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Abstract— In this paper, we present our research results in 

modeling video traces encoded with VP8/WebM codec. Our 
research results are based on our collection of more than 800 
VP8 encoded video traces. We show in this paper that our 
simplified seasonal ARIMA (SAM) model provides a valid 
model for WebM encoded video traces regardless of their 
motion, texture levels, or encoding settings. Additionally, we 
compare the goodness-of-fit of SAM model against simple 
autoregressive (AR) and automatic ARIMA modeling methods 
using both visual and statistical tests. Our results show the 
validity of SAM model as a VP8 video traces model, and its 
superiority to the other compared models. We conclude this 
paper with a discussion of the implications of our findings on 
related areas of research. 
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I. INTRODUCTION 
There has been a fast growing interest inside the 

multimedia research community in VP8 codec since Google 
acquisition of VP8 video codec maker, On2 Technologies, in 
the beginning of 2010. The acquisition was motivated to 
overcome the anticipated licensing issues that Google might 
face with their enormous video hosting website, namely 
YouTube, and to provide a new video standard for HTML5 
standard [1]. This intention has been validated recently with 
the conversion of more than third of YouTube video contents 
to VP8 codec [2]. Since YouTube is considered as a 
predominant video streaming website [3], it is forecasted that 
this move will encourage other video streaming websites and 
services to take the same step. Google has rebranded VP8 
codec as WebM project, and it has included the support of 
WebP lossy image compression based on WebM technology 
[4]. 

With the continuous increase of video streaming share of 
Internet traffic represented by the 88% increase last year, 
YouTube alone is responsible for 57% of video streaming 
traffic [3], there is a pressing need to better understand, 
model and  accommodate the high requirements of video 
streaming traffic over the Internet. Such models are 
necessary to provide accurate simulation of video traces 
behavior and performance over different network topologies 
and protocols.  

 
 

VP8, as a new codec, is considered as an exciting topic to 
both network and video researchers. VP8 codec needs to be 
thoroughly researched to provide a comprehensive 
comparison between it and the currently used video codec 
standards. There have been recent research articles that 
investigated the difference between VP8 codec and the de 
facto standard of high definition videos, AVC/H.264 codec, 
in terms of their network performance [5], subjective quality 
[6], and their encoding characteristics [7,8].  

In [5], the authors have conducted a comparison between 
VP8 and H.264 SVC codecs. In this comparison, both video 
traffic and video quality metrics have been compared.  This 
paper's calculations and comparisons were based on three 
video traces: Sony Demo, Die Hard, and Terminator video 
traces.  

In [6], the authors compared the performance of VP8 
against AVC/H.264 standard to find that their subjective 
quality were competitive. In [7,8] the authors compared VP8 
to AVC codec in terms of their objective picture quality, 
where it showed that AVC is slightly better in high motion 
videos, but provides overall comparable results to AVC 
codecs. These comparisons considered the fact that VP8 has 
not been optimized for objective quality measures as some 
other codecs have. 

In network engineering, network simulators are used 
vigorously to verify and test new Internet protocols. Network 
simulations are based on either actual video traces, or 
mathematical traffic-models. Trace-based simulations are 
prone to many shortcomings concerning: the length of the 
used video trace compared to the required simulation length, 
the representativeness of the selected video trace(s), and the 
limited number of available video traces [9].   

For these limitations, there is a need to introduce a valid 
video traffic model to facilitate future researches in network 
traffic engineering and other related topics. Such models are 
preferred to model video traces based on video’s elementary 
stream that represent the video frames independently from 
video encapsulations and transmission protocols [10].   

In [11], the authors performed a modeling analysis study 
for more than 50 HD video traces encoded with AVC/H.264 
codec. The authors compared the modeling and the 
prediction accuracy of SAM or simplified seasonal 
autoregressive integrated moving-average (ARIMA) model. 
In their presented results, they showed the accuracy gain of 
using SAM model in modeling and predicting videos 
encoded with AVC/H.264 codec. 
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Similarly, in this paper we discuss our results in verifying 
the validity of SAM model to represent VP8 traffic based on a 
large video collection. In the next section, we describe the 
steps taken to collect our video traces collection that consists 
of more than 800 video traces. Section 3 discusses SAM 
model and its characteristics. Section 4 shows our results of 
the verification steps taken to validate and compare the 
goodness-of-fit of SAM model. Section 5 concludes this 
paper with a discussion of the implications of our findings 
and summarizes the research results. 

II. VIDEO TRACES LIBRARY 
In order to provide a comprehensive analysis of the 

efficiency of a modeling approach, a large collection of video 
traces needs to be gathered. Compiling the video traces 
library is a significant task that needs to consider various 
impacting factors that resides in video content. Thus, the 
selected videos types need to represent the most common 
video streams genres available over the Internet. In addition, 
the researchers need to select the most appropriate encoding 
settings to help determine the differences among the various 
codecs.  

To ensure a reliable comparison among the video traces, 
all the videos traces need to be encoded with the same 
encoding settings. In order to achieve that, all the selected 
videos need to be converted first to raw video format 
(YUV420). The conversion process is considerably a long 
process and requires a significant number of processing and 
storage recourses [10, 11]. The second step is to encode the 
videos using common encoding settings that represent 
diverse video quality levels. Table 1 shows the encoding 
setting parameters used for the video library. The chosen 
settings represent 6 different video quality levels, where 
Good1 is the lowest, and Best is the highest. Figure 1 
illustrates the process of converting the selected videos to the 
final comparable video traces. 

 
Fig. 1. Video collection main processing steps   

 
As mentioned before, YouTube is considered the 

predominant website in the video streaming industry, and 
thus we considered it as the source of our collection of video 
traces. We collected 10 different video clips from each of the 
14 video categories available for YouTube users. Then, the 
video clips were converted to raw format using FFMPEG [12] 

library. The conversion assures that all the video traces are 
encoded with similar encoding settings. The average trace 
length is 5950 frames, that ranges between 388 and 18029 
frames. 

TABLE I 
ENCODING SETTINGS PARAMETERS FOR THE TRACE LIBRARY 

Encoding Profile Encoding Parameters 

Good1 

First pass: 
-p 2 --pass=1 --fpf=tmp.fpf --threads=4 --good 
--cpu-used=1 --end-usage=0 --auto-alt-ref=1 -v 
--minsection-pct=5 --maxsection-pct=800 
--lag-in-frames=16 --kf-min-dist=0 
--kf-max-dist=999999 --token-parts=2 
--static-thresh=0 --min-q=0 --max-q=63 

Second pass: 
-p 2 --pass=2 --fpf=tmp.fpf --threads=4 --good 
--cpu-used=1 --end-usage=0 --auto-alt-ref=1 -v 
--minsection-pct=5 --maxsection-pct=800 
--lag-in-frames=16 --kf-min-dist=0 
--kf-max-dist=999999 --token-parts=2 
--static-thresh=0 --min-q=0 --max-q=63 

Good2,Good3, 
Good4, Good5 

Same as Good1, but --cpu-used={2,3,4, and 5} 
respectively  

Best Same as Good1, but --best is used instead of  
--good without --cpu-used 

 
We have chosen six different encoding settings to better 

demonstrate the performance of the modeling process against 
various encoding settings, the selected video encoding 
settings are shown in Table I similar to the ones used in [6]. 
We encoded the videos using 720p high definition (HD) 
resolution. The encoding settings chosen for the six encoding 
settings are identical except for the --cpu-used encoding 
parameter. This attribute determines the amount of time the 
encoder spend on each frame to increase the quality of the 
output video. After encoding the videos, the output files of 
the encoding process are processed and parsed to extract the 
video traces at the elementary stream level. In total, we 
produced 840 video traces. This library of video traces is the 
basis of our comparison results in this paper. 

In the next section, we discuss the mathematical 
characteristics of SAM model, and the previously achieved 
results in modeling video traces encoded with different 
codecs and settings. 

III. SAM MODEL 
SAM model is based on Seasonal Autoregressive 

Integrated Moving-Average (SARIMA) models. These types 
of mathematical models identify both local and seasonal 
trends in the observed data traces. SARIMA models are 
usually represented using the following notation: 

 

� � � �sQDPqdpSARIMA ,,,, ��              (1) 

where p is the local autoregressive (AR) order, d is the 
local differencing order, and q is the moving-average (MA) 
order. P, D, and Q represent the seasonal AR (SAR), the 
seasonal differencing, and the seasonal MA (SMA) orders, 
respectively. S represents the seasonality of the date series. 
Obtaining a seasonal model for data traces consist usually of 
multiple steps that require human interventions to determine 
the best data model. For more information, the reader is 
encouraged to refer to [13, 14].  
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SAM is a general SARIMA model that has proved its 
ability to model MPEG4-Part2 [16], H.264/MPEG-Part10 
Advanced Video Codec (AVC), and AVC's extension 
Scalable Video Coding (SVC) video traces [12]. SAM as a 
general model does not need human intervention to 
determine the model order, and thus allows its usage in live 
video applications. SAM as an SARIMA model can be 
written as: 

 � � � �zSAM 1,1,11,0,1 ��                         (2) 

where z is the seasonality of the video trace. Video trace 
seasonality depends on the encoding settings of the video, 
and can be determined easily by inspecting the 
autocorrelation values between the video successive frames. 
The main benefits of SAM model over other modeling 
approaches reside in its simplicity, and versatility to model 
video traces regardless of their texture and motion levels, and 
their encoding settings [11].  

From (2), we can notice that SAM requires only 4 
coefficients to be estimated. The coefficients are: one local 
autoregressive coefficient (AR) , one seasonal autoregressive 
coefficient (SAR), one local moving-average coefficient 
(MA), and one seasonal  moving-average coefficient (SMA).  

These coefficients are commonly estimated using 
maximum likelihood (ML) method, conditional 
sum-of-squares (CSS) method, or a hybrid method where the 
starting values of the coefficient are estimated using CSS 
then the estimation process is completed using ML method. 
In this paper, we will refer to the hybrid approach as 
(CSS-ML) [14]. 

Although most literature books suggests ML as the 
preferred method to estimate SARIMA models [14], it is 
important to determine the method that provides the best 
tradeoff between estimation accuracy and computation 
speed. 

In this section, we compare the three estimation methods 
in their performance, in terms of their estimation accuracy 
and completion speed, to determine the best suitable method 
to be used when processing live video streams. Our 
comparison results are based on averaging the results 
obtained from running the estimation methods on our 
collection of 840 VP8-encoded video traces for 10 times. 

In the computation performance comparison, and as 
shown in Table II, CSS has a clear advantage over both ML 
and CSS-ML in terms of computation speed.  On average, 
CSS method takes only 0.22 seconds to estimate the video 
trace model, SAM, coefficients. Similarity, the estimation 
process takes 38.52 seconds using CSS-ML method, and 
65.27 seconds using ML method on average.   

     TABLE II 
ESTIMATION METHODS SPEED COMPARISON RESULTS IN SECONDS 

Comparison/Method ML CSS CSS-ML 

Total execution time (s) 54823.95 186.87 32360.41 
Average time per video (s) 65.27 0.22 38.52 

For the modeling estimation accuracy comparison, we 
compared the three methods using three commonly used 

statistical measures: Mean Absolute Error (MAE), Mean 
Absolute Relative Error (MARE), and Root Mean Square 
Error (RMSE) [14]:  
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where N is the total number of video frames, ei is the 
prediction error calculated at the i-th video frame, and ix  is 
the i-th video frame size. 

As Table III and Table IV show, the difference in accuracy 
between the fastest estimation method (CSS) and the slowest 
(ML) is considerably small. In MAE comparison, the biggest 
difference between the two methods is less than 3% on 
average. When both compared using MARE measure, the 
difference is still less than 9%. And when compared using 
RMSE measure the difference is again less than 3%. Thus, 
we argue that the resulting degradation of performance due 
to using CSS method is acceptable when compared to the 
considerable boost in computation speed it provides 
compared to the other two methods.  

TABLE III 
ESTIMATION METHODS ACCURACY COMPARISON RESULTS 

Comparison/Metho
d ML CSS CSS-ML 

MAE (average) 638.73 657.32 651.05 
MARE (average) 0.711 0.772 0.747 
RMSE (average) 117012.88 120423.4 117352.13 

 
TABLE IV 

PERCENTAGE OF IMPROVEMENT BETWEEN THE ESTIMATION METHODS  
Comparison/

Method ML vs CSS CSS-ML vs 
CSS 

ML vs 
CSS-ML 

MAE 2.827% 0.954% 1.892% 
MARE 8.61% 3.30% 5.14% 
RMSE 2.914% 2.617% 0.289% 
 
In this section, we compared three commonly used 

estimation methods for determining SAM model coefficients. 
In the next section, we present our results of modeling VP8 
video traces using SAM model and the verification steps 
taken to validate the model accuracy and to compare its 
goodness-of- fit against other modeling techniques.   

IV. VIDEO TRACES MODELING 
In our modeling and comparison analysis, we used R 

project software [17] to model our collection of video traces 
using SAM model. To validate the goodness-of-fit of SAM 
model, we computed the empirical cumulative distribution 
function (ECDF) values of the model trace's frame sizes 
distribution. Then, we compared the ECDF values of the 
actual trace to the ECDF values of the model trace.  
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For N data points (Y1, Y2, … , YN) with ascending order, 
the ECDF is defined as: 

 

NinEN /)(�                                (6) 
 

where n(i) is the number of points less than Yi. Figure 2 
shows an example of the visual ECDF comparisons 
conducted for our video traces collection. As Figure 2 
demonstrates, SAM model can be considered as a valid 
model for the compared actual trace.  

 
Fig. 2. ECDF comparison between SAM model and actual video trace   

 
To verify SAM model accuracy and to compare it to other 

regression models, we used the Kolmogorov-Smirnov test 
(K-S test) as a good measure of the goodness of fit. The K-S 
test indicates if the model data distribution differs from the 
original video trace distribution using scalar values. We 
chose K-S test since it is considered as a general 
nonparametric method, as it makes no assumptions 
concerning the distribution of the compared data sets [10].  

The K-S test compares the ECDF values of the two 
compared distributions. The K-S test is based on the 
calculating the maximum difference between the two ECDF 
curves of the two compared distributions. The null 
hypothesis (H0) assumes that the two distributions are equal. 
The K-S test produces the maximum difference between the 
two distributions or K-S statistic, denoted by D and it is 
computed as follows:  

 

)()(sup YECDFXECDFD ��               (7) 
 

where sup is the supremum or the largest absolute 
difference between the ECDF distributions values. Low D 
values indicate that the model is a good approximation of the 
actual data and thus an argument in favor of the null 
hypothesis.  Large D values indicate different distributions 
and an argument against the null hypothesis.  

Table V summarizes the calculated K-S statistic values (or 
D) for our entire collection of video traces. We can notice that 
the values of D is small on average which supports that the 
used model, SAM model, is a good fit of the tested video 
traces.  

 
 

TABLE V 
 K-S TEST RESULTS FOR SAM MODELED VIDEO TRACES 

K-S Statistic Values 
Encoding 

Profile Maximum  Minimum Average Standard 
Deviation 

Good1 0.512722 0.024302 0.145478 0.096 
Good2 0.631931 0.022107 0.194342 0.126976 
Good3 0.595519 0.020539 0.178977 0.123027 
Good4 0.649355 0.026654 0.138695 0.101707 
Good5 0.560126 0.029006 0.138281 0.100139 
Best 0.53747 0.026341 0.148981 0.099931 

Overall 0.649355 0.020539 0.157822 0.110603 

 
Additionally, we compared SAM modeling results with 

two autoregressive models: simple autoregressive (AR) 
model [14], and the automatic ARIMA modeling technique 
(Auto-ARIMA). The Automatic ARIMA modeling returns 
the best Seasonal ARIMA (SARIMA) model based on the 
modeling errors. This technique is based on the proposed 
approach in [17]. Auto-ARIMA is similar to SAM model in 
its ability to produces a seasonal ARIMA model for the video 
trace without human interventions. As Table VI shows, SAM 
provides a 61.18% improvement over the best comparable 
model on average. Figure 3, shows an example of the visual 
difference in ECDF comparison values among SAM, AR, 
Auto-ARIMA models, and the actual video trace.      

 

   TABLE VI: K-S TEST RESULTS COMPARISONS BETWEEN AR, 
AUTO-ARIMA, AND SAM    

K-S Statistics Values 
Modeling 
Technique Maximum Minimum Average Standard 

Deviation 
AR 0.952324 0.035472 0.254379 0.179267 

ARIMA 0.932062 0.026248 0.297602 0.220576 
SAM 0.649355 0.020539 0.157822 0.110603 

Difference % 27.79% 43.63% 61.18% 62.08% 
 

 

Fig. .3 ECDF comparison among AR, Auto-ARIMA, SAM and actual video 
trace 

As the results in Table VI and Figure 3 show, automatic 
techniques, like Auto-ARIM, do not always result in better 
modeling accuracy than the one offered by simple 
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auto-regression techniques like AR. However, SAM provides 
a simplified modeling approach without relying on human 
interventions and without sacrificing the modeling accuracy.    

Additionally, to show a visual comparison of the three 
video traces models, we plotted an actual video trace against 
its different modeled video traces as shown in Figure 4. As 
we can notice, SAM has better adaptation to the variations of 
the video frame sizes, and responds better to the sudden 
transitions in video frame sizes that usually accompany the 
beginning of a new video reference frame [11].   

 

Fig. 4. Video trace modeling comparison between AR, SAM and Auto-ARIMA 

V. CONCLUSIONS AND FUTURE WORK 
In this paper, we presented our work of analyzing, 

encoding and modeling of more than 800 video traces that 
represents a wide variation of video statistical characteristics.  
Our results show that SAM model is capable of modeling 
VP8 video traces encoded with various encoding settings, 
and it is capable of representing VP8 video traces with 
diverse texture and motion levels.  

We compared three commonly used estimation methods 
for determining SAM model coefficients (CSS, ML, and 
CSS-ML). Our thorough tests supports our recommendation 
to use CSS method when modeling live video streams, since  
the resulting degradation of performance due to using CSS 
method is acceptable when compared to the significant boost 
in computation speed it provides compared to the other two 
methods.  

Through both visual and statistical comparisons, we 
showed that SAM outperforms two commonly used 
autoregressive models (AR and Auto-ARIMA) , and provides 
a boost of accuracy up to 61.18% on average using K-S test.  

These results show that SAM can present a valid model for 
VP8/WebM encoded videos, in addition to previously tested 
codecs: MPEG4-Part2, MPEG4-Part10/AVC, and SVC 
extension. This conclusion proves the ability of SAM to 
model most common video traces, and thus improves its 
importance to be considered to act as a general model and 
video traffic predictor for more sophisticated traffic 
engineering algorithms like the ones used in dynamic 
bandwidth allocation. Our next research step is to determine 
the applicability of using SAM model in dynamic allocation 
methods, especially for VP8 traffic, through its video 
forecasting ability as a time series model. 
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