called the trap-

door, which is the private key. Such a mathematical function is

called a trapdoor one-way function. Whereas the objective of

cryptography is to develop secure trapdoor one-way encryption

functions, a parallel domain, called cryptanalysis, aims to

find out means to reverse these functions or find possible

weaknesses. Thus, cryptanalysis is essential for asymmetric

cryptosystems to provide higher levels of security by avoiding

previously discovered vulnerabilities.

Cryptanalysts are continuously targeting all asymmetric

cryptosystems without exception where some of them are now

considered weak. Among the public key cryptosystems that

have proved their resistance to the various attempts of crypt-

analysis, we find the RSA cryptosystem. This cryptosystem is

the most popular form of public key cryptography in the world

today because of its simplicity and its robustness against the

different proposed attacks since its invention.

In this paper we introduce a new cryptanalysis attempt to

break the RSA cryptosystem. The proposed attack aims to

find a trapdoor for the RSA encryption function in a realistic

amount of search time. To find the trapdoor, we must search

the exponent of the RSA multiplicative group λ(N). It is

the maximal order of elements of (Z/NZ)∗, where N is

the RSA public modulus and λ refers to the Carmichael’s

lambda function. In order to determine λ(N), it is necessary

to compute the order of a restricted set of elements in the

considered RSA modulus. Once λ(N) is obtained, we define

the trapdoor by e−1 mod λ(N). Thus, we can decrypt any

ciphertext in the RSA modulus N .

The remainder of this paper is structured as follows: Section

2 shows the basic functioning principle of the RSA cryptosys-

tem. The RSA security, the RSA problem and cryptanalytic

attack models are explained in section 3. A categorization of

the proposed attacks against this cryptosystem are discussed

in section 4. Section 5 describes in detail the proposed attack

and provides an algorithmic formalization of the procedure of

calculating the value of λ(N). Conclusions and future research

directions are presented in Section 6.

II. THE RSA CRYPTOSYSTEM

The RSA cryptosystem is the most widely known and

widely used public-key cryptosystem in the world today since

it supports both secrecy and authentication, and therefore can

be used for encryption, key transport, authentication (digital

signature), and certification. Thus, it is at the heart of web

traffic and electronic credit-card payment systems. We describe

below a simplified version of the RSA encryption system.

Like any public key cryptosystem, RSA cryptosystem con-

sist of three efficiently computable algorithms : a key gen-

eration algorithm, an encryption algorithm, and a decryption

algorithm.

1) Key Generation: The key generation algorithm con-

sists of randomly generating two balanced primes p
and q so that their product N = pq is called the

RSA modulus. After choosing p and q, the algorithm

also chooses an encryption exponent e co-prime to

ϕ(N) = (p − 1)(q − 1), where ϕ is the Euler totient

function, and then computes the private exponent d as

the inverse of the public encryption exponent modulo

ϕ(N) (or modulo λ(N) = lcm(p − 1, q − 1), where

λ denotes Carmichael’s lambda function and lcm is the

least common multiple). The key generation algorithm

outputs the public key (e,N) and the private key (d,N).
2) Encryption: In order to use the RSA cryptosystem

to encrypt messages, it is necessary to encode them

as a sequence of numbers of size less than N. Thus,

the first step of the encryption algorithm is to convert

the plaintext of characters into an integer. This can be

done easily by assigning distinct integers to the distinct

characters, for example, by converting each character

to its ASCII code. The next step takes the public key

(e,N) and a plaintext message m ∈ ZN as input in

order to compute the ciphertext c as following : c ≡ me

mod N .

3) Decryption: Since only the owner of the private key

knows it, only him can decrypt a message encrypted

with the associated public key. Therefore, the decryption

algorithm takes the private key (d,N) and a ciphertext

c ∈ ZN as input, where c ≡ me mod N for some

m ∈ ZN , and outputs the plaintext m ≡ cd mod N .

The relationship between e and d ensures the correctness

of the decryption algorithm.

III. THE SECURITY OF RSA AND CRYPTANALYTIC ATTACK

MODELS

The security of RSA depends on the hardness of solving the

RSA problem (RSAP). It consists in recovering the plaintext

m from the corresponding ciphertext c, given only the RSA

public key (e,N). Mainly, it is the problem of computing the

eth root of c modulo N . Thus, it is clear that RSA can be

completely broken using a modular eth root algorithm which

would allow the adversary to recover encrypted messages even

without knowing the private key. However, at the present time,

there is no efficient algorithm known for this problem and the

only known mean is to factor N . But currently, there is no

efficient algorithm to factor large numbers and the discovery

of a such algorithm would ”break” RSA.

For these reasons, it is generally believed that the security

of RSA relies on the difficulty of factoring the modulus N.

However, it may be possible to solve the RSA problem without

factoring. Hence, the RSA algorithm is not based completely

on the hardness of factoring.

When talking about cryptanalytic attacks, it is interesting

to recall that there is various models or types. The commonly

admitted classification specifies the kind of access a cryptan-

alyst has to a system under attack. The greater the access the

cryptanalyst has to the system, the more critical and useful

information he can get to exploit to break the cryptosystem.

The cryptanalyst analyzes the ciphertext trying to ”break

the cryptosystem, to recover the plaintext and to obtain the

used key so that future ciphertexts could be easily recovered.

Modern cryptography adopts the Kerckhoffs’s principle which

assumes that the encryption and decryption algorithms are

public knowledge and available to anyone.

The Ciphertext-Only Attack (COA) is the most likely en-

countered model in real life cryptanalysis. The cryptanalyst has

access only to ciphertexts without access to the corresponding

plaintexts. Modern cryptosystems are required to be extremely

resistant to this type of attack. The brute force (or exhaustive

key search) are common attacks in this model but the crypt-

analyst has to obtain some information about the plaintext to

allow deciding that the tried key is correct or not.

In the Known-Plaintext Attack (KPA), the cryptanalyst has

access to at least a limited number of pairs of ciphertexts

and corresponding plaintexts. The cryptanalyst tries to find

a correlation between bits of ciphertexts and corresponding

plaintaxts. The confusion and diffusion are two properties of

the operation of a secure cryptosystem identified by Claude

Shannon in his report A Mathematical Theory of Cryptography

[2]. These properties, when carefully introduced, prevent the

use of statistics and other methods of cryptanalysis. Modern

cryptosystems are generally very resistant to the various at-

tacks in this model.

The Chosen-Plaintext Attack (CPA) model assumes that the

cryptanalyst is able to choose a number of plaintexts and

have access to the corresponding ciphertexts. The widely used

public-key cryptosystems are in essence the most exposed to

the attacks of this model because the encryption key is publicly

distributed. Hence, anyone can choose plaintexts and encrypt

them easily. So public-key algorithms must be very resistant

to all chosen-plaintext attacks. The Adaptive Chosen-Plaintext

Attack (CPA2) is a subcategory of CPA where the cryptanalyst

uses results obtained using previous plaintexts as a guide to

choose future plaintexts and conduct a more targeted attack.

The other attack models give the cryptanalyst more ac-

cess and power which are not easily obtained in real life

cryptanalysis. So, attacks in these models are not considered

serious problems. The Chosen-Ciphertext Attack (CCA) and

its subcategory known as Adaptive Chosen-Ciphertext Attack

(CCA2) are typical examples of these models. In these models,

the cryptanalyst can choose a set of ciphertexts and obtain

easily the corresponding plaintexts. The Open key model

attacks is another model requiring more power assuming that

the cryptanalyst has some knowledge about the used keys.

IV. BREAKING RSA

Four decades of cryptanalysis of the RSA system have led

to a number of rigorous attacks, but none has been described

as a destructive. In practice, most successful discovered attacks

focus on insecure implementations of the RSA system. Hence,

they illustrate the dangers of the misuse of RSA. These attacks

are not considered as means for breaking the RSA system,

because they exploit weaknesses in specific implementations.

In the absence of these weaknesses, these attacks remain

ineffective. For a survey of these specific attacks, see [3].

We turn our attention to an entirely different category of

attacks. Rather than attacking a specific implementation, these

attacks focus on the RSA algorithm. Therefore, they aim at

the cryptosystem itself regardless of any weaknesses in its

implementations. For this reason, we can consider them as

generic attacks. The attacks of this category are the most

dangerous on the RSA system because they are not related to

specific implementations or cases to be applied. We classify

these attacks into two main classes. Attacks of the first class

enable the attacker to find out the private key and thus to

read all messages encrypted under a given key. However, a

successful attack of the second class enables the attacker to

read only one ciphertext, because the success of the attack

does not lead to the discovery of the private key. Therefore, to

read a second ciphertext, the attacker has to start the procedure

again. Thus, successful generic attacks allow attackers to break

the RSA cryptosystem. Known attacks of the latter category

are outlined below.

A. Factoring the RSA modulus N

The first possible attack against the RSA cryptosystem

consists in attempting to factor the public modulus N , into its

two prime factors, p and q. Factoring an RSA modulus make

the attack damaging, because it would allow the attacker to

get easily the private exponent d which would allow him to

read all messages encrypted with the public key and to forge

signatures.

Although researchers have made a great progress in the

field of integer factorization, we do not know yet an effi-

cient factorization algorithm to threaten the security of RSA.

In particular, there is no known polynomial factorization

algorithm in the size of the modulus to date. Hence, the

security of the RSA cryptosystem depends on the presumed

difficulty of the factorization problem. We specify that the

fastest known factoring algorithm today is the General Number

Field Sieve (GNFS) [4], which can factor a number of n bits in

time exp(O(1)(log n)1/3(log log n)2/3). For more information

about factorization methods, we refer the reader to [5] [6].

B. Cycling Attacks

In a cycling Attack, the attacker re-encrypt a ciphertext c
until it cycles back to itself i.e., he computes the sequence

ci+1 = RSA〈N,e〉(ci) ≡ (ci)
e mod N , where c0 = m and

c1 = c ≡ me mod N , until c is obtained for the first time.

Thus, if r + 1 re-encryptions are performed to recover the

ciphertext c, then

cr+1 = RSA〈N,e〉(cr) ≡ cr
e mod N ≡ ce

r+1

≡ c
mod N ,

and so cr = ce
r

≡ m mod N . This result is due to the fact

that RSA encryption function is a permutation of a finite set.

It has been shown by Friedlander, Pomerance and Shparlinski

[7], that for sufficiently large RSA modulus N , the realization

of the so-called cycling attack on the RSA cryptosystem is

expected to be unfeasible.

A generalized version of the cycling attack has been pro-

posed by Williams and Schmid in 1979. This modified version

find either a non-trivial factor of N or, in rare cases, a cycle

modulo N as in the basic cycling attack [8]. Hence, it can

be considered as a factorization method. However, breaking

RSA via a generalized cycling attack is no more effective than

other factorization methods. A more precise analysis of the low

efficiency of the generalized cycling attacks on RSA modulus

is provided in [9].

Based on the RSA cyclic encryption function, a recent

attack, presented in [10], can find a new trapdoor different

from the original one, but plays the same role by

decrypting any ciphertext in the RSA modulus N. The

decrypting algorithm is presented below where the function

”search degree max” is called only once to determine the

composition maximum degree d max of the ciphering

function and this by applying the ciphering function to a

restricted set of residues in the modulus N (the first twenty

residues of the modulus). The new decrypting key is defined

by ed max. This cryptanalysis can be viewed as a very

efficient optimization of the cycling attack because of its

realistic performance time.

1: procedure decrypting (e,N,C : BigInteger)

2: M,d max : BigInteger;
3: function search degree max (e,N : BigInteger)

4: m,max, i : BigInteger;
5: m← 0;
6: max← 0;
7: i← 2;
8: while (m <> 1) or (i = 20) do

9: m← 1;
10: while ie

m

mod N <> i do

11: m← m+ 1;
12: end while

13: if m > max then max← m;
14: end if

15: i← i+ 1;

16: end while

17: return max
18: end function

19: d max← search degree max(e,N)− 1;

20: M ← ce
d max

mod N ;

21: end procedure

V. THE PROPOSED ATTACK

Cyclic groups are groups in which every element is a

power of a fixed element called a generator of the group.

The multiplicative group of nonzero elements (Z/nZ)∗ is a

cyclic group if n = 2, 4, pk or 2pk for any prime p > 3
and natural number k > 1. In the case, where this group

is cyclic, it is referred to any cyclic generator of the group

as a primitive root modulo n. Thus, cyclic generators are

characterized by a maximal order equal to |Z∗n| which is in

turn equal to ϕ(n). Recall that the multiplicative order of an

element e of Z
∗
n modulo n is the smallest positive integer i

with ei ≡ 1 mod n.

It is well-known that for the RSA composite modulus

N (where N = pq and p, q are different odd primes),

the multiplicative group (Z/NZ)∗ is not cyclic. Hence, we

definitely cannot talk about generators of (Z/NZ)∗. However,

Carmichael extended the concept of primitive roots to primi-

tive λ-roots which are elements in Z
∗
N with the maximal order,

since the generators of cyclic groups are also elements with

the maximal order. Therefore, a primitive λ-root modulo N is

an element which generates the largest cyclic subgroup of Z∗N .

Briefly, a primitive λ-root modulo N is an integer coprime to

N such that the multiplicative order of this integer modulo N
is equal to λ(N).

There are several proposed estimates for the least prime

primitive root, and the least primitive root of cyclic groups,

which is not the case for the least primitive λ-root, because it

is not that simple to generalize the concept of primitive root

to composite modulus. Martin [11] had given a bound for

g∗(q), the least prime λ-root modulo q, for almost all integers

q > 2, of the form g∗(q)≪ε ω(ϕ(q))
44/5+ε(log q)22/5, where

ω(ϕ(q)) is the number of distinct prime factors of ϕ(q), and ε
is a positive real number. But this may not be sharp, since the

least primitive λ-root is not necessarily prime. Next, Ambrose

in [12] had established an upper bound for s∗(n), the least λ-

root modulo a positive integer n, of the form s∗(n)≪ε n
1
2
+ε

c ,

such that s∗(n) is expressible as a sum of two squares and nc

denotes the largest odd cube-free divisor of n.

To achieve our proposed attack against the RSA system,

we need to use an upper bound for the least primitive λ-

root modulo the RSA composite modulus N . But, as we have

seen, calculating an upper bound for the least primitive λ-root

modulo N using the current proposed estimates needs to know

additional information that we do not have as cryptanalysts of

the RSA system, such as the largest odd cube-free divisor of

N . Furthermore, these estimates may not be accurate, since

the least primitive λ-root is not necessarily prime. Therefore,

we propose the following upper bound which is based only

on the known information public modulus N .

Conjecture 1. For an RSA composite modulus N = pq, where

p and q are two distinct primes, we define an upper bound for

gλ(N), the least primitive λ-root modulo N , as follows:

gλ(N)≪ 6 log(N)

This conjecture followed as a consequence of our empirical

approach which was carried out on composite modulus of the

form N = pq, such that p and q are two distinct primes

and their product belong to the finite interval [1, 106]. Our

experimental approach has followed the next steps :

1) First, we have searched for the least primitive λ-root for

composite integers N which have the features mentioned

above.

2) We then have used the results of the first step to get

the next curves, where LPLR(N) denotes the least

primitive λ-root modulo N .

3) The previous conjecture is formulated after observing

the curves in Fig. 1.

The use of the proposed upper bound ensures us to find at

least one primitive λ-root. Thus, it ensures that we find the

least primitive λ-root. Since primitive λ-roots are elements

of (Z/NZ)∗ with the maximal order λ(N), the value of this

latter can be deduced by calculating the order of the elements

of (Z/NZ)∗ that does not exceed the defined upper bound.

That way, the value of λ is the largest calculated order. The

procedure of calculating the value of λ is formalized in the

algorithm presented next.

1: procedure GET-EXPONENT(N : BigInteger)

2: i, upperBound, lambda : BigInteger;
3: upperBound← ⌊6 log(N)⌋;
4: lambda← 2;
5: i← 2;
6: while i ≤ upperBound do

7: if GCD(i, N) = 1 ∧ ilambda mod N <> 1 then

8: lambda← Get-Order(i, N, lambda);
9: end if

10: i← i+ 1;
11: end while

12: function GET-ORDER(m,N, lambda : BigInteger)

13: msg, k : BigInteger;
14: finish : boolean;
15: finish← false;
16: k ← lambda+ 2;
17: while finish = false do

18: msg ← mk mod N ;
19: if msg = 1 then

20: finish← true
21: else

22: k ← k + 2;
23: end if

24: end while

25: return k
26: end function

27: end procedure

(a) Moduli from 1 up to 500000. (b) Moduli from 500000 up to 1000000.

Fig. 1: Upper bound and LPLR of integer Moduli in the interval [1, 106].

TABLE I: Comparison of the Cycling and the proposed attacks using different modulus sizes.

Cycling Attack Proposed Attack

Public key
(N,e)

Key Size
(bits)

Decryption key Decryption
key Size

(bits)

Execution
time in
seconds

Decryption key Decryption
key Size

(bits)

Execution
time in
seconds

N = 2623,
e = 65537

12 9579704904872582780271772464709
4688568252151173414913

177 0.168 173 08 0.005

N = 5251,
e = 65537

13 1109524890182450626553175509403
2906727952044028889454141539835
7636437270872875698277245166704
9361064901874787760895221297741
7388033

433 0.509 1121 11 0.012

N = 10379,
e = 65537

14 2583235108630990766845404255753
5908039530267691732706253973657
8583672645269921868644506397112
8250229143645458986914349057

401 0.72 1601 11 0.015

N = 25019,
e = 65537

15 2991912254793377750080816210039
2602478442641685048772814658712
3943680282403554675035603668915
2386489154349403445622258582434
7994107230069320978783479038699
8401569116800639469952544158796
543177588737

657 1.742 341 09 0.008

N = 40301,
e = 65537

16 3775978461112251315854025031446
3761848795988243954434945547244
3249376058128299607671157884218
7175991014650395403407406636341
7176189195427390659998723501334
12665999163393

561 21.103 3113 12 0.016

The algorithm requires the input of only one parameter

which is the RSA public modulus N to provide the exponent of

the multiplicative group Z
∗
N given by the Carmichael function

λ(N). The exponent is the maximal order λ(m) where m ∈
Z
∗
N and is always an even number. The function ”Get-Order”

provides the multiplicative order modulo N of the elements m
of Z∗N belonging to the finite interval [2, 6 log(N)]. In order

to speed up the computational time of λ(N) and thus improve

the performance of our attack, we tried to reduce the number

of elements for which we calculate the order. To achieve that

we must check, before each call of the function Get-Order,

the congruence mlambda ≡ 1 mod N , where lambda is the

last saved maximum order and m is the element for which we

want to calculate the order.

In the case, where the congruence is satisfied, we do not

need to compute the order of m since lambda represents either

the order of m or a multiple of this latter. But, in the opposite

case, we conclude that λ(N) is not yet reached. And therefore,

we must call the function Get-Order again to determine the

order or a multiple of the order of m. In order to quickly reach

the exponent λ(N), we call Get-Order using the last stored

maximum order lambda as one of its input parameters.

Once the value of λ(N) is obtained, we get to the last step

of our attack process which consists in calculating the value

of the trapdoor derived by e−1 mod λ(N). This can easily

be done using the Extended Euclidean Algorithm. We note

that recent RSA standards use the Carmichael function λ(N)
instead of the Euler totient function ϕ(N) used in the original

definition of the RSA key generation process. And thus, the

value of the trapdoor would be different from that computed

by e−1 mod ϕ(N). However, both of them allow inverting

the RSA encryption function by decrypting any ciphertext in

the RSA modulus N .

Through the implementation of our proposed attack and the

cycling attack presented in [10] and thanks to all the tests 1

we did and the obtained results (some of them are depicted in

Table I for illustration), we noted that :

• The required time to perform an RSA cryptanalysis

increases with the growth of the modulus size and this

whatever the used method (cyclic method or our proposed

method).

• Because of the reduced size of the trapdoor found by

our proposed attack, the decryption time is realistic

which is not the case for the cyclic attack where the

new discovered trapdoor is of an important size which

implies problems of storage and calculation and thus a

considerable decryption time.

• Our attack is more efficient than the attack presented in

[10] because it allows to find the original trapdoor itself

in a reasonable time compared to the cyclic attack which

finds a new trapdoor different from the original one in a

longer period.

• Applying the OAEP padding before the RSA encryption

process, as described in [13], provides the highest level

of security to the RSA system (the full proof is given in

[14]) which prevents weaknesses due to the RSA function

properties. Therefore, many attacks on the RSA system

including the most dangerous ones are successfully de-

feated using this proper padding, excepting the attack by

factorization which is the only generic attack that can

not be thwarted using an OAEP padding step. Thus, it

is important to remark that our proposed attack is a new

attempt to break the RSA cryptosystem that cannot be

avoided using the proper OAEP padding.

• The proposed attack is applicable even for the mul-

tiprime RSA as defined in [15], where the modulus

n =
∏i=u

i=1
ri, i > 2 and ri are distinct odd prime factors

(r1 = p and r2 = q).

VI. CONCLUSION AND PERSPECTIVES

In this paper, we categorized attacks on the RSA system

into two categories: (1) specific attacks that exploit specific

1These tests are carried out on a machine with the following characteristics:
TOSHIBA, SATELLITE C855-1KM, InsydeH2O version 03.72.016.10, In-
tel(R) Core(TM) i3-2310MCPU@2.10GHz(4CPUs), 2.1GHz, 4096MB RAM,
Windows 7 Professional 32 bits (6.1, version 7601).

weaknesses resulting from the misuse of the RSA system or

the bad choice of its parameters during its implementation, (2)

generic attacks that focus on the RSA algorithm itself without

relying on specific implementations or cases in order to be

applied. We specified that the second category of attacks is

the most dangerous on the RSA system.

Based on a novel upper bound for the least primitive λ-root

modulo the RSA composite modulus N , we proposed a new

generic attack on the RSA system. The interest of this upper

bound is that it depends only on the public modulus N and

thus, it is the first upper bound of its kind that allows to avoid

an exhaustive search of λ(N) which calculates the order of

all the elements of Z∗N . The proposed attack allows to invert,

in a realistic time, the RSA encyption function by uncovering

the trapdoor d (private key) derived by e−1 mod λ(N). This

cryptanalysis presents also the advantage of being resistant to

an OAEP padding.

The attack presented in this paper leaves a promising avenue

open for future research. Thus, in perspective and in order to

show the interest of our attack :

• Enhancing the search time of the maximum order λ(N)
by additional restrictions on the number of considered

elements to calculate the order.

• Elaborating a comparative study between our attack and

the attack by factorization.

REFERENCES

[1] Diffie Whitfield, and Martin Hellman. ”New directions in cryptography.”
IEEE transactions on Information Theory 22.6 (1976), pp. 644-654.

[2] Shannon, Claude E. ”A mathematical theory of cryptography.” Mathe-
matical Theory of Cryptography (1945).

[3] Boneh, Dan. ”Twenty years of attacks on the RSA cryptosystem.”
Notices of the AMS 46.2 (1999): 203-213.

[4] J. P. Buhler, H. W. Lenstra, and C. Pomerance. ”Factoring integers with
the number field sieve.” The development of the number field sieve.
Springer, Berlin, Heidelberg, 1993. 50-94.

[5] Brent, Richard P. ”Recent progress and prospects for integer factorisation
algorithms.” International Computing and Combinatorics Conference.
Springer, Berlin, Heidelberg, 2000.

[6] Lenstra, Arjen K. ”Integer factoring.” Towards a quarter-century of
public key cryptography. Springer, Boston, MA, 2000. 31-58.

[7] Friedlander, John, Carl Pomerance, and Igor Shparlinski. ”Period of the
power generator and small values of Carmichaels function.” Mathematics
of Computation 70.236 (2001): 1591-1605.

[8] Nemec, Mat. The properties of RSA key generation process in software
libraries. Diss. Masarykova univerzita, Fakulta informatiky, 2016.

[9] Rivest, Ronald L., and Robert D. Silverman. ”Are strong primes needed
for RSA”. The 1997 RSA Laboratories Seminar Series, Seminars
Proceedings. 1997.

[10] Derdouri, Lakhdar, and Noureddine Saidi. ”Decrypting the ciphertexts
of RSA cryptosystem with ciphering function.” Sciences of Electronics,
Technologies of Information and Telecommunications (SETIT), 2012
6th International Conference on. IEEE, 2012.

[11] Martin, Greg. ”The least prime primitive root and the shifted sieve.”
arXiv preprint math9807104 (1998).

[12] Ambrose, Christopher. ”On the least primitive root expressible as a sum
of two squares.” Mathematisches Institut (2013).

[13] Bellare, Mihir, and Phillip Rogaway. ”Optimal asymmetric encryption.”
Workshop on the Theory and Application of of Cryptographic Tech-
niques. Springer, Berlin, Heidelberg, 1994.

[14] E. Fujisaki, T. Okamoto, D. Pointcheval, J. & Stern. ”RSA-OAEP is
secure under the RSA assumption”. Journal of Cryptology, 17(2), pp.81-
104. 2004.

[15] K. Moriarty, B. Kaliski, J. Jonsson, and A. Rusch. ”PKCS# 1: RSA
Cryptography Specifications Version 2.2”. November 2016.

