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Review

Regulation of Cerebral Blood Flow after Spinal Cord Injury

Aaron A. Phillips!= Philip N. Ainslie,* Andrei V. Krassioukov?**° and Darren E.R. Warburton, PhD'

Abstract

Significant cardiovascular and autonomic dysfunction occurs after era spinal cord injury (SCI). Two major conditions
arising from autonomic dysfunction are orthostatic hypotension and autonomic dysreflexia (i.e., severe acute hyperten-
sion). Effective regulation of cerebral blood flow (CBF) is essential to offset these drastic changes in cerebral perfusion
pressure. In the context of orthostatic hypotension and autonomic dysreflexia, the purpose of this review is to critically
examine the mechanisms underlying effective CBF after an SCI and propose future avenues for research. Although only
16 studies have examined CBF control in those with high-level SCI (above the sixth thoracic spinal segment), it appears
that CBF regulation is markedly altered in this population. Cerebrovascular function comprises three major mechanisms:
(1) cerebral autoregulation, (i.e., ACBF/A blood pressure); (2) cerebrovascular reactivity to changes in PaCO, (i.e. ACBF/
arterial gas concentration); and (3) neurovascular coupling (i.e., ACBF/A metabolic demand). While static cerebral
autoregulation appears to be well maintained in high-level SCI, dynamic cerebral autoregulation, cerebrovascular reac-
tivity, and neurovascular coupling appear to be markedly altered. Several adverse complications after high-level SCI may
mediate the changes in CBF regulation including: systemic endothelial dysfunction, sleep apnea, dyslipidemia, decen-
tralization of sympathetic control, and dominant parasympathetic activity. Future studies are needed to describe whether
altered CBF responses after SCI aid or impede orthostatic tolerance. Further, simultaneous evaluation of extracranial and
intracranial CBF, combined with modern structural and functional imaging, would allow for a more comprehensive
evaluation of CBF regulatory processes. We are only beginning to understand the functional effects of dysfunctional CBF
regulation on brain function on persons with SCI, which are likely to include increased risk of transient ischemic attacks,
stroke, and cognitive dysfunction.

Key words: cerebral autoregulation; cerebral blood flow; cerebrovascular reactivity; neurovascular coupling;
spinal trauma

Introduction

HE INCIDENCE OF SPINAL CORD INJURY (SCI) ranges from

14-58 per million in nations where data are available, tending
to be highest in regions with more elderly persons, and greater
population access to motor vehicles." As such, developing nations
are expected to have marked increases in SCI prevalence in the near
future.? Although SCI is widely considered a condition primarily
associated with a loss of motor ability, SCI also results in other
important health concerns such as severe cardiovascular dysfunc-
tion.® After SCI, supraspinal regulation of autonomic function is
disrupted.* Because of the dissociation between autonomic func-
tion and supraspinal control, many of those living with SCI have

low resting blood pressure (BP), hypotensive bouts during an or-
thostatic challenge (such as changing postures quickly), and suffer
uncontrolled bouts of hypertension, a condition known as auto-
nomic dysreﬂexia.4 In addition, dysfunctional BP control is asso-
ciated with impaired cognitive function.’™ Together, these effects
can severely impact quality of life and can be a major limitation in
effective physical therapy and rehabilitation from injury.® We
suspect that all of the above issues could at least be partially me-
diated by impaired cerebral perfusion secondary to ineffective BP
control.”

It is now clear that cardiovascular diseases are among the
most common causes of death in those with SCL'® Recently,
epidemiological evidence shows stroke risk is two to three
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times greater in those with SCI, even after controlling for a
number of cardiovascular risk factors such as hypertension,
diabetes, arrhythmia, and coronary artery disease.'' Brief dis-
ruptions of cerebral blood flow (CBF) caused by impaired
vascular control may cause irreversible neuronal cell death.'>"?
Conversely, inadequate counter-regulation against excessive
cerebral perfusion can cause intracranial hypertension and pre-
dispose to hemorrhagic stroke.'*'”

We have recently reviewed baroreflex control after SCI and
highlighted that the function of this feedback system is significantly
impaired in those with SCL? Consequently, poor BP control in
those with SCI makes appropriate regulation of CBF crucial for
preventing stroke. As a negative relationship exists between bar-
oreflex function and CBF regulation, a review of the current liter-
ature examining CBF control in those with SCI may shed light on
the overall trends and underlying pathophysiology in this complex
and diverse condition.'® There is evidence that CBF dysfunctions
contribute to the variety of clinical conditions that not only cloud
present clinical challenges for management of individuals with
SCI, but could even be life threatening in nature. For example, poor
control over CBF during orthostatic hypotension can result in
transient ischemic attack or even stroke.!” Further, CBF regulatory
dysfunction could also result in cognitive deficits in these persons
and negatively affect quality of life.'s

We review the current understanding of CBF regulation in hu-
mans and the related alterations after SCI.

-Co,
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Regulation of CBF

It is often highlighted that the brain receives a disproportionate
amount of blood relative to its mass. Specifically, the brain receives
approximately 20% of cardiac output although it only makes up
approximately 2% of body mass.'*?® This relationship highlights
the extremely elevated metabolic demands occurring in cerebral
tissue.?° The brain also uses more than 20% of resting oxygen and
glucose.'® Sufficient and appropriate matching of brain blood flow
to metabolic demand is essential because cerebral ischemia and
syncope can result after only 3 sec and neuronal death can occur
after approximately 5 min of disrupted CBF.*

Regulation of CBF is achieved through several factors including
metabolic, myogenic, neurogenic, and systemic control (Fig. 1).>'
All these factors interact to regulate CBF through the adjustment of
cerebrovascular resistance.”> Together, cerebral autoregulation
(CA), cerebrovascular reactivity, and neurovascular coupling are
commonly used parameters to reflect the complex interplay of
regulatory factors.

CA

CA, which describes the ability of the brain to maintain CBF
under a variety of perfusion pressures, can be divided into static and
dynamic components. Static CA (sCA) is used to describe CBF
during steady-state conditions>® and is traditionally considered to
be held relatively constant over a wide range of perfusion pressures

- Cerebral Metabolism

- Other

FIG. 1.
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Illustration of primary pathways relevant to human cerebral blood flow control. Cardiac output (Qc) and total peripheral

resistance (TPR) together generate mean arterial pressure. Cerebral perfusion pressure (1; CPP) is the difference between mean arterial
pressure and intracranial pressure (2; ICP) when central venous pressure (3; CVP) is lower than ICP. Neurogenic control over cerebral
vascular tone (4) is widely disputed; however, there is some limited evidence suggesting an autonomic influence on dynamic cerebral
autoregulation,***%3? as well as potentially cerebrovascular reactivity (Jordan et al. 2000). There is also controversial evidence that Qc
alters cerebral blood flow independently of CPP (5). When CVP and/or ICP are elevated, venous outflow from the brain is likely also
partially “‘regulated’ by a Starling resistor, because of the relatively static dimensions and enclosed nature of the cranium (6). Cerebral
blood flow is altered primarily in response to changes in pH (7; also metabolism and other factors), using both endothelial-dependent,
and endothelial-independent pathways (8) to provide redundant regulation of cerebral [H+] to maintain o]ptimal enzymatic pH within
the brain. Endothelial function appears to partially mediate cerebrovascular reactivity to hypercapnia,'®*''® possibly hypocapnia,”®'°!
as well as neurovascular coupling,'* but not cerebral autoregulation.>”*
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(i.e., mean arterial pressures (MAP) from 60 to 150 mm Hg).24’ 2

Lucas and associates,”® however, recently reported a relatively
“pressure passive’” CBF response to both increased and decreased
BP induced pharmacologically. The assumption that diameter re-
mained constant during the infusion of vasoactive substances was
made based on the results of Giller and colleagues,?’ who measured
the outer diameter during craniotomy and found minimal change in
diameter of 4%. Volumetric blood flow through the internal carotid
artery during steady state phenylephrine infusions, however,
showed increases in middle cerebral artery blood velocity, but
apparently no measurable change in internal carotid artery flow,?®
raising the possibility that elevations in flow velocity may reflect
increase in arterial vascular tone, potentially of the insonated vessel
itself. Such changes would invalidate the use of transcranial
Doppler as an accurate surrogate of CBF. Discrepancies between
these studies have not been resolved. Nevertheless, cerebral auto-
regulation has been shown to be reduced in acute ischemic stroke,>
traumatic brain injury,®® carotid artery stenosis,’' and autonomic
failure.>

Dynamic CA (dCA) on the other hand, describes the ability of
the cerebrovascular system to oppose short-term changes in per-
fusion pressure over a period of less than 5 sec.”*** Both sCA and
dCA are thought to be regulated by a combination of myogenic,
metabolic, neurogenic control mechanisms (for a review, see
Paulson and coworkers,zl); however, sCA and dCA and may rely
on relatively different influences from the various regulatory fac-
tors.>* For example, it has been suggested that neural control over
cerebral vascular tissue more heavily influences dCA than sCA,**
while endothelial function has been shown to not relate to dCA.*
Myogenic control, on the other hand, is thought to play a role
primarily in passive, compliance-based dCA (i.e., transfer function
analysis phase) and less of a role in active, resistance-based dCA
(i.e., gain and coherence).*®*” Further, although on a continuum,
dysfunction in dCA is thought to occur before sCA in some path-
ological scenarios.”

Very recently, Pukayastha and colleagues®® showed, using pra-
zosin (o1, antagonist), that sympathetic control is important to dCA
(namely, low-frequency [LF] gain) at rest and during exercise.*®
Ogoh and associates® also showed that the middle cerebral artery
velocity (MCAV) responsiveness to thigh cuff deflation was re-
duced after generalized a-adrenergic blockade.*® Further, evidence
showing increased transfer function analysis gain after cholinergic
blockade through glycopyrrolate in the same frequencies as sym-
pathetic control (i.e., >0.05Hz) suggests that both the parasym-
pathetic and sympathetic system are active in dCA that may
predominantly oppose rising and falling perfusion pressures, re-
spectively.* Recent evidence in both humans'®*'** and animals,*?
however, supports the idea of hysteresis in CA. In other words, the
brain can more effectively buffer hypertension compared with
hypotension. Whether this is the case for SCI remains unknown, but
if comparable to healthy humans would provide a means to defend
against autonomic dysreflexia.

Cerebrovascular reactivity

The index of cerebrovascular reactivity (i.e., relative change in
CBF in response to altered blood gas concentration) allows for
quantification of the sensitivity of the intracranial vessels to a given
stimulus. Most commonly, stimuli include either pharmacological
or ventilatory driven alterations of arterial blood gas content (i.e.,
oxygen or carbon dioxide). A reduced CBF response to hypocapnia
and hypercapnia has been shown to be related to obstructive and
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central sleep apnea,***> hypertension,*® carotid artery stenosis,*’

congestive heart failure,*® and have independent predictive value
for future ischemic stroke.**~'

The overarching control of CBF is via PaCO,. Specifically, CBF
adjusts roughly 3.8%-mmHg ™' change in PaCO, partial pressure,
with a slightly more robust response to hypercapnia in comparison
with hypocapnia.>>~® Briefly, CBF is thought to preferentially alter
CO; and [H +] at the level of the brain stem to maintain pH within a
narrow range.>> Maintenance of cerebral pH helps stabilize respi-
ratory and chemoreceptor centers, which are also sensitive to [H+].
The mechanisms through which this is achieved are only partially
understood but thought to be the result of activated potassium
channels in smooth muscle as well as rapid adjustment of several
key vasoactive substances such as nitric oxide and prostaglandin.>

Neurovascular coupling

The close temporal and regional linkage between neural activity
and CBF response is termed neurovascular coupling. CBF re-
sponses in the MCA, posterior cerebral artery and anterior cerebral
artery to visual, verbal, and cognitive tasks have been widely
measured.’”®' Previous work shows altered neurovascular cou-
pling in those with hypotension,®* type I diabetes,®® and Alzheimer
disease®; however, to our knowledge, no study has directly related
the neurovascular coupling response to cognitive function. The
metabolic portion of CBF regulation is related directly to increased
oxygen availability and reduced carbon dioxide during periods of
increased CBF.®° Similarly to working muscle, a complex interplay
occurs, whereas nitric oxide and other endothelial metabolites work
to match blood flow provision to metabolic demand.®®¢” This
functional hyperemia uses intimate interactions between cerebral
vascular cells, such as endothelium and smooth muscle, with
neurons and glia (i.e., astrocytes, microglia, oligodendrocytes) to
match neural activation with CBF.%®

CBF after SCI

A total of 16 studies have examined CBF control in those with
SCL%7%2 In the current section, we will highlight the literature
examining these CBF regulatory indicators and discuss the poten-
tial underlying mechanisms (Table 1). Specifically, we will discuss
how CA, cerebrovascular reactivity and neurovascular coupling are
influenced by high-level SCI (HLSCI). The vast majority of these
studies have examined CBF in those with HLSCI, with only one
including a lower level SCI group (i.e., <T6).%° As such, specific
focus will be on studies examining those with HLSCI. Also, we
have decided against discussing one of the studies because the
researchers used a liquid-meal ingestion to alter BP, which did not
alter BP in their HLSCI group, precluding the evaluation of a CBF
response.?’"®? Several reports support the idea that those with
HLSCI complain of orthostatic intolerance in the early stages after
injury; however, these complaints reduce in frequency as duration
of injury occurs, even with persistent and severe orthostatic hy-
potension.”*¥*78 It has been speculated that CBF regulatory pro-
cess may adapt to overcome profound orthostatic hypotension in
chronic HLSCL.”? Considering the neurogenic, vascular, metabolic,
and respiratory changes known to occur after SCI, it is plausible
that CA is altered in this population.

Cardiovascular consequences of SCI

The autonomic nervous system is composed of both sympathetic
and parasympathetic divisions. Parasympathetic nervous outflow
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FIG. 2. Illustration of theoretical mechanisms of cerebral blood flow control that would be impacted by high-level spinal cord injury
(SCI). Briefly, decreased central sympathetic control of systemic blood vessels leads to greatly reduced cerebral perfusion pressure
(CPP). Exacerbating the hypotension, those with SCI above T5 also have impaired central sympathetic control over the heart. Systemic
endothelial (Endo) dysfunction may also lead to decreased CO, reactivity, neurovascular coupling, and potentially cerebral auto-
regulation. As mentioned in Figure 1, direct neurogenic control of cerebral vascular tone is controversial, but cerebral vessels are
innervated by sympathetic fibres originating from the T1-4 level (superior cervical ganglia). As such, SCI above T5 would result in
impaired or absent central sympathetic control of cerebrovasculature. @ denotes where cerebrovascular dysfunction may occur after SCI
(1-endothelial dysfunction, 2- altered direct neural cerebrovascular influence, 3- sympathetic neural control over total peripheral
resistance (TPR), 4- sympathetic neural control over cardiac output [Qc]). *Note that when a complete injury occurs, sympathetic
vasomotor control is disrupted below the lesion level. ICP, intracranial pressure; CVP, central venous pressure.

occurs from cranial nerves III, VII, IX, and X superiorly and S2—4  occurs from the sympathetic preganglionic neurons (SPNs) local-
inferiorly. Only cranial nerves IX and X participate in cardiovas- ized within T1-L2 spinal segments of the spinal cord. These neu-
cular control, and as they exit above the spinal cord level; therefore  rons synapse into the sympathetic paravertebral ganglia (ganglionic
any parasympathetic influence on cerebrovascular after SCI tone  neurons in the sympathetic chain),*® and finally postganglionic
would be intact.®” On the other hand, sympathetic nervous outflow  fibers innervate target organs in the periphery. After SCI, tonic
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>

A 5 .
*sCA improved with \“\1 ) ”Decrease_d coherence, which
Hrealncs ki N~ =~ /1) g:ously infers reduced

L &0nly examined those with

coherence above 0.5.

FIG. 3. Illustration summarizing the primary studies examining static and dynamic cerebral autoregulation (dCA, sCA). 17%; 273; 37%;
477 5% (reduced phase, increased gain); 6'%; 77°.
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supraspinal control to the spinal SPNs is lost, and sympathetic
outflow from the spinal cord below the level of injury is severely
disrupted.* Drastic changes in systemic cardiovascular regulation
occur in those with lesion levels above the sixth thoracic spinal cord
segment. Lesions above T6 are associated with a loss of supraspinal
control over the heart and splanchnic blood vessels,® both of which
are needed for effective long- and short-term BP regulation.”
Further to this, sympathetic control of the cerebral blood vessels is
transmitted through the superior cervical ganglion, which origi-
nates from spinal nerves T1-T4.°" As such, any SCI occurring
above T4 would be expected to result in partial or complete (>T1)
abolishment of sympathetic cerebrovascular control.

Also highly relevant to cerebrovascular regulation, endothelial
function, estimated by flow mediated dilatation, has been shown to
be systemically reduced after SCL°? in some cases in as little as 6
weeks post-injury.”® Nitric oxide is the primary substance causing
vasodilatation in response to sheer—stress,94 and leads to smooth
muscle relaxation and increased blood flow.”> The production of
nitric oxide relevant to vascular control occurs in endothelial cells”®
and mediates the relationship between cerebral vascular tone and
the majority of signaling messengers (i.e, acetylcholine, adenosine
diphosphate, adenosine triphosphate, bradykinin, endothelin, so-
dium fluoride, oxytocin, vasopressin, etc.).”” Reduced nitric oxide,
however, does not appear to influence cerebral autoregulation but is
associated with reduced cerebrovascular reactivity.” ' After this,
it could be suspected that systemic endothelial dysfunction influ-
ences the regulation of CBF (Fig. 2).

sCA

Early studies from Nanda and coworkers’>’® that examined

CBF using inhaled '**Xenon clearance rate during supine-to-seated
and supine-to-raised leg/lower body negative pressure (LBNP)
maneuver reported that CBF was well maintained during an aver-
age 18 mm Hg drop in MAP (Fig. 3).”>”* Handrakis and col-
leagues” provided more insight by measuring MCAv after
angiotensin-converting enzyme-inhibitor infusion combined with
45 degrees tilt; results revealed that MCAv decreased to a similar
rate in chronic HLSCI patients compared with able bodied (AB),
although the MAP drop in HLSCI patients was markedly higher
(p=0.02). More recent work has shown that sCA (albeit using the
relationship between MAP and MCA [diastolic]) was similar be-
tween HLSCI and AB patients in response to head-up tilt, although
the HLSCI group reported greater decreases in end-tidal CO,.*
These authors showed an interesting correlation between supine
plasma noradrenaline concentrations (but not low frequency os-
cillations in systolic BP) and sCA, suggesting a relationship be-
tween sCA and autonomic completeness.*

Using a similar '**Xenon technique in primarily patients with
acute SCI (i.e., 92% <12 months since injury), Yamamoto and
associates’* showed that the sCA (= ACBF/AMAP) response to
30-degree tilt was impaired in acute HLSCI (i.e., greater changes in
CBEF for a given change in MAP); however, those who had injuries
occurring within 6 months of examination had significantly im-
paired sCA compared with those closer to the chronic phase. Be-
cause CBF is the final common pathway before the development of
syncope, it is not surprising that reduced static CBF control is a
major factor related to the increased risk of orthostatic intolerance
after SCI. In support of this, Gonzalez and colleagues’> showed that
orthostatically intolerant acute HLSCI had greater decreases in
MCAVv during steady-state 80 degrees tilt when compared with a
tolerant chronic HLSCI group.”
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A landmark study by Houtman and coworkers’’ examined steady-
state CBF velocity response to 5-min long bouts of progressive LBNP
in a group of HLSCI patients. This study showed remarkably poor
MAP control in HLSCI and large reductions in MCAv, but similar
changes in cerebrovascular resistance (i.e., AMAP/ACBF) compared
with AB indicating similar sCA. The large reductions in CBF velocity
resulted in a trend for lower cerebral oxygenation in HLSCL”” The
finding that CBF is reduced more than perfusion pressure during
LBNP has long been shown in AB, and although compelling evidence
now exists to the contrary, was originally thought to result from sys-
temic sympathetic activation of both muscular and cerebral vascula-
ture during central hypovolemia.*"*>'° The majority (i.e., 8/10) of
the HLSCI group in Houtman’s the later work of Houtman and as-
sociates,”” however, had a decentralized superior cervical ganglion (as
the result of complete injury above T1) and likely would not be ca-
pable of sympathetically mediated increases in cerebral vascular re-
sistance.”” Because both HLSCI and AB persons reported similar
changes in end-tidal CO, (i.e., a surrogate marker of PaCO,), the
findings of Houtman and colleagues’’ support the contention that
cerebrovascular changes during orthostatic challenge are primarily
related to changes in PaCO,.'®~'%

Finally, two interesting studies examined the CBF velocity re-
sponse to increasing BP in those with HLSCI after 2 min of cold
water immersion of the hand®® or foot.”” Although not originally
interpreted in this manner, it is likely that both these studies induced
autonomic dysreflexia in HLSCL'%® As such, it is expected that in
their HLSCI group (C4-C7), unopposed sympathetic outflow
would have occurred not only in the systemic vascular bed, but also
the cerebrovascular tissue.®” Both of these studies reported similar
average cerebrovascular resistance during autonomic dysreflexia in
HLSCI when compared with AB. Further, these studies also in-
cluded a group of participants with injuries ranging T4-T6, which
would be expected to have preserved central sympathetic control
over the cerebrovasculature®’ and showed that when the nocicep-
tive stimulus is applied below the injury level (i.e., the foot), in-
creases in cerebrovascular resistance do not occur during
autonomic dysreflexia,”® supporting the idea that sympathetic ce-
rebrovascular control helps to mitigate flow increases during
transient periods of increased perfusion pressure.****

Together, the available literature suggests that sCA is well
maintained in those with chronic HLSCI, but may be impaired in
the acute phase of injury. Although the early studies showed that
absolute CBF response is similar in HLSCI compared with AB,
more recent work shows that dysfunctional BP control leads to
larger fluctuations in CBF, but similar changes in resistance.”’ In
one study, a small subset of three HLSCI patients suggests a strong
systemic influence of sCA, because abdominal binders and com-
pression stockings improved this metric.”* It is likely that cere-
brovascular regulatory factors other than sympathetic control allow
for preserved sCA in response to decreasing BP in HLSCI with
sympathetic decentralization and endothelial dysfunction (i.e., the
myogenic influence). In response to autonomic dysreflexia, those
with injuries above the superior cervical ganglion are able to in-
crease cerebrovascular resistance to match BP increases, while
those with lower level lesions (with preserved central sympathetic
control over cerebrovasculature) do not, likely because of barore-
flex mediated sympathetic withdrawal above the lesion level.®

dCA

Only three studies have examined dCA in those with HLSCI, all
of which used spontaneous transfer function analysis between MAP
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and MCAv and one with an additional analysis of MAP and posterior
cerebral artery velocity (PCAv) (Fig. 3).”%#%2 Recently, Wilson and
associates’® showed that supine coherence in the very low frequency
(VLF) range was reduced in their group of six persons with HLSCI,
while gain and phase were similar.”” We later showed that upright
MAP-MCAv coherence was reduced in both the range.®* Similarly,
we reported reduced PCAv coherence in the LF range.®* Sahota and
colleagues® showed that the supine LF gain was reduced and upright
LF phase was increased, both indicative of reduced dCA. The latter
study evaluated only the LF transfer function analysis for MAP-
MCAV when coherence was >0.5.5° To our knowledge, no existing
studies examine dCA using a model of perturbed BP/CBF SCI to
improve the reliability of transfer function analysis.'"’

Considering the combined findings of these studies, spontaneous
dCA is altered in those with HLSCI, and is possibly related to
both sympathetic decentralization of the cerebrovasculature and
increased parasympathetic tone after HLSCL'® A fundamental
inverse relationship has recently been shown between both
spontaneous and non-spontaneous dCA and cardiac baroreflex
sensitivity (BRS) in healthy AB patients.'® According to this re-
lationship, and our recent review highlighting that cardiac BRS is
markedly reduced in HLSCI, it could be expected that coherence
and MAP-MCAvV gain would be reduced while phase would be
increased.” It is possible that cardiovascular and autonomic pa-
thology after HLSCI leads to a loss of this fundamental compen-
satory relationship.'® More work should be completed, however,
using larger sample sizes, incorporating VLF ranges as well as
driving BP changes using either oscillatory LBNP or tilt to increase
confidence in transfer function analysis estimates.'®”

Cerebrovascular reactivity

Early work using 133Xenon as well as more current work using
transcranial Doppler shows that the CBF response to hypercapnia is
preserved in those with HLSCL”""*7® On the other hand, the re-
sponse of CBF to hypocapnia does not appear as consistent. For
example, Eidelman and colleagues’' reported that the CBF de-
crease in response to hypocapnia was abolished after HLSCI. In
contrast, other reports showed that the hypocapnic response of
CBF is preserved.”>”*’® The preliminary study in this group
by Eidelman et al.,”' however, may be confounded as four of
the nine HLSCI participants to have BP recorded during hyper-
ventilation showed BP changes meeting the criteria for autonomic
dysreflexia,®® changes that would induce systemic, and more
controversially, cerebral vasoconstriction.®® The vasoconstriction
induced by autonomic dysreflexia would thereby augment hypo-
capnie induced vasoconstriction."'® Differences between Eidelman
and associates’' and Nanda and colleagues’>"* in terms of hypo-
capnic CBF response in HLSCI are difficult to explain but may be
because of different techniques for measuring CBF (i.e., modified
vs. non-modified **Xenon inhalation).

Although hampered by a low sample size, Wilson and coworkers’
reported differences in subtle parameters of CBF between HLSCI and
AB during both hypo- and hypercapnia. Pulsatile flow (pulsatility
index) of MCAv decreased significantly more in response to hyper-
capnia in the HLSCI group, while the cerebrovascular resistance re-
sponse to hypocapnia was reduced. These values suggest nuanced
cerebrovascular changes occur after HLSCI, which influence the CBF
response to PaCO,. In support of the idea that the hypocapnic CBF
response is blunted in HLSCI, Sahota and colleagues™ also showed
that end-tidal CO, decreased significantly more in HLSCI compared
with AB during upright tilt, but diastolic CBF velocity changed sim-
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ilarly. Although end-tidal CO, decreases may have been secondary to
greater increases in dead space and/or decreases in cardiac output
during head-up tilt in SCI compared with AB,""""!'? this differential
response between HLSCI and AB suggests a reduced CBF sensitivity
to hypocapnia.

Pulsatile flow patterns represent an area of increasing interest
within the field of CBF regulation, which has been suggested as a
primary mechanism through which the brain maintains perfusion
during low mean perfusion pressure, such as severe hemorrhage,
and orthostatic hypotention, the latter of which is widespread in
HLSCL5 '35 Hypercapnia preferentially alters the small distal
resistance vessels, which regulates pulsatile flow,''® and the ad-
aptation of this vascular bed in HLSCI, as shown by Wilson and
associates,”” may represent an adaptation to chronically altered
hemodynamic and/or respiratory patterns in those with HLSCI as a
means to maintain cerebral perfusion in the face of reduced per-
fusion pressure.”® Reduced cerebrovascular reactivity, especially to
hypocapnia, has been previously related in patients and healthy
persons to sleep apnea.48‘] '7 Sleep apnea has been reported to occur
in up to 40% of those with HLSCI, and cerebrovascular reactivity
may be an important mediating factor.''® Clearly, further exami-
nation of this relationship is warranted, especially considering the
increased risk of stroke in the HLSCI population and the inde-
pendent predictive value of cerebrovascular reactivity for stroke. '

Neurovascular coupling

Neurovascular coupling describes the hyperemic response to
cognition. To our knowledge, only two studies have examined
neurovascular coupling in those with HLSCI. Wecht and col-
leagues’ showed that mean MCAv and cerebrovascular resistance
did not change when completing a Stroop test in either AB or
HLSCI. This technique is quite different from the established
neurovascular coupling procedures, because Wecht and col-
leagues’ reported mean values from three repeated 45-sec long
Stroop tests, and it is not clear if an eyes-closed resting period
occurred, or if the peak response (as opposed to the average) was
different between groups. In many other studies, albeit using more
established protocols, MCA, anterior cerebral artery, and posterior
cerebral artery CBF velocity have been shown to increase in
healthy controls during cognitive tasks and visual motor stimuli
while cerebrovascular resistance decrease.’’>”''? Regardless,
these authors reported a trend suggestive of a differing response in
controls compared with combined HLSCI and low-level SCI
(p=0.08), and a significant positive relationship between changes
in cerebrovascular resistance during cognition and Stroop test
performance in the AB group (indicating a relationship between
neurovascular coupling and cognitive performance); this relation-
ship did not occur in the HLSCI group.”

Recently, we have revealed that a change in posterior cerebral
artery CBF velocity during visual cortex stimulation is essentially
absent in those with HLSCI (Phillips and associates, unpublished
data). We also have shown that the hyperemic response to cognition
improves after administration of an o, agonist (midodrine hydro-
chloride, which does not cross the blood brain barrier), albeit still
reduced compared with matched controls (unpublished observa-
tions). Together, the scant available literature suggests that the
neurovascular coupling response is heavily dependent on the un-
derlying BP and systemic vascular tone, with HLSCI and decen-
tralized systemic sympathetic vascular control resulting in an
inability to match CBF to increases in neuronal activity. These
preliminary data seem to link the plethora of evidence showing
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cognitive function is declined in those with hypotension with and
without SCIL®*'2°'23 Other than hypotension, it is possible that
nitric oxide availability,'** glucose intolerance,'?>'?® and dysli-
pidemia'?” also mediate the relationship between altered neuro-
vascular coupling and HLSCI. Interestingly, cessation of statin
therapy, which acutely increases stroke risk,'*® rapidly reduced
neurovascular coupling through what is thought to be endothelium
dysfunction.®®

Future directions

Many interesting potential directions of future research exist to
better evaluate CBF regulation in HLSCI patients who are at in-
creased risk of stroke, have orthostatic hypoperfusion, and expe-
rience autonomic dysreflexia. Most apparent to us, true orthostatic
tolerance in those with HLSCI has yet to be examined, although it
has been suggested that this population has remarkable orthostatic
tolerance given extremely reduced perfusion pressure.”’ The use of
LBNP to presyncope in those with HLSCI would evaluate this
contention, and concurrent measurement of PaCO,, BP, and CBF
would shed light on potential underlying mechanisms.

Recently, the beat-by-beat measurement of diameter and blood
flow velocity in the internal carotid and vertebral arteries has
emerged as a viable technique to measure CBF regulation. These
extracranial assessments of CBF are free of the assumption that the
three main cerebral arteries do not change diameter under most
conditions.'?® Further, because extracranial arteries provide CBF
regulatory influence,'**'*! this technique, in addition of tran-
scranial Doppler, allows for a more global and comprehensive as-
sessment of CBF control. Also, magnetic resonance imaging (e.g.,
pulsed arterial spin labeling, blood-oxygen-level-dependent con-
trast) allows for more localized assessments of specific regions
should also be used to evaluate CBF control in those with
HLSCL."*% 33 The use of LBNP (or tilt), applied at specific fre-
quencies where dCA is thought to be active, should also be ex-
amined in those with HLSCI, because this would increase the
confidence in the transfer function analysis metrics. It has recently
been demonstrated that various measures of dCA are often poorly,
or even contradictorily related; thus, it is paramount that a variety of
dCA measures are used before concluding as to whether dCA is
impaired, improved, or unchanged after HLSCI.'**

The evaluation of cerebrovascular reactivity presents an espe-
cially clinically relevant area of future research in the HLSCI
population, considering the independent stroke risk value of this
metric and the elevated stroke risk in the HLSCI population.'"** 1t
should be investigated whether altered cerebrovascular reactivity is
secondary to, or implicated in, the increased prevalence of sleep
apnea in those with HLSCI or endothelial dysfunction. Evaluating
cerebrovascular reactivity and endothelial function in HLSCI be-
fore and after continuous positive airway pressure therapy and/or
statin administration may shed light on this relationship.'*> From a
neurovascular coupling perspective, very little is currently known.
Future directions should include using established neurovascular
coupling procedures while evaluating the MCA and posterior ce-
rebral artery during a variety of different stimuli. Clearly relating
cognitive performance and neurovascular coupling parameters is
also needed, not only in HLSCI patients but the AB population as
well.

HLSCI offers a relevant model to evaluate the influence of
sympathetic control on CBF control. For example, evaluating the
influence of systemic sympathetic control and oscillatory CBF
patterns on CBF regulation is possible using a model including only
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those with injuries above T6. On the other hand, specifically ex-
amining those with injuries at T3—4 allows for a model with the-
oretically preserved central sympathetic control of cerebral but not
systemic blood vessels.”!

Finally, the result of long-term CBF regulatory dysfunction in
SCI needs to be evaluated. The accumulated cerebrovascular
trauma induced by the large swings in perfusion pressure may
predispose to transient ischemic attacks, leading to cognitive def-
icits, depressive symptoms, and increased risk for stroke.

Conclusions

The available literature indicates that CBF control is altered in
those with HLSCI (Fig. 2; Table 1), but may improve with recovery
from injury. Specifically, neurogenic and vascular changes occur-
ring after HLSCI are most consistently implicated for CBF regu-
latory dysfunction through both direct and mechanistic evidence.
Although sCA appears to be preserved, spontaneous metrics of
dCA are different in those with HLSCI compared with AB persons.
Further to this, preliminary information suggests that the CBF re-
sponse to changes in PaCO, is also altered; however, this needs to
be confirmed with a larger sample size and confirmed autonomic
completeness of injury. Finally, although very limited evidence
exists, significant reductions in the neurovascular coupling are
apparent in those with HLSCI. Some potential causes of CBF
regulatory change in HLSCI include sympathetic decentralization,
vascular dysfunction, as well as sleep-related breathing problems.
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