Kamal M. Dawood, ${ }^{\text {a }}$ Nehal M. Elwan, ${ }^{\text {a }}$ Abdelbasset A. Farahat, ${ }^{\text {b,c }}$ and Bakr F. Abdel-Wahab ${ }^{\text {d }}$ *
${ }^{\text {a}}$ Faculty of Science, Chemistry Department, Cairo University, Giza 12613, Egypt
${ }^{\text {b }}$ Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
${ }^{c}$ Faculty of Pharmacy, Department of Pharmaceutical Organic Chemistry, Mansoura University,
Mansoura 35516, Egypt
${ }^{\mathrm{d}}$ Applied Organic Chemistry Department, National Research Centre, Dokki, Giza, Egypt
*E-mail: bakrfatehy@yahoo.com
Received June 16, 2009
DOI 10.1002/jhet. 293
Published online 22 February 2010 in Wiley InterScience (www.interscience.wiley.com).

This review summarizes the methods for preparing 1 H -benzimidazole-2-acetonitriles and their reactions in the past years, some of which have been applied to the synthesis of biologically active molecules. The main reactions are divided into several groups according to some types of the fused benzimidazoles.
J. Heterocyclic Chem., 47, 243 (2010).

			Contents
1.		Introduction	Page
2.		Methods for synthesis of $1 H$-benzimidazole-2-acetonitriles	243
	2.1		From o-phenylenediamine derivatives
3.2		Ring transformation of benzodiazepine-3-carbonitrile	244
			Synthesis of fused benzimidazoles

1. INTRODUCTION

1 H -Benzimidazole-2-acetonitriles are convenient precursors which have been extensively utilized in heterocyclic synthesis. Many reactions were developed in the last decades for which the reactivity of 1 H -benzimida-zole-2-acetonitriles towards diverse reagents was utilized for the synthesis of nitrogen bridged heterocycles. From the point of view for biological activities, benzimidazole
derivatives are useful intermediates and subunits for the development of molecules having pharmaceutical or biological interests [1,2]. Also, substituted benzimidazole derivatives have found applications in diverse therapeutic areas such as antiulcer drugs, anticancer drugs, antiviral drugs, and antiprotozoan species [3-6]. The main purpose of this review is to present a survey of the literature on the synthesis and reactions of 1 H -benzimida-zole-2-acetonitriles during the last decades.

2. METHODS FOR SYNTHESIS OF 1H-BENZIMIDAZOLE-2-ACETONITRILES

Two major approaches have been developed for the synthesis of 1 H -benzimidazole-2-acetonitriles. The first approach involves the construction of the 1 H -benzimida-zole-2-acetonitriles by cyclization of o-phenylenediamine derivatives with reagents such as cyanoacetic acid ester, ethyl 2-cyanoacetimidate, and cyanoacetamide. The second method entails ring transformation of benzodiaze-pine-3-carbonitrile.
2.1. From o-phenylenediamine derivatives. $1 H$ -Benzimidazole-2-acetonitriles $\mathbf{1}$ were synthesized by fusion of o-phenylenediamines and cyanoacetate at high temperature (Scheme 1) [7-15].

Katsuyama and Kubo have been reported the synthesis of 5-hydroxymethyl-1 H -benzimidazole-2-acetonitrile 2 starting from 3,4-diaminobenzoic acid (Scheme 2) [16].

Ethyl 2-cyanoacetimidate hydrochloride was converted into $1 H$-benzimidazole-2-acetonitrile $\mathbf{3}$ by fusion with 1,2-phenylenediamine (Scheme 3) [17].

Compound 3 was prepared by condensation of 1,2phenylenediamine with cyanoacetamide in an inert organic solvent (Scheme 4) [18].

Cyclocondensation of enaminonitriles $\left(\mathrm{R}=\mathrm{CO}_{2} \mathrm{Et}\right.$, Bz) with o-pheylenediamine gave 1 H -benzimidazole-2acetonitrile 4 (Scheme 5) [19].
2.2. Ring transformation of benzodiazepine-3carbonitrile. Treatment of benzodiazepine-3-carbonitrile 5 with methoxyamine hydrochloride resulted in the ring transformation of oxime $\mathbf{6}$ whose hydrolysis and neutralization gave the target molecule (Scheme 6) [20,21].

Ring cleavage of benzodiazepines 7 ($\mathrm{R}=\mathrm{Me}, \mathrm{Et}$) with methylamine provided dihydropyrimidines 8 , which underwent ring transformations and hydrolysis to furnish 2-(1H-benzo[d]imidazol-2-yl)-3-(methylamino)acrylonitrile 9 (Scheme 7) [22].

3. SYNTHESIS OF FUSED BENZIMIDAZOLES

3.1. Pyrrolobenzimidazoles. Elwan has reported the synthesis of pyrrolo[1,2-a]benzimidazoles 12. The reac-

tion of $1 H$-benzimidazole-2-acetonitrile $\mathbf{3}$ with hydrazonoyl halides (10a, $\mathrm{X}=\mathrm{Cl} ; \mathrm{R}_{1}=\mathrm{Me} ; \mathrm{R}_{2}=\mathrm{H}, \mathrm{Cl}, \mathrm{Me}$; $\left.\mathbf{1 0 b}, \mathrm{X}=\mathrm{Br} ; \mathrm{R}_{1}=\mathrm{Ph} ; \mathrm{R}_{2}=\mathrm{H}, \mathrm{NO}_{2}, \mathrm{Me}\right)$ in the presence of triethylamine led to the formation of pyr-rolo[1,2-a]benzimidazoles 12. It has been suggested that the reaction starts from the nucleophilic substitution of the halogen with the benzimidazole carbanion to provide intermediate 11, which upon dehydration gives the pyrrolobenzimidazoles $\mathbf{1 2}$ (Scheme 8) [23].

Awadallah et al. revised the structure of $\mathbf{1 2}$ into the 3-arylazo-2-methylpyrrolo[1,2-a] benzimidazoles (13, Ar $=4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}, 4-\mathrm{Br}-\mathrm{C}_{6} \mathrm{H}_{4}$) by the X-ray crystallography (Scheme 9) [24].

On the other hand, the reaction of hydrazonoyl chlorides $\left(14 \mathrm{X}=\mathrm{Cl} ; \mathrm{R}_{1}=\mathrm{Et} ; \mathrm{R}_{2}=\mathrm{H}, \mathrm{Cl}, \mathrm{Me}, \mathrm{NO}_{2} ; \mathrm{R}_{2}=\right.$ $\mathrm{H} ; \mathrm{R}_{1}=\mathrm{Me} ; \mathrm{R}_{2}=\mathrm{Cl}$) with $1 H$-benzimidazole-2-acetonitrile $\mathbf{3}$ in the presence of sodium ethoxide yielded the pyrazolopyrrolobenzimidazole 16 via the intermediates 15 (Scheme 10) [23,25].

Condensation of the benzimidazoline 17 with the 2 -aminothiophene-3-carboxylates $\mathbf{1 8}\left[\mathrm{R}_{1}=\mathrm{Ph}, \mathrm{R}_{2}=\mathrm{H}\right.$ $\left.(\mathbf{1 8 a}) ; \mathrm{R}_{1} \mathrm{R}_{2}=\left(\mathrm{CH}_{2}\right)_{4}(\mathbf{1 8 b})\right]$ in DMF at $100^{\circ} \mathrm{C}$ provided the tetrahydropyrrolothienopyrimidinediones $\mathbf{1 9}$ in 42$67 \%$ yields. The reaction of compound 17 with triethylamine produced pyrrolobenzimidazole $\mathbf{2 0}$. This reactivity was explained in terms of steric factors of $\mathbf{1 7}$ in which the substituent shields the heterocyclic nitrogen atom and hinders intramolecular alkylation (Scheme 11) [26].

Reaction of dichloromaleimide with 1 H -benzimida-zole-2-acetonitriles followed by intramolecular cyclization of 21 furnished 1,3-dioxo-1,3-dihydropyrrolo [$\left.3^{\prime}, 4^{\prime}: 4,5\right]$ pyrrolo $1,2-a$] benzimidazoles $22(\mathrm{R}=\mathrm{H}, \mathrm{Me})$ [27] (Scheme 12).

The pyrrolo[1,2-a]benzimidazole-3-carbonitrile 24 was prepared by reaction of compound 3 with oxalic acid bis(p-tolylimidoyl) chloride 23 in the presence of triethylamine (Scheme 13) [28].

Treatment of 1-alkyl-4,5-dichloro-3-nitropyridazin-6one ($\mathbf{2 5}, \mathrm{R}_{1}=\mathrm{Et}$, Me) with ambident nucleophiles (i.e., 1 H -benzimidazole-2-acetonitriles) in the presence of potassium carbonate led to selective substitution of a chorine

Scheme 2

Scheme 6

Scheme 7

Scheme 8

12

Scheme 9

12

Scheme 10

16

Scheme 11

20

Scheme 14

Scheme 15

atom by the quaternary carbon atom of the carbanion formed from a substituted acetonitrile 26 (Scheme 14) [29].
Reaction of 2,3-dichloro-5,6-dicyanopyrazine with 3 led to α-(3-chloro-5,6-dicyanopyrazin-2-yl)- α-(2-azaheteroaryl)acetonitriles 27. Subsequent heating in pyridine causes an intramolecular cyclization to yield condensed pyrrolo[b]pyrazine 28 (Scheme 15) [30].

The nucleophilic substitution reaction of hexachlorobenzene with 1 -methyl-1H-benzimidazole-2-acetonitrile yielded the condensed indole 29 (Scheme 16) [31].

Scheme 16

29

Scheme 17

3.2. Pyridobenzimidazoles. Condensation of the pyridine ring with benzimidazole, that is, the passage to pyridobenzimidazoles, extended the spectrum of biological activity [32,33]. The main methods for preparation of pyridobenzimidazoles starting from 2-cyanomethylbenzimidazoles can be occurred via Knoevenagel reaction followed by cyclocondensation, Michael addition, reaction with enaminones, and cyclocondensation with β-dicarbonyl compounds.
3.2.1. Knoevenagel reaction. Cyclization of 30 with malononitrile or ethyl cyanoacetate ($\mathrm{R}=$ aromatic subs.; $\left.\mathrm{R}_{1}=\mathrm{CN}, \mathrm{CO}_{2} \mathrm{Et}\right)$ in ethanol in the presence of piperidine produced pyridobenzimidazoles $\mathbf{3 1}$ (Scheme 17) [34].

Highly fluorescent 7-(diethylamino)benzimidazo[1,2-a]quinoline-3-carbonitrile 33 was prepared by cyclization of 4-(diethylamino)-2-methoxybenzaldehyde 32 with 3 (Scheme 18) [35].

Reaction of the $\mathbf{3}$ with 2,6-dihalobenzaldehydes (34, $\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br})$ in dioxane led to cinnamonitriles 35 and intramolecular cyclization in DMF benzo[4,5]imi-dazo[1,2-a]quinoline-6-carbonitriles $\mathbf{3 6}$ which was obtained directly by refluxing in DMF containing triethylamine (Scheme 19) [36,37].

1-Aryl-3-chloro-4-isoquinolinecarbaldehydes (37; $\mathrm{R}=$ 4-chlorophenyl, 2,3-dichlorophenyl, 3- and 4-nitrophenyl) were condensed with $\mathbf{3}$ in DMF to produce diheteroarylpropenenitriles ($\mathbf{3 8}$, same R), which cyclized to yield 39 (same R) [38] (Scheme 20).

The condensation of 1-phenylpyrazole-4-carboaldehydes (40, $\mathrm{R}=\mathrm{Me}, \mathrm{Ph}$) with benzimidazole-2-acetonitrile 3 led to the formation of fluorescent 3-methyl-1-phenyl-1 H -pyra-zolo[4.3:5,6]pyrido[1,2-a] benzimidazole-5-carbonitrile 41. Similar condensation of 2-chloro-7-methylquinoline-3-carbaldehyde 42 furnished the corresponding 1,2-fused benzimidazo heterocycle 43 (Scheme 21) $[39,40]$.

Chromenes (44, $\mathrm{R}=\mathrm{H}, \mathrm{Cl}, \mathrm{Br}, \mathrm{Me}, \mathrm{Et})$ reacted with 3 in ethylene glycol to yield pyridobenzimidazoles $\mathbf{4 5}$ in $65-80 \%$ yields (Scheme 22) [41].

3

32

33

Scheme 19

Ring transformations of pentose glycals $\left(\mathbf{4 6}, \mathrm{R}_{1}=\mathrm{H}\right.$, $\mathrm{R}_{2}=\mathrm{BnO} ; \mathrm{R}_{1}=\mathrm{BnO}, \mathrm{R}_{2}=\mathrm{H}$) with 3 furnished the pyridiobenzimidazoles 47 (Scheme 23) [42,43].

Vilsmeier-Haack reaction of 3- β-acetoxyandrostan-17one 48 with phosphorus oxychloride and DMF produced 3 - β-acetoxy-17-chloro-16-formyl-5 α-androst-16-ene 49. Reaction of 49 with $1 H$-benzimidazole-2-acetonitrile 3 in refluxing ethanolic solution furnished benzimidazolopyridoandrostane $\mathbf{5 1}$ in 82% yield, However, the intermediate $\mathbf{5 0}$ was yielded in 70% in the presence of piperidine (Scheme 24) [44].
3.2.2. Michael addition. Michael addition of $\mathbf{3}$ to chalcone in ethanol having a catalytic amount of piperidine led to the formation of pyridobenzimidazole 52 (Scheme 25) [45,46].

Addition of 1 H -benzimidazole-2-acetonitrile 3 to arylidenemalononitrile 53 produced 1-amino-3-aryl pyr-ido[1,2-a]benzomidazole-2,4-dicarbonitrile 54 ($\mathrm{R}=$ aryl). Compounds 54 reacted with formamide yielding 4-amino-5-arylpyrimido[5' $\left.{ }^{\prime} 4^{\prime}: 5,6\right]$ pyrido $[1,2-a]$ benzimid-azole-6-carbonitrile 55 ($\mathrm{R}=$ aryl) [47,48] (Scheme 26).

Reaction of arylidene-1 H -benzimidazol-2-ylacetonitriles 56 with $1 H$-benzimidazole-2-acetonitrile 3 furnished pyrido[1,2-a]benzimidazole 57 (Scheme 27) [49].

The formation of pyridobenzimidazole 61 can be achieved by addition of active methylene component $\mathbf{3}$

Scheme 20

41
to 4-ethoxymethylene-2-phenyl-5-oxazolone $\mathbf{5 8}$ to form the intermediate 59, which underwent intramolecular acylation at the nitrogen atom of benzimidazole nucleus with cleavage of oxazolone ring to form intermediate 60. Finally, elimination of ethanol furnished pyridobenzimidazole 61 (Scheme 28) [50].

Ethyl 2-cyano-3-(5-chloro-1,3-diphenylpyrazol-4-yl)acrylate 62 underwent Michael addition with 3 to produce pyrido[1,2-a]benzimidazole 63 (Scheme 29) [51].

Cyclocondensation of 3-aryl-2-(2-benzimidazolyl)acrylonitrile 64 ($\mathrm{R}=1$-naphthyl, $\mathrm{Ph}, 4-\mathrm{MeOC}_{6} \mathrm{H}_{4}, 4-$ $\mathrm{ClC}_{6} \mathrm{H}_{4}$) with ethyl acetoacetate and cyanoacetohydrazide gave pyridobenzimidazolones 65, and aminopyridobenzimidazoles 66, respectively (Scheme 30) [52].

Treatment of 1-(methyl 2-O-benzyl-4,6-O-benzyli-dene-3-deoxy- $\alpha, \alpha-D$-altropyranosid-3-yl)-4-phenyl-but-3-yn-2-one 67 with 3 produced benz[4,5]imidazo[1,2-a]pyridine-4-carbonitrile derivative 68 (Scheme 31) [53].
3.2.3. Reaction with enaminones. Enaminone derivatives are highly reactive intermediates and are extensively used for the synthesis of heterocyclic compounds. Dawood et al., have reported the synthesis of pyr-ido[1,2-a]benzimidazole derivative 70 by reaction of 1-

Scheme 22

(benzo[d]thiazol-2-yl)-3-(dimethylamino)prop-2-en-1-one 69 with 3 in ethanol in the presence of piperidine (Scheme 32) [54].

The reaction of enaminonitrile 71 with 3 was also conducted in refluxing ethanol in the presence of a catalytic amount of piperidine to afford 3-amino-2-(benzo-thiazol-2-yl)carbonylpyrido[1,2-a]-benzimidazole-4-carbonitrile 72 (Scheme 33) [55].

Also, treatment of enaminonitrile [2-(benzothiazol-2-yl)-3-(N, N-dimethylamino)-prop-2-enenitrile] 73 with 3 in refluxing ethanol in the presence of catalytic amount of piperidine afforded 3-amino-2-(benzothiazol-2-yl)pyrido[1,2-a]benzimidazol-4-carbonitrile 74 (Scheme 34) [56].

Pyrido[1,2-a]benzimidazoles 76 were synthesized by reacting 3-aryl-2-(N, N-dimethylamino)methylene-3-oxopropanenitriles 75 with 3 [31,55,57]. Elmaati et al. in 2002 have been reported the synthesis of pyridobenzimidazole 78. Reaction of enaminone of acetoacetanilide 77 with 3 yielded the target compound 78 (Scheme 35) [57].

Hassanien in 2005, reported the reaction of methyl 2-benzoyl-3-dimethylaminopropenoate 79 with 2 -(1 H -ben-zo[d]imidazol-2-yl)acetonitrile $\mathbf{3}$ in refluxing acetic acid in the presence of ammonium acetate to produce methyl 4-cyano-3-phenylbenzimidazo[1,2-a]pyridine-2-carboxylate 80, but not 81 (Scheme 36) [58].

Microwave irradiation of dimedone 82, dimethylformamidedimethyl acetal and $\mathbf{3}$ in iso-propanol and a catalytic amount of piperidine led to the formation of tetra-hydrobenzo[4,5]imidazo[1,2-a]quinolin-6-yl cyanide $\mathbf{8 3}$ (Scheme 37) [59].

The enaminone 2-dimethylaminomethylene-1,3-indandione 84 reacted with $\mathbf{3}$ to produce indenofluorene $\mathbf{8 5}$ [33], while its reaction with 2-dimethylaminomethylene-3-(phenylhydrazono)indan-1-one 86 furnished diazaindenofluorene derivative 87 (Scheme 38) [60].

Scheme 23

Scheme 24

50

Scheme 25

Scheme 26

Scheme 27

57

Scheme 28

Scheme 29

Scheme 30

Scheme 31

Scheme 32

Scheme 33

Scheme 34

Benzo[4,5]imidazo[1,2-a]pyridine-2,4-dicarbonitrile 89 was obtained via treatment of enaminone $\mathbf{8 8}$ with 1 H -benzimidazole-2-acetonitrile $\mathbf{3}$ in ethanol and has a catalytic amount of piperidine (Scheme 39) [61,62].
3.2.4. Reaction with $\boldsymbol{\beta}$-dicarbonyl compounds. 3-Meth-ylpyrido[1,2-a]benzimidazole-4-carbonitrile 90 (prepared by the condensation of $\mathbf{3}$ and ethyl acetoacetate) is formylated with DMF- POCl_{3} to 2-formyl-3-methylpyr-ido[1,2- a]benzimidazol-4-carbonitrile 91(Scheme 40) [63].

1-Oxo- $1 \mathrm{H}, 5 \mathrm{H}$-pyrido[1,2-a] benzimidazole-4-carbonitriles 94 by fusing $\mathbf{3}$ with some ethyl acetoacetate 92 in the presence of ammonium acetate or with ethyl β-aminocrotonate $93\left(\mathrm{R}=\mathrm{H}, \mathrm{R}_{1}=\mathrm{Me}\right)$ [64] (Scheme 41).

Pyrido[1,2-a]benzimidazole-4-carboxylic acid 95 was prepared in excellent yield by condensation of $\mathbf{3}$ with acetyl acetone followed by hydrolysis of the nitrile group by sulfuric acid (Scheme 42) [65,66].

Pyrrolo[$\left.3^{\prime}, 4^{\prime}: 3,4\right]$ pyrido[1,2-a]benzimidazoles $97[\mathrm{R}=$ $\mathrm{Bu}, \mathrm{Bn}, \mathrm{MeOCH}_{2} \mathrm{CH}_{2}, \mathrm{O}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2}$, 2-furyl$\mathrm{CH}_{2}, 4-\mathrm{MeC}_{6} \mathrm{H}_{4}, 2-\mathrm{MeC}_{6} \mathrm{H}_{4}$] were prepared in two steps. The condensation of $\mathbf{3}$ with ethyl 4 -chloro-3-oxobutanoate led to the formation of 3-chloromethyl-1,5-dihydro-1-oxopyrido[1,2-a] benzimidazole-4-carbonitrile 96. Amination of 96 with primary amines yielded 97 (Scheme 43) [67].

Condensation of benzimidazole 98 with ethoxymethylenemalonic acid esters $(\mathbf{9 9}, \mathrm{R}=\mathrm{Et}, \mathrm{Me})$ and acetoacetic ester gave the corresponding pyrido[1,2-a]benzimidazoles 100, 101 (Scheme 44) [7].

Cycloalkylpyrido[1,2-a] benzimidazoles 102-104 were prepared by reaction of $\mathbf{3}$ with dimethyl 2-oxocyclopen-tane-1,3-dicarboxylate, dimethyl 3-oxocyclopentane-1,2-
dicarboxylate, or methyl 2-oxocyclohexanecarboxylate in the presence of two equivalent of ammonium acetate at $140^{\circ} \mathrm{C}$, these compounds exhibited a good in vitro antineoplastic activity especially against most of the leukemia cell lines (Scheme 45) [68-70].
3.2.5. C-acylation. 2-Chloronicotinoyl chloride reacted with 1-methyl-benzimidazole-2-acetonitriles, to give 97% conjugated nitrile 105 which cyclized on heating to give the corresponding 1,8-naphthyridine $\mathbf{1 0 6}$ in high yield (Scheme 46) [71].

Scheme 35

Scheme 36

Scheme 37

1-Methyl-benzimidazole-2-acetonitriles condensed with 2-haloaromatic esters (107, X $=\mathrm{Cl}, \mathrm{F} ; \mathrm{R}=\mathrm{H}$, $\left.\mathrm{O}_{2} \mathrm{~N} ; \mathrm{R}_{1}=\mathrm{Me}, \mathrm{Et}\right)$ in refluxing acetonitrile containing potassium or cesium carbonate to give condensed isoquinolones 108 (Scheme 47) [72-74].

3-Hydroxy- $1 \mathrm{H}, 5 \mathrm{H}$-pyrido[1,2-a]benzimidazol-1-ones $\left(110, \mathrm{R}=\mathrm{Et}, \mathrm{Bu}, \mathrm{PhCH}_{2}, \mathrm{Ph}\right)$ were prepared by cyclization of 1 H -benzimidazole-2-acetonitrile with the dicarboxylate 109 (Scheme 48) [75,76].

Condensed azine 112 was prepared by cyclization of the corresponding benzothiophene 111 in refluxing ether (Scheme 49) [77].
3.2.6. Miscellaneous methods. A one-step synthesis of benzimidazolo[1,5-a]pyridine $\mathbf{1 1 4}$ was reported. The reaction of 2-(2-phenylhydrazono)malononitrile $\mathbf{1 1 3}$ with 3 in refluxing ethanol yielded the target molecule 114 (Scheme 50) [78].

2-Imino- N^{\prime} - p-arylpropanehydrazonoyl cyanide (115, R $=\mathrm{Me}, \mathrm{OMe}, \mathrm{NO}_{2}$) were condensed with $\mathbf{3}$ in acetic acid to give the corresponding 3-methylpyrido[1,2-a]benzimidazoles 116 which then oxidized with cuprous acetate in DMF to triazolo[4,5-b]pyrido[$\left.1^{\prime}, 2^{\prime}-a\right]$ benzimidazoles 117 (Scheme 51) [79].

Reaction of $\mathbf{3}$ with 3-aminobut-2-enenitrile $\mathbf{1 1 8}$ afforded 1-amino-3-methylpyrido[1,2-a]benzimidazole-4-carbonitrile 119 (Scheme 52) [80].

Compound 3 reacted with sodium salts of 3-hydroxy-methylene-2-alkanones ($\mathbf{1 2 0}, \mathrm{R}=\mathrm{H}, \mathrm{Me}, \mathrm{R}_{1}=\mathrm{Me}$, aryl) in piperidine acetate and aqueous ethanol to yield two isomeric structures $\mathbf{1 2 1}$ and $\mathbf{1 2 2}$. The X-ray analysis confirmed the presence of $\mathbf{1 2 1}$ in the solid state (Scheme 53) [81].

The cycloannulation of dianion $\mathbf{1 2 3}$ derived from $\mathbf{3}$ with the acyclic ketene dithioacetals $(\mathbf{1 2 4}, \mathrm{R}=\mathrm{Ph}, \mathrm{Me})$ produced 4-cyano-1-phenyl (or 1-methyl)-3-(methyl-
thio)-pyrido[1,2- a]benzimidazoles $\mathbf{1 2 5}$ in good yields via the intermediate 124 (Scheme 54) [82].

Benzimidazole-2-acetonitriles ($\mathrm{R}=\mathrm{H}$, Me) were treated with carbon disulphide and dimethyl sulfate to furnish thioesters 126. Reactions of (126, R $=\mathrm{H}, \mathrm{Me})$ with methyl 2-cyano-3,3-bis(methylthio)acrylate (127a, $\mathrm{X}=\mathrm{CO}_{2} \mathrm{Me}$), 2-[bis(methylthio)methylene]malononitrile (127b, $\mathrm{X}=\mathrm{CN}$), and 2-(ethoxymethylene)malononitrile gave pyridobenzimidazoles (128, $\mathrm{R}_{1}=\mathrm{SMe}, \mathrm{Z}=$ $\left.\mathrm{O}, \mathrm{NH} ; \mathrm{R}_{1}=\mathrm{H}, \mathrm{Z}=\mathrm{NH}\right)($ Scheme 55) [83].

Scheme 38

87

Scheme 39

Scheme 40

Scheme 41

Scheme 42

Scheme 43

Scheme 44

The reaction of 3 with triethyl orthoformate and hippuric acid derivatives in refluxing acetic anhydride afforded pyrido[1,2-a]benzimidazole derivatives 131 via the intermediates 129 then 130. The latter cyclizes via water elimination to yield pyrido[1,2-a]benzimidazole derivatives 131 (Scheme 56) [84].

Thermal condensation of $\mathbf{3}$ with diethyl ethoxymethylenemalonate in diphenyl ether at $240-250^{\circ} \mathrm{C}$ gave 75% yield ethyl 4-cyano-3-hydroxypyrido[1,2- a]benzimida-zole-2-carboxylate 132 (Scheme 57) [33].

Base-catalyzed condensation-cyclization of $\mathbf{3}$ with 4-(methylthio)-2-oxo-6-aryl-2H-pyran-3-carbonitriles (133, $\mathrm{Ar}=$ aryl, 3-pyridyl, 4-pyridyl) led to the formation of pyrido[1,2-a]benzimidazoles 134 as a major product and pyrano[4,3- d]pyrido[1,2-a]benzimidazoles 135 as a minor one (Scheme 58) [85].

Reactions of 2-chlorobenzonitriles (136, $\mathrm{R}=\mathrm{H}, \mathrm{NO}_{2}$) and 2-chloro-3-quinolinecarbonitrile with 1 H -benzimida-zole-2-acetonitriles ($\mathrm{R}_{1}=\mathrm{H}$, Me, Et) gave condensed isoquinolinimines $\left(\mathbf{1 3 7} ; \mathrm{R}=\mathrm{H}, \mathrm{NO}_{2} ; \mathrm{X}=\mathrm{NH}, \mathrm{NMe}\right.$, NEt) and condensed 1,8-naphthyridinimines (138; X = NMe) [86] (Scheme 59).

2-(2-Hydroxyethyl)-1-oxo-pyrido[1,2-a]benzimidazole4 -carbonitrile 139 was prepared by reacting 3 with 2 acetylbutyrolactone in the presence of ammonium acetate, whereas the 2-benzamido compound 140 was
obtained by reacting 3 with 4-ethoxymethylene-2-phe-nyloxazolin-5-one (Scheme 60) [87].

Cyanamide in the presence of methanol, s-triazine and 3 gave primary product cyanoethene 141 which was stabilized via intermediate $\mathbf{1 4 2}$ to give pyridobenzimidazole 143 (Scheme 61) [88].

The reaction of 3-methylthio-4-phenyl-1,2-dithiolium perchlorate 144 with $\mathbf{3}$ in a mixture of acetonitrile/dioxane in the presence of triethylamine gave two products. The major product was cyanopyridobenzimidazole 145 formed by initial reaction of acetonitrile at the unsubstituted 5-position of the dithiole ring, followed by ring opening and recyclization. The other product was dithiole 146 (Scheme 62) [89].

Reactions of 3 with diketene in acetic acid at room temperature gave C-acetoacetyl derivative 147 which easily cyclized to give 4-cyano-3-methylpyrido[1,2a] benzimidazole-1(5H)-one 148 (Scheme 63) [90].

Scheme 46

Scheme 47

The nucleophilic attack of carbanion of 1 H -benzimid-azole-2-acetonitriles ($\mathrm{R}=\mathrm{H}, \mathrm{Me}$) at $\mathrm{C}-4$ of pyrimidine ring in 149 led to the formation of the non-isolated intermediate $\mathbf{1 5 0}$, which underwent intramolecular cyclization through acylation at the nitrogen atom of benzimidazole leading to pyridopyrimidine 151 (Scheme 64) [91].
3.3. Pyrimidobenzimidazoles. A one-step synthesis of azolo[$\left.5^{\prime \prime}, 1^{\prime \prime}: 3^{\prime}, 4^{\prime}\right][1,2,4]$ triazino $\left[5^{\prime}, 6^{\prime}: 4,5\right]$ pyrimido [1,6-a]benzimidazoles (155, $\mathrm{Z}=\mathrm{N}, \mathrm{CH}$) has been achieved by the reaction of ethyl 2-cyanomethyl- 1 H -benzimidazole-1-carboxylate 152 with heterocyclic diazonium salts 153 through the formation of the intermediate 154 (Scheme 65) [92].

Acylation of 2-(1H-imidazol-2-yl)acetonitriles ($\mathrm{R}=$ H, Me) by haloalkyl isocyanates (156, $\mathrm{Ar}=\mathrm{Ph}, 4$-tolyl, 4-anisyl) followed by heterocyclization of $\mathbf{1 5 7}$ afforded 1,2,3,5-tetrahydrobenzo[4,5]imidazo[1,2-c]pyrimidines 158 (Scheme 66) [93].

Compound 3 reacted with ethyl chloroformate in the presence of triethylamine to give N - and C-acyl derivatives 152 and 159 respectively, which separated by fractional crystallization from dioxane. Reaction of C-acyl derivative 159 with guanidine sulfate in dry pyridine and sodium methoxide gave 1-amino-3-hydroxy-4-cya-nopyrimidino[1,6-a]benzimidazole 160 (Scheme 67) [94].

Abdelhamid et al. have reported the synthesis of benzimidazo $[1,2-c$]pyrimidine-4-carbonitriles 162. Treatment of 2-(1-ethoxycarbonyl)benzimidazoylacetonitrile 152 with isothiocyanates $(\mathrm{R}=\mathrm{Me}, \mathrm{Ph})$ in the presence of potassium hydroxide gave the target compounds $\mathbf{1 6 2}$ in good yield via the formation of thioanilide intermediate $\mathbf{1 6 1}$ (Scheme 68) [95,96].

The reaction of $\mathbf{3}$ with sulfur, arylisothiocyanates, and carbon disulfide has been reported by Ivachtchenko
et al. [97] and Badawy et al. [98] to give $\mathbf{1 6 3}$ which underwent methylation to give 164 (Scheme 69).

The mechanism of the reaction has described as follows (Scheme 70):

Five-component condensation of isothiocyanates $\left(\mathrm{R}_{1}\right.$ $=4-\mathrm{EtO}, 3-\mathrm{MeO}$), sulfur, 1 H -benzimidazole-2-acetonitrile 3, triethylamine, and carbon disulfide furnished triethylammonium 3-aryl-[1,3]thiazolo[$\left.4^{\prime}, 5^{\prime}: 4,5\right]$ pyrimido [1,6-a]benzimidazole-2(3H)-thioxo-5-thiolates 166, the alkylation of $\mathbf{1 6 6}$ led to 3-aryl-5-R-thio-[1,3]thiazo$\operatorname{lo}\left[4^{\prime}, 5^{\prime}: 4,5\right]$ pyrimidino [1,6-a] benzimidazole-2(3H)-thiones $167 \quad\left(\mathrm{R}_{2}=\mathrm{Me}\right.$, 2-(methyl)-1,3-dioxolane, $\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}$) [97] (Scheme 71).

A buffered solution of 1,2,4-triazole-5-diazoium salt 168 was coupled with 1 -methylbenzimidazole-2-yl-acetonitrile 3 to yield the corresponding hydrazones 169, intramolecular cyclization of the latter compound gave triazolo[5,1-c]-1,2,4-triazine 170. Similarly, indazole-3diazonium chloride $\mathbf{1 7 1}$ also coupled readily with $\mathbf{3}$ to yield hydrazone $\mathbf{1 7 2}$ which cyclized in refluxing pyridine to produce $1,2,4$-triazino[3,4- b]indazole $\mathbf{1 7 3}$ in to two tautomeric forms [99] (Scheme 72).

Compound 3 reacted with a variety of N-acyl imidates $\left(\mathbf{1 7 4}, \mathrm{R}_{1}=\mathrm{Me}, \mathrm{Et} ; \mathrm{R}_{2}=\mathrm{Me}, \mathrm{Et}, \mathrm{Ph}\right)$ under microwave irradiation in open vessels to give the corresponding pyrimido[1,6-a] benzimidazoles 175 [100] (Scheme 73).

Compound 3 condensed with aminoesters $\left(\mathbf{1 7 6}, \mathrm{R}_{1}=\right.$ $\mathrm{Ph}, 4-\mathrm{EtOC}_{6} \mathrm{H}_{4}, 2$ - and $4-\mathrm{ClC}_{6} \mathrm{H}_{4}, 2,5-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$, 2-naphthyl, $\mathrm{PhNMe} ; \mathrm{R}_{2}=$ alkyl) to give $60-75 \%$ cyanoketones 177, which underwent acid-catalyzed intramolecular cycloaddition to give 78-87\% title compounds (178, R_{1} $=\mathrm{Ph}, 4-\mathrm{EtOC}_{6} \mathrm{H}_{4}, 2-\mathrm{ClC}_{6} \mathrm{H}_{4}$, PhNMe). Refluxing (178, $\mathrm{R}_{1}=\mathrm{Ph}$) with anhydrides or acid chlorides gave 72$98 \%$ tetracyclic cyclocondensation products $\left(\mathbf{1 7 9}, \mathrm{R}_{3}=\right.$ $\mathrm{Me}, \mathrm{Et}, 2-\mathrm{XC}_{6} \mathrm{H}_{4} ; \mathrm{X}=\mathrm{H}, \mathrm{F}, \mathrm{Cl}, \mathrm{Br}$, iodo) [101] (Scheme 74).

Badawey et al. [102] reported that 3 ($\mathrm{R}=\mathrm{H}$, Me) was allowed to react with ethoxycarbonylisocyanate at

Scheme 48

Scheme 51

Scheme 52

room temperature to afford the intermediate 180, which was readily cyclized in boiling bromobenzene to the corresponding 7,8-disubstituted-1,3-dioxo-2H,5H-pyri-
mido[1,6- a]benzimidazole-4-carbonitrile 181 in excellent yield (Scheme 75).

Reaction of $\mathbf{3}$ with cyanoamide (182, $\mathrm{R}=\mathrm{SMe}$, $\mathrm{SCH}_{2} \mathrm{Ph}, 4$-phenylpiperazino, Me, 4- $\mathrm{MeC}_{6} \mathrm{H}_{4}, 4-\mathrm{ClC}_{6} \mathrm{H}_{4}$, 2-furyl, 2-thienyl; $\mathrm{R}_{1}=\mathrm{SMe}, \mathrm{SCH}_{2} \mathrm{Ph}, \mathrm{OMe}$) and β diketones $\left(\mathbf{1 8 3}, \mathrm{R}_{2}=\mathrm{Me}, \mathrm{Ph}\right)$ gave the pyrimido[1,6-a]benzimidazole-4-carbonitrile 184(Scheme 76) [103].

Compound 3 and 2-(2,2,2-trifluoro- N-methylacetamido)benzoyl chloride $\mathbf{1 8 5}$ gave the 1 -acylbenzimidazole 186, which was cyclized with sodium t-butoxide in pyridine to give quinolone 187 , which was cyclized with

Scheme 53

Scheme 54

125

Scheme 55

acid chlorides, anhydrides, or triethylorthoformate to give 188 (Scheme 77) [104].

Pyrimido $[1,6-a$]benzimidazole $\mathbf{1 8 9}$ was prepared by heating of $\mathbf{3}$ with trichloroacetonitrile followed by cyclocondensation with triethylorthoformate (Scheme 78) [105].

2-Amino-3-(benzimidazol-2-yl)-1,8-naphthyridine 190 was obtained by condensation of 2 -aminonicotinaldehyde with 3. 7-Arylbenzimidazo[1', $\left.2^{\prime}: 1,6\right]$ pyrimido[4,5b][1,8]naphthyridines (192, $\mathrm{R}=\mathrm{Ph}, 4-\mathrm{MeC}_{6} \mathrm{H}_{4}, 2-$
thienyl, etc.) were prepared by oxidation of the 6,7-dihydro derivatives 191, which were obtained by condensation of benzaldehydes with 2-amino-3-(2-benzimida-zolyl)-1,8-naphthyridine 190 (Scheme 79) [106].

Pyrroloquinoline 194 was prepared in good yield by treating $1 H$-benzimidazole-2-acetonitrile $\mathbf{3}$ with quinoline derivative 193 in refluxing pyridine containing sodium t-butoxide. Cyclization of 194 by refluxing acetic anhydride gave 85\% 195 (Scheme 80) [107].

Scheme 56

Scheme 57

Scheme 58

Scheme 61

Scheme 62

Scheme 63

Scheme 64

151

Benzimidazolylchromones (198, $\mathrm{X}=\mathrm{O}, \mathrm{S}$) were prepared in high yields by cyclocondensation of hydroxy aromatic carboxylic acid methyl esters or 2-mercaptomethylbenzoate 197 with 3 . Acylation of 198 with acid chlorides $(\mathrm{R}=\mathrm{Me}, \mathrm{Ph}, \mathrm{Pr})$ gave benzimidazolobenzothiopyranopyrimidine 199 (Scheme 81) [108-110].

Cyclocondensation of 3 with hydrazones (200, $\mathrm{R}_{1}=$ H, 2-, $3-$, $4-\mathrm{Me}, 4-\mathrm{Br}$) gave $90-99 \% 201$ which were
cyclized by acyl chlorides or anhydrides to give 80$94 \% 202\left[\mathrm{R}_{1}\right.$ as above, $\mathrm{R}_{2}=\mathrm{H}, \mathrm{Me}, \mathrm{Et}, \mathrm{Ph}, 3,4,5-$ $\left.(\mathrm{MeO}){ }_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right][110,111]$ (Scheme 82).

Treatment of 2,3,5-trimethyl-1,4-benzoquinone with 3 $(\mathrm{R}=\mathrm{H}, \mathrm{Me}$) gave 2-amino-3-(benzimidazol-2-yl)benzo[$b]$ furans 203 in high yield, respectively. Compound 203 were converted to $87-98 \% 204\left(\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H} ; \mathrm{R}_{1}\right.$ $=\mathrm{Me}, \mathrm{R}_{2}=\mathrm{Ac} ; \mathrm{R}_{1}=\mathrm{Et}, \mathrm{R}_{2}=\mathrm{COEt} ; \mathrm{R}_{1}=\mathrm{Pr}, \mathrm{R}_{2}=$

Scheme 66

Scheme 67

160

Scheme 68

Scheme 69

Scheme 70

Scheme 72

173

Scheme 73

Scheme 74

178

179

Scheme 75

Scheme 76

Scheme 77

187

188

Scheme 79

Scheme 80

Scheme 81

199

Scheme 82

Scheme 83

204

Scheme 84

206
$\operatorname{COPr} ; \mathrm{R}_{1}=\mathrm{Ph}, \mathrm{R}_{2}=\mathrm{Bz}$) by treatment with anhydrides trialkylorthoformate or acid chlorides (Scheme 83) [112].

Reaction of dimethyl N -cyanodithioiminocarbonate with 3 can be utilized for the synthesis of 2-amino-5-cyano-4-(methylthio)pyrimidino[1,6-a]benzimidazole
206, by reaction in dioxane containing a catalytic amount of potassium hydroxide at room temperature (Scheme 84) [113].

REFERENCES AND NOTES

[1] Mavrava, A. T.; Anchina, K. K.; Vuchev, D. I.; Tesnove, J. A.; Kondeva, M. S.; Miteka, K. M. Bioorg Med Chem 2005, 13, 5550.
[2] Yildiz-Oren, I.; Yalcin, I.; Aki-Sener, E.; Ukarturk, N. Eur J Med Chem 2004, 39, 291.
[3] Kuhler, T. C.; Swanson, M.; Christenson, B.; Klintenberg, A.; Lamm, B.; Fagerhag, J.; Olwegard-Halvarson, M.; Shcherbuchin, V.; Elbrring, T.; Sjstrom, J. J Med Chem 2002, 45, 4282.
[4] Demirayak, S.; Mohsen, U. A.; Karaburun, A. C. Eur J Med Chem 2002, 37, 255.
[5] Kristjan, S. G.; Tidwel, J.; Lippa, N.; Cozalka, G. W.; Dranen, N. V.; Roger, G. P.; Drach, J. C.; Townsend, L. B. J Med Chem 2000, 43, 2464.
[6] Ismail, M. A.; Batista-Parra, A.; Miao, Y.; Wilson, W. D.; Wenzler, T.; Brun, R.; Boykin, D. W. Bioorg Med Chem 2005, 13, 6718.
[7] Kotovskaya, S. K.; Baskakova, Z. M.; Charushin, V. N.; Chupakhin, O. N.; Belanov, E. F.; Bormotov, N. I.; Balakhnin, S. M.; Serova, O. A. Pharm Chem J 2005, 39, 574.
[8] Song, H.; Ding, S. Ranliao Yu Ranse 2003, 40, 116; Chem Abstr 2005, 144, 214339.
[9] Dietz, E.; Kapaun, G. Eur Pat Appl EP 612732, 1994; (b) Dietz, E.; Kapaun, G. Chem Abstr 1994, 121, 205347.
[10] Tschunarjew, M.; Keil, T. Ger (East) DD 280103, 1990; Chem Abstr 1991, 114, 101997.
[11] Oezden, S.; Atabey, D.; Yildiz, S.; Goeker, H. Bioorg Med Chem 2005, 13, 1587.
[12] Ozden, T.; Ayalp, A.; Ozden, S. FABAD Farmasotik Bilimler Dergisi 1984, 9, 25; Chem Abstr 1984, 101, 110816.
[13] Dost, F. Ger Offen DE 2900506, 1980; Chem Abstr 1980, 93, 239413.
[14] Hansen, G.; Dehnert, J. FR 1361778, 1964; Chem Abstr 1964, 61, 84281.
[15] Buchi, J.; Zwicky, H.; Aebi, A. Arch Pharm 1960, 293, 758; Chem Abstr 1961, 55, 2637.
[16] Katsuyama, I.; Kubo, M. Heterocycles 2007, 71, 2491.
[17] Ben Ammar, H.; Kaddachi, M. T.; Kahn, P. H. Phys Chem News 2003, 9, 137.
[18] Galinowski, S.; Lenartowicz, J. Pol PL 92820, 1977; Chem Abstr 1978, 89, 43425.
[19] Ibrahim, N. S.; Shams, H. Z.; Mohamed, M. H.; Elnagdi, M. H. Chem Ind 1988, 17, 563.
[20] Okamoto, Y.; Takagi, K.; Ueda, T. Chem Pharm Bull 1980, 28, 567.
[21] Okamoto, Y.; Zama, Y.; Itoh, T.; Aotsuka, T.; Kurasawa, Y.; Takagi, K. J Chem Res (S) 1990, 5, 136.
[22] Takagi, K.; Aotsuka, T.; Morita, H.; Okamoto, Y. Synthesis 1987, 4, 379.
[23] Elwan, N. M. Tetrahedron 2004, 60, 1161.
[24] Awadallah, A. M.; Seppelt, K.; Shorafa, H. Tetrahedron 2006, 62, 7744.
[25] Awadallah, A. M.; Zahra, J. A. Molecules 2008, 13, 170.
[26] Volovenko, Y. M.; Resnyanska, E. V.; Tverdokhlebov, A. V. Collect Czech Chem Commun 2002, 67, 365.
[27] Volovenko, Y. M.; Dubinina, G. G. Chem Heterocycl Comp 2001, 37, 122.
[28] Langer, P.; Wuckelt, J.; Doering, M.; Goerls, H. J Org Chem 2000, 65, 3603.
[29] Volovenko, Y. M.; Volovnenko, T. A. Chem Heterocycl Comp 2006, 42, 488.
[30] Volovenko, Y. M.; Dubinina, G. G. Chem Heterocycl Comp 1999, 35, 1089.
[31] Shokol, T. V.; Volovenko, Y. M.; Babichev, F. S. Khim Geterotsikl Soedin 1990, 12, 1696; Chem Abstr 1991, 114, 207131.
[32] Bejan, E.; Haddou, H. A.; Daran, J. C.; Balavoine, G. G. A. Synthesis 1996, 1012.
[33] Badawey, E.; Kappe, T. Eur J Med Chem 1995, 30, 327.
[34] Hammad, M.; Abdel Meguid, S.; El-Anani, M. M.; Shafik, N. Egypt J Chem 1986, 29, 549; Chem Abstr 1989, 111, 7287.
[35] Shenoy, V. U.; Seshadri, S. Dyes Pigm 1989, 11, 137.
[36] Khilya, O. V.; Volovnenko, T. A.; Turov, A. V.; Volovenko, Y. M. Chem Heterocycl Comp 2004, 40, 1063.
[37] Khilya, O. V.; Volovnenko, T. A.; Turov, A. V.; Volovenko, Y. M. Ukrainskii Khim Zh (Russ Ed) 2003, 69, 55; Chem Abstr 2003, 140, 217587.
[38] Volovnenko, T. A.; Tarasov, A. V.; Volovenko, Y. M. Ukrainskii Khim Zh (Russ Ed) 2006, 72, 108; Chem Abstr 2006, 145, 471448.
[39] Gokhale, U. V.; Seshadri, S. Dyes Pigm 1987, 8, 157.
[40] Abd El Latif, F. M.; Barsy, M. A.; Elrady, E. A.; Hassan, M. J Chem Res 1999, 12, 696.
[41] Reddy, K. V. T.; Rao, A. V. S. Org Prep Proc Int 1997, 29, 355; Chem Abstr 1997, 127, 5041.
[42] Bari, A.; Milicevic, S.; Feist, H.; Michalik, D.; Michalik, M.; Peseke, K. Synthesis 2005, 16, 2758.
[43] Montero, A.; Feist, H.; Michalik, M.; Quincoces, J.; Peseke, K. Synthesis 2002, 5, 664.
[44] Elmegeed, G. A. Egypt J Chem 2004, 47, 579; Chem Abstr 2006, 146, 338065.
[45] El-Sayed, A. S. Egypt J Pharm Sci 1999, 40, 129; Chem Abstr 2001, 136, 386069.
[46] Hishmat, O. H.; El-Diwani, H. I.; Melek, F. R.; El-Sahrawi, H. M.; El-Shabrawi, O. Indian J Chem 1996, 35B, 30.
[47] Bogdanowicz-Szwed, K.; Czarny, A. J Prakt Chem 1993, 335, 279.
[48] Elnagdi, M. H.; Sadek, K. U.; El-Maghraby, M. A.; Selim, M. A.; Khalafallah, A. K.; Reaslan, M. A. Phosphorus Sulfur Silicon Relat Elem 1995, 105, 51.
[49] Raslan, M. A. J Chin Chem Soc 2000, 47, 961.
[50] Chiba, T.; Takahashi, T.; Kaneko, C. Chem Pharm Bull 1985, 33, 4002.
[51] Abd El Latif, F. M.; El Rady, E. A.; Dopp, D. J Heterocycl Chem 2003, 40, 57.
[52] Hammad, M. A.; Kamel, M. M.; Abbasi, M. M.; El-Wassimi, M. T.; Hassan, H. N. A. Pharmazie 1986, 41, 141; Chem Abstr 1986, 105, 226445.
[53] Otero, I.; Feist, H.; Michalik, D.; Michalik, M.; Quincoces, J.; Peseke, K. Z Naturforschung B 2005, 60, 1175.
[54] Dawood, K. M.; Kandeel, Z. E.; Farag, A. M. Heteroat Chem 1999, 10, 417.
[55] Dawood, K. M.; Farag, A. M.; Kandeel, Z. E. J Chem Res (S) 1999, 2, 88.
[56] Dawood, K. M.; Kandeel, Z. E.; Farag, A. M. J Chem Res (S) 1998, 208.
[57] Abu Elmaati, T. A.; Said, S.; Elenein, N. A.; Sofan, M. M.; Khodeir, N. Polish J Chem 2002, 76, 945.
[58] Hassanien, A. A.; Mohamed, M. H.; Gohzlan, S. A. S. J Chem Res 2005, 7, 440.
[59] Gorobets, N. Y.; Yousefi, B. H.; Belaj, F.; Kappe, C. O. Tetrahedron 2004, 60, 8633.
[60] Abu Elmaati, T. M.; Said, S. B.; Abu Elenein, N. S.; Khodeir, N. M.; Sofan, M. M. J Heterocycl Chem 2003, 40, 481.
[61] Abu Elmaati, T. M. Acta Chim Slov 2002, 49, 721.
[62] El-Taweel, F. M. A. Phosphorus Sulfur Silicon Relat Elem 2004, 179, 1267.
[63] Rangnekar, D. W.; Rajadhyaksha, D. D. Indian J Technology 1990, 28, 75; Chem Abstr 1990, 113, 134153.
[64] Rida, S. M.; Soliman, F. S. G.; Badawey, E. S. A. M.; Kappe, T. J Heterocycl Chem 1988, 25, 1725.
[65] Mencke, B.; Schmitt, K. Archiv Pharm 1967, 300, 481; Chem Abstr 67, 116846, 1967.
[66] Kuz'menko, V. V.; Komissarov, V. N.; Simonov, A. M. Khim Geterotsikl Soedin 1981, 11, 1497; Chem Abstr 982, 96, 85465.
[67] Tereshchenko, A. D.; Tolmachev, A. A.; Tverdokhlebov, A. V. Synthesis 2004, 373.
[68] Badawey, E. A. M.; Kappe, T. Eur J Med Chem 1999, 34, 663.
[69] Russell, R. K.; van Nievelt, C. E. R. W. J Heterocycl Chem 1995, 32, 299.
[70] Badawey, E. A. M.; Rida, S. M.; Soliman, F. S. G.; Kappe, T. Monatsh Chem 1987, 120, 73.
[71] Volovenko, Y. M.; Nemazanyi, A. G.; Babichev, F. S. Dopovidi Akademii Nauk Ukrains'koi RSR, Seriya B: Geologichni, Khimichni ta Biologichni Nauki, 1984, 3, 33; Chem Abstr 1984, 101, 38376.
[72] Nemazanyi, A. G.; Volovenko, Y. M.; Silaeva, T. A.; Babichev, F. S. Doklady Akademii Nauk SSSR 1990, 310, 1135; Chem Abstr 1990, 113, 78221.
[73] Volovenko, Y. M.; Nemazanyi, A. G.; Ryabokon, I. G.; Babichev, F. S. Ukrainskii Khim Zh (Russ Ed) 1988, 54, 295; Chem Abstr 1989, 110, 38921.
[74] Volovenko, Y. M.; Nemazanyi, A. G.; Shevchenko, V. A.; Babichev, F. S. Dopovidi Akademii Nauk Ukrains'koi RSR, Seriya B: Geologichni, Khimichni ta Biologichni Nauki, 1983, 9, 27; Chem Abstr 1984, 100, 6393.
[75] Soliman, F. S. G.; Rida, S. M.; Badawy, E. S. A. M.; Kappe, T. Arch Pharm 1984, 317, 951.
[76] Rida, S. M.; Soliman, F. S. G.; Badawey, E. S. A. M.; ElGhazzawi, E.; Kader, O.; Kappe, T. J Heterocycl Chem 1988, 25, 1087.
[77] Volovenko, Y. M.; Nemazanyi, A. G.; Vesel'skaya, G. L.; Babichev, F. S. Ukrainskii Khim Zh (Russ Ed) 1987, 53, 1085; Chem Abstr 1988, 109, 110333.
[78] Kandeel, Z. E. J Chem Res (S) 1995, 7, 290.
[79] Dhamnaskar, S. V.; Rangnekar, D. W. Dyes Pigm 1988, 9, 467.
[80] Dubey, P. K.; Reddy, P. V.; Prasada, V.; Srinivas, K. ARKIVOC 2007, 15, 192.
[81] Elgemeie, G. H.; Metwally, N. H. Monatsh Chem 2000, 131, 779.
[82] Panda, K.; Suresh, J. R.; Ila, H.; Junjappa, H. J Org Chem 2003, 68, 3498.
[83] Kurata, K.; Awaya, H.; Tominaga, Y.; Matsuda, Y. Bunseki Kiki 1977, 15, 413; Chem Abstr 1978, 88, 121047.
[84] Elgemeie, G. H.; Elghandour, A. H.; Hussein, A. M. Synth Commun 2004, 34, 3293.
[85] Babu, V. N. S. R.; Babu, A. N.; Anand, V.; Hanumanthu, P. A. Synth Commun 1998, 28, 4439.
[86] Nath, M.; Srivastava, P.; Goel, A.; Ram, V. J. Eur J Org Chem 1998, 10, 2083.
[87] Volovenko, Y. M.; Volovnenko, T. A.; Kozynchenko, A. P.; Babichev, F. S. Ukrainskii Khim Zh (Russ Ed) 1996, 62, 124; Chem Abstr 126, 157445.
[88] Kreutzberger, A.; Kreutzberger, E.; Wiedemann, D. Chemi-ker-Zeitung 1985, 109, 153; Chem Abstr 1985, 103, 196055.
[89] McKinnon, D. M.; Spevack, P.; Tipples, G. Chem Abstr J Chem 1988, 66, 2339.
[90] Kato, T.; Daneshtalab, M. Chem Pharm Bull 1976, 24, 1640.
[91] Blyumin, E. V.; Volovenko, Y. M.; Neunhoeffer, H.; Shish-
kina, S. V.; Zubatyuk, R. A.; Shishkin, O. V. Tetrahedron 2002, 58, 5733.
[92] Farag, A. M. J Chem Res (S) 1994, 11, 432.
[93] Vovk, M. V.; Lebed, P. S.; Pirozhenko, V. V.; Tsymbal, I. F. Russ J Org Chem 2004, 40, 1669.
[94] Nawwar, G. A. M.; Zaki, M. M. E. A.; Chabaka, L. M. Phosphorus Sulfur Silicon Relat Elem 1993, 79, 195.
[95] Abdelhamid, A. O.; Elghandour, A. H.; Rateb, N. A.; Awad, A. M. Phosphorus Sulfur Silicon Relat Elem 2006, 181, 1637.
[96] Abdelhamid, A. O.; Zohdi, H. F.; Ziada, M. M. Indian J Chem 2001, 40B, 284; Chem Abstr 2001, 135, 92613.
[97] Ivachtchenko, A.; Kovalenko, S.; Parkhomenko, O.; Chernykh, V. Heterocycl Commun 2002, 8, 329; Chem Abstr 2002, 138, 255190.
[98] Badawey, E. S. A. M.; Hazzaa, A. A.; Rida, S. M.; Fahmy, H. T. Y. Arch Pharm 1992, 325, 565.
[99] Farag, A. M. J Chem Res (S) 1995, 3, 96.
[100] Rahmouni, M.; Derdour, A.; Bazureau, J. P.; Hamelin, J. Tetrahedron Lett 1994, 35, 4563.
[101] Volovenko, Y. M.; Nemazanyi, A. G.; Shokol, T. V.; Kornilov, M. Y.; Babichev, F. S. Ukrainskii Khim Zh (Russ Ed) 1990, 56, 390; Chem Abstr 1990, 113, 211933.
[102] Badawey, E. S. A. M.; Rida, S. M.; Soliman, F. S. G.; Kappe, T. J Heterocycl Chem 1989, 26, 405.
[103] Ried, W.; Akyuz, A. Chemiker-Zeitung 1988, 112, 241; Chem Abstr 1989, 110, 114784.
[104] Volovenko, Y. M.; Shokol, T. V.; Babichev, F. S. Ukrainskii Khim Zh (Russ Ed) 1986, 52, 742; Chem Abstr 1987, 107, 175932.
[105] Hammad, M. A.; Nawwar, G. A.; Elgemeie, G. H.; Elnagdi, M. H. Heterocycles 1985, 23, 2177.
[106] Reddy, K. V.; Mogilaiah, K.; Sreenivasulu, B. J Indian Chem Soc 1984, 61, 888.
[107] Volovenko, Y. M.; Shokol, T. V.; Dashkovskaya, E. V.; Babichev, F. S. Ukrainskii Khim Zh (Russ Ed) 1985, 51, 649; Chem Abstr 1986, 104, 19487.
[108] Litenko, V. A.; Volovenko, Y. M.; Babichev, F. S. Ukrainskii Khim Zh 1983, 49, 1202; Chem Abstr 1984, 101, 72666.
[109] Litenko, V. A.; Volovenko, Y. M.; Babichev, F. S. Ukrainskii Khim Zh (Russ Ed) 1983, 4911, 1202; Chem Abstr 1984, 100, 121001.
[110] Babichev, F. S.; Volovenko, Y. M.; Pereshivana, L. M. Ukrainskii Khim Zh (Russ Ed) 1983, 49, 1095; Chem Abstr 1984, 100, 51533.
[111] Volovenko, Y. M.; Pereshivana, L. M.; Babichev, F. S. Dopovidi Akademii Nauk Ukrains’koi RSR, Seriya B: Geologichni, Khimichni ta Biologichni Nauki, 1979, 3, 193; Chem Abstr 1979, 90, 204004.
[112] Makovetskii, V. P.; Dzvinchuk, I. B.; Volovenko, Y. M.; Svishchuk, A. A. Khim Geterotsikl Soedin 1980, 2, 164; Chem Abstr 1980, 93, 26340.
[113] Elgemeie, G. H.; Sood, S. A. J Chem Res (S) 2001, 10, 439.

