PaTH: towards a learning health system in the Mid-Atlantic region

Waqas Amin,¹ Fuchiang (Rich) Tsui,¹ Charles Borromeo,¹ Cynthia H Chuang,³ Jeremy U Espino,¹ Daniel Ford,⁴ Wenke Hwang,⁷ Wishwa Kapoor,² Harold Lehmann,⁴ G Daniel Martich,⁵ Sally Morton,⁸ Anuradha Paranjape,⁶ William Shirey,¹ Aaron Sorensen,⁶ Michael J Becich,¹ Rachel Hess,² the PaTH network team

INTRODUCTION
Patient centered outcome and comparative effectiveness research has the capacity to transform the healthcare delivery system by identifying the most effective treatment, diagnostic techniques, and preventive measures. In an effort to achieve this goal, the Patient Centered Outcomes Research Institute (PCORI) developed PCORnet, a national patient centered outcomes research network that functions as a national network for conducting clinical research. To develop the key components of PCORnet, PCORI has approved awards to 29 health data networks and a coordinating center. PaTH (University of Pittsburgh/University of Pittsburgh Medical Center (UPMC), Penn State College of Medicine (PSCoM), Temple University Hospital (TUH), and Johns Hopkins University (JHU)) is one of the 11 clinical data research networks (CDRNs) that is participating in PCORnet.¹

The CDRN effort employs informatics solutions to provide access to electronic health record (EHR) data and enable platforms for sharing data across multiple institutions. It allows the aggregation and analysis of distributed data, and facilitates patient centered, comparative effectiveness research. The PaTH network collaborative sites include community hospitals, academic institutes, and outpatient practices that provide healthcare to a diverse population of 2.5 million patients across the Mid-Atlantic region (figure 1).

PaTH will provide an informatics supported infrastructure for cohort identification and data sharing within the network of three targeted conditions: idiopathic pulmonary fibrosis (IPF), atrial fibrillation (AF), and obesity. PaTH will use the semantic standards that are already developed at each network site to meet federal mandates, such as Meaningful Use requirements. These include standardized vocabularies (SNOMED CT, LOINC, RxNorm, ICD9/10).²⁻⁴ To support the broadest possible data and cohort sharing, we chose the open-source i2b2 (Informatics for Integrating Biology and the Bedside)⁵ tool for syntactic interoperability. We will enhance SHRINE (Shared Health Research Information Network)⁶ to allow it to return de-identified patient level data in addition to cohort counts and to perform queries across the network.

PATH RESEARCH INFRASTRUCTURE
Network governance
The PaTH governance structure includes the PaTH Steering Committee (SC), three advisory committees (the Health System Advisory Committee (HAC), the Patient and Community Advisory Committee (PAC), and the Clinician Advisory Committee (CAC)), and four working groups (the Research Question Group (RQG), Information Technology Group (ITG), Study Design and Methodology Group (SDMG), and Regulatory and Contracting Group (RCG)).

The SC is chaired by the network principal investigator and includes two representatives from each site, as well as the PaTH informatics lead. The SC monitors the overall operation of the network and, in consultation with the advisory committees and working groups, sets network policy.

Each of the four working groups has a SC liaison and representatives from the three advisory committees. The RQG develops and vets clinical research questions for PaTH CDRN. The ITG includes informatics leader from each network site and ensures that data mapping and integration support CDRN research. The SDMG includes two statisticians and methodology experts from each site and is responsible for advising and implementing best practices for the conduct of research within PaTH. The RCG will develop and implement the institutional review board pre-review and streamlined contracting processes.
The network will characterize two populations in each of the three conditions. The first is the inclusive population of all identifiable patients with the disease condition in the EHR. The second is the consented cohort, which includes a smaller number of surveyed patients (1000 for each of AF and obesity, and 80% of the inclusive population for IPF; table 1).

Data collection
PaTH will acquire a complete set of longitudinal data from inpatient and outpatient settings from our EHR system including patient’s enrollment, demographics, diagnosis, procedure, laboratory, radiology, and ordering/dispensing medication. PaTH CDRN experts will define clinically relevant questions for three disease cohorts and identify the data needed to answer these questions. These data elements are vetted with our health systems’ informatics groups, as well as the PaTH core informatics group, in order to ensure that these elements are currently available, or will be available, for use in the PaTH network (table 2).

Engagement of patients and clinicians in PaTH
PaTH will implement PCORI methodology standards to approach patients, clinicians, and stakeholders. We will work with national organizations with an interest in our disease states both as community stakeholders and to help identify potential individual patient stakeholders. We will collaborate with our community/patient advisory boards to create educational programs for clinicians and patients and allow them to be active, assertive advocates on the team, and understand the privacy and confidentiality issues associated with research.

Collection of patient reported outcome information to support clinical trials
The PaTH network sites have extensive experience in collecting patient-reported outcomes (PROs) within the EHR, including health behaviors, symptoms, and functional status and using these data for clinical care. For example, UPMC uses Epic’s MyChart and Welcome questionnaires to collect PROs within several clinical settings. All PROs are recorded in the EHR during clinical care episodes and are also available for research.
use. JHU developed ‘Patient Viewpoint’ to collect PROs linked with the EHR from patients in oncology. Pitt/UPMC and JHU will serve as expert resources for the growth of these areas at the PSCoM/Hershey Medical Center (HMC) and TUH sites, as well as participate actively in the PCORnet PRO effort.

Supporting large scale comparative effectiveness randomized trials
The PaTH network will compile relevant comparative effectiveness research-focused data and outcomes which will be progressively embedded within clinical care pathways occurring at each of our institutions to create learning health systems. To build on the knowledge of the PaTH investigators, interviews with principal investigators, project coordinators, clinical partners, and patient participants will be conducted to understand the facilitators and barriers to both successful and less successful research projects. Areas of particular interest include effective patient engagement, recruitment, and impact on clinical flow. We will compare the facilitators and barriers identified by our evaluation to those identified in the literature and compile them into a manual of best practices for use in PaTH. This manual will be shared across the CDRNs and available on the PaTH website. Implementation of these best practices will improve the capacity of PaTH and other institutions to conduct large-scale comparative effectiveness randomized trials that are embedded within clinical care.

PATH INFORMATICS INFRASTRUCTURE
Design objective
The PaTH informatics design is guided by three major principles: (1) the ability to perform exploratory cohort search across PaTH network sites; (2) the use of de-identified data to analyze cohorts that meet a case definition; and (3) the capability to re-identify a patient enrolled in a randomized controlled trial or observational cohort for whom additional data are needed. To implement these principles, PaTH will develop and/or implement the following key components of informatics infrastructure discussed below.

Standardized data elements and vocabularies
The ITG at Pitt under the guidance of PaTH RQG and the SC will lead development of common data elements (CDEs), which will serve as a common information model for PaTH. The standards (ISO/IEC—International Standards Organization/the International Electro-technical Commission) and vocabularies (SNOMED, RxNORM, ICD9/10, and LOINC) will then be used to code the CDE derived value sets. The PaTH health systems have standardized their electronic medical record and ancillary systems on HL7 for healthcare messaging like LOINC for encoding laboratory tests, SNOMED, CPT, and ICD9/10 for encoding laboratory results, problems, diagnoses, and procedures, RxNORM for encoding medications, and Continuity of Care Document (CCD) for patient record export. The CDE specification provides metadata or data descriptors about the content, quality, condition, and other characteristics of the data and standard vocabularies to inform a shared information model and facilitate data sharing with the entire network. Each CDE is associated with an object or concept, attribute, and valid value and the representation.*

Informatics for integrating biology and the bedside (i2b2)
To understand the heterogeneity of data in EHRs, the ITG adopted an existing solution, i2b2, which is already deployed at two network sites (PSCoM and JHU). i2b2 is an NIH-funded National Center for Biomedical Computing based at Harvard and it is widely adopted at Clinical and Translational Science Awardees (CTSAs), academic health centers, and industry. i2b2 functions as an expandable clinical research database that provides a standard format (syntax) in which to represent clinical data, provides mechanisms for using standard vocabularies (semantics), and has existing tools (SHRINE)5 to perform centralized queries across multiple sites.

Shared Health Research Information Network
The PaTH ITG will develop a modified version of SHRINE called SHRINE+ with the use of the well-accepted Agile software development method known as Scrum as well as industry standard development tools that include user stories, bug trackers, source-code management, automated builds, unit testing, continuous integration, and measurement of code coverage.6 SHRINE+ will incorporate authorization and audit mechanisms to ensure that each site retains adequate control and logs of their data. SHRINE+ will allow for the extraction of de-identified individual, patient-level data, in addition to cohort counts. The aggregate results of a SHRINE+ query will reside at the University of Pittsburgh’s Comparative Effectiveness Research Core Data Center (CERC-DC), which is specifically designed for multisite research collaborations that involve large clinical and administrative datasets such as those proposed in PaTH.

Extraction, transformation, and loading process
Each PaTH network site requires an extraction, transformation, and loading (ETL) process to load source EHR data into an i2b2 database. The ETL process extracts required data elements based on pre-defined CDEs, de-identifies patient sensitive information such as medical record numbers, transforms local codes (eg, native Sunquest codes) into standard codes (eg, LOINC codes), and finally loads the processed data into a database (such as i2b2). The standard terminology used in PaTH includes RxNORM, LOINC, and SNOMED2–4 (figure 2).

Evaluation of PaTH network informatics implementation
During the 18-month project period, and beyond, we will ensure adherence to the standards in PaTH through manual quality assurance and automated rule-based validation. We will employ full-time central ETL and data quality engineers to work with personnel at each PaTH site and verify that the syntax of data provided by the local i2b2 system conforms to PaTH CDE specifications before these systems go live. In addition, we will employ routine, automated checks on all data imported to our centralized research data center to ensure that they conform to the CDE specification.

SUMMARY
The PaTH network will adhere to best practices by using as its backbone open source tools (i2b2 and SHRINE) to aggregate data using standard vocabularies and provide distributed, de-identified cohort queries. PaTH will test these systems in three targeted disease conditions. PaTH will provide a robust informatics supported platform to facilitate comparative effectiveness research, support the conduct of clinical trials, and improve the decision making capability of both patients and physicians through a collaborative process that brings each partner closer to the ideals of a learning health system.

Author affiliations
1Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
Figure 2. Extraction, transformation, and loading (ETL) process within each site. The ETL process first extracts data based on common data elements (CDE) from source data. Then it de-identifies patient sensitive information and maps local codes to standard codes based on standard terminology systems—RxNorm, LOINC, SNOMED. Finally the ETL process loads the mapped data into the i2b2 data warehouse, where users can perform cohort queries through the i2b2 workbench.

Acknowledgements We acknowledge all the PaTH network collaborative sites leadership, advisory committee, and working groups.


Contributors WA prepared the first draft of this manuscript. RH, MJB, JE, and FT reviewed and revised the manuscript. All authors read and approved the final manuscript.

Funding Patient Centered Outcome Research Institute (PCORI) supports this work; contract number CD06-04912.

Competing interests None.

Provenance and peer review Commissioned; externally peer reviewed.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/3.0/

REFERENCES
PaTH: towards a learning health system in the Mid-Atlantic region

Waqas Amin, Fuchiang (Rich) Tsui, Charles Borromeo, et al.

J Am Med Inform Assoc published online May 12, 2014
doi: 10.1136/amiajnl-2014-002759

Updated information and services can be found at:
http://jamia.bmj.com/content/early/2014/05/11/amiajnl-2014-002759.full.html

These include:

References
This article cites 4 articles, 1 of which can be accessed free at:
http://jamia.bmj.com/content/early/2014/05/11/amiajnl-2014-002759.full.html#ref-list-1

Open Access
This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/3.0/

PnP
Published online May 12, 2014 in advance of the print journal.

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

Advance online articles have been peer reviewed, accepted for publication, edited and typeset, but have not yet appeared in the paper journal. Advance online articles are citable and establish publication priority; they are indexed by PubMed from initial publication. Citations to Advance online articles must include the digital object identifier (DOIs) and date of initial publication.

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/