
Aaron DingleUniversity of Wisconsin–Madison | UW · Department of Surgery
Aaron Dingle
Doctor of Philosophy
About
56
Publications
6,149
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
386
Citations
Citations since 2017
Introduction
Aaron Dingle currently works at the Department of Surgery, University of Wisconsin–Madison. Aaron does research in Biosystems Engineering, Biomedical Engineering and Bioengineering. Their current project is 'Osseointegrated neural interface for prosthesis control'.
Publications
Publications (56)
Kevin Treb Xu Ji Mang Feng- [...]
Ke Li
Objective : Existing clinical C-arm interventional systems use scintillator-based energy-integrating flat panel detectors (FPDs) to generate cone-beam CT (CBCT) images. Despite its volumetric coverage, FPD-CBCT does not provide sufficient low-contrast detectability desired for certain interventional procedures. The purpose of this work was to devel...
Introduction
The precise mechanism through which excessive tension confers poor outcomes in nerve gap repair is yet to be elucidated. Furthermore, the effect of tension on gene expression in regenerating nerves has not been characterized. This study investigated differential gene expression in transected nerves repaired under high and minimal tensi...
Noninvasive electronic bone growth stimulators (EBGS) have been in clinical use for decades. However, systematic reviews show inconsistent and limited clinical e cacy. Further, noninvasive EBGS studies in small animals, where the stimulation electrode is closer to the fracture site, have shown promising e cacy, which has not translated to large ani...
Symptomatic neuromas are an all-too-common complication following limb amputation or extremity trauma, leading to chronic and debilitating pain for patients. Surgical resection of symptomatic neuromas has proven to be the superior method of intervention, but traditional methods of neuroma resection do not address the underlying pathophysiology lead...
Orthopedic fractures have a significant impact on patients in the form of economic loss and functional impairment. Beyond the standard methods of reduction and fixation, one adjunct that has been explored since the late 1970s is electrical stimulation. Despite robust evidence for efficacy in the preclinical arena, human trials have mixed results, a...
Background
Gender disparities are pervasive in academic plastic surgery. Previous research demonstrates articles authored by women receive fewer citations than those written by men, suggesting the presence of implicit gender bias.
Objectives
We aim to describe current citation trends in plastic surgery literature and assess gender bias. We expecte...
Introduction
Approximately 80% of amputations are complicated by neuromas. Methods for neuroma management include nerve translocation into bone and implantation into skeletal muscle grafts, which have also facilitated the development of regenerative neural interfaces to enable fixation of prosthetics with motor and sensory feedback. However, molecu...
Importance:
After the rise of predatory journals characterized by false claims of legitimacy and a pay-to-publish model, similar "predatory conferences" have become increasingly common. The email inbox of an academic physician can be filled with daily announcements encouraging conference attendance, abstract submission, and often panel or keynote...
As technology continues to improve within the neuroprosthetic landscape, there has been a paradigm shift in the approach to amputation and surgical implementation of haptic neural prosthesis for limb restoration. The Osseointegrated Neural Interface (ONI) is a proposed solution involving the transposition of terminal nerves into the medullary canal...
Since the piezoelectric quality of bone was discovered in 1957, scientists have applied exogenous electrical stimulation for the purpose of healing. Despite the efforts made over the past 60 years, electronic bone growth stimulators are not in common clinical use. Reasons for this include high cost and lack of faith in the efficacy of bone growth s...
Background
Peripheral nerve damage is a frequent problem, with an estimated 2.8%-5.0% of trauma admissions involving peripheral nerve injury. End-to-end, tension-free microsurgical repair (neurorrhaphy) is the current gold standard treatment for complete transection (neurotmesis). While neurorrhaphy reapproximates the nerve, it does not address the...
Large-area photon counting detectors (PCDs) are usually built by tiling multiple semiconductor panels that often have slightly different spectral responses to input x-rays. As a result of this spectral inconsistency, experimental PCD-CT images of large, human-sized objects may show high-frequency ring artifacts and low-frequency band artifacts. Due...
Over the last few decades there has been a push to enhance the use of advanced prosthetics within the fields of biomedical engineering, neuroscience, and surgery. Through the development of peripheral neural interfaces and invasive electrodes, an individual's own nervous system can be used to control a prosthesis. With novel improvements in neural...
Objective
To determine if electrical stimulation (ES) reduces days to radiographic union of acute fractures
Data Sources
MEDLINE database search using the terms combinations of electric stimulation AND bone healing, electric stimulation AND fracture, electric stimulation AND fracture healing, full articles, English language, without publication dat...
Sieve electrodes stand poised to deliver the selectivity required for driving advanced prosthetics but are considered inherently invasive and lack the stability required for a chronic solution. This proof of concept experiment investigates the potential for the housing and engagement of a sieve electrode within the medullary canal as part of an oss...
Introduction:
Breast cancer is the most common cancer in women in Wisconsin. Evidence demonstrates that non-White racial minorities in the United States exhibit a higher mortality rate and more advanced or aggressive presentations of the disease than their White counterparts. Postmastectomy breast reconstruction remains essential to the treatment...
Despite significant improvements in zone II flexor tendon repair over the last 2 decades, function-limiting complications persist. This article describes 2 novel repair techniques utilizing flexor digitorum superficialis (FDS) autografts to buttress the flexor digitorum profundus (FDP) repair site without the use of core sutures. The hypothesis bei...
Background:
Preparation of the internal mammary artery (IMA) is a critical step in autologous breast reconstruction. Intraoperatively, there is limited opportunity for residents to practice this skill. Porcine models provide highly realistic simulation for vascular surgery; however, use of live laboratory pigs is expensive, inconvenient, and offer...
Background
Outcome assessments that evaluate post-transection nerve repair do not often correlate with one another. The aims of this study were twofold: to compare four nerve repair techniques with each other and incorporate both negative and positive control groups and to identify possible correlations between outcome assessments.
Materials and m...
Purpose: Peripheral nerve damage is a frequent problem in civilian and military populations; an estimated 2.8-5% of trauma admissions contain a peripheral nerve injury. Currently, end-to-end, tension-free microsurgical nerve repair (neurorrhaphy) is the gold standard treatment. However, neurorrhaphy is not neuroprotective and does not address the c...
Objective:
Given current clinical interest in vagus nerve stimulation (VNS), there are surprisingly few studies characterizing the anatomy of the vagus nerve in large animal models as it pertains to on-and off-target engagement of local fibers. We sought to address this gap by evaluating vagal anatomy in the pig, whose vagus nerve organization and...
Background:
A number of peripheral nerve interfaces for nerve stimulation and recording exist for the purpose of controlling neural prostheses, each with a set of advantages and disadvantages. The ultimate goal of neural prostheses is a seamless bi-directional communication between the peripheral nervous system and the prosthesis. Here, we develop...
Introduction
While debate persists over how to best prevent or treat amputation neuromas, the more pressing question of how to best marry residual nerves to state-of-the-art robotic prostheses for naturalistic control of a replacement limb has come to the fore. One potential solution involves the transposition of terminal nerve ends into the medull...
Given current clinical interest in vagus nerve stimulation, there are surprisingly few studies characterizing the anatomy of the vagus nerve in large animal models as it pertains to on-and off-target engagement of local fibers. We sought to address this gap by evaluating vagal anatomy in the domestic pig, whose vagus nerve organization and size app...
Background:
Chronic stability and high degrees of selectivity are both essential but somewhat juxtaposed components for creating an implantable bi-directional PNI capable of controlling of a prosthetic limb. While the more invasive implantable electrode arrays provide greater specificity, they are less stable over time due to compliance mismatch w...
Background:
Bioelectric medicine seeks to modulate neural activity via targeted electrical stimulation to treat disease. Recent clinical evidence supports trigeminal nerve stimulation as a bioelectric treatment for several neurological disorders; however, the mechanisms of trigeminal nerve stimulation and potential side effects remain largely unkn...
Since the 1940s electrocorticography (ECoG) devices and, more recently, in the last decade, micro-electrocorticography (µECoG) cortical electrode arrays were used for a wide set of experimental and clinical applications, such as epilepsy localization and brain–computer interface (BCI) technologies. Miniaturized implantable µECoG devices have the ad...
Dielectrophoresis using multi-electrode arrays allows a non-invasive interface with biological cells for long-term monitoring of electrophysiological parameters as well as a label-free and non-destructive technique for neuronal cell manipulation. However, experiments for neuronal cell manipulation utilizing dielectrophoresis have been constrained b...
Background:
The liver sinusoidal capillaries play a pivotal role in liver regeneration, suggesting they may be beneficial in liver bioengineering. This study isolated mouse liver sinusoidal endothelial cells (LSECs) and determined their ability to form capillary networks in vitro and in vivo for liver tissue engineering purposes.
Methods and resu...
In recent years, the trigeminal nerve (CN V) has become a popular target for neuromodulation therapies to treat of a variety of diseases due to its access to neuromodulatory centers. Despite promising preclinical and clinical data, the mechanism of action of trigeminal nerve stimulation (TNS) remains in question. In this work, we describe the devel...
Symptomatic neuroma after major extremity amputation is a challenging clinical problem for which there are many described treatment options. Neuroma excision and implantation into the medullary canal of long bones offers durability and insulation, and minimizes chronic pain. Another challenge in amputees is impaired function and an ongoing need for...
Supplemental Digital Content is available in the text.
Background
Clinical outcomes after nerve injury and repair remain suboptimal. Patients may be plagued by poor functional recovery and painful neuroma at the repair site, characterized by disorganized collagen and sprouting axons. Collagen deposition during wound healing can be intrinsically imaged using second harmonic generation (SHG) microscopy....
Liver tissue engineering is hampered by poor implanted cell survival due to inadequate vascularization and cell–cell/cell–matrix interactions. Here, we use liver progenitor cell (LPC) spheroids to enhance cell–cell/cell–matrix interactions, with implantation into an angiogenic in vivo mouse chamber. Spheroids were generated in vitro in methylcellul...
Liver tissue engineering is hampered by poor implanted cell survival due to inadequate vascularization and cell-cell/cell-matrix interactions. Here, we use liver progenitor cell (LPC) spheroids to enhance cell-cell/cell-matrix interactions, with implantation into an angiogenic in vivo mouse chamber. Spheroids were generated in vitro in methylcellul...
The effects of in vitro preconditioning protocols on the ultimate survival of myoblasts implanted in an in vivo tissue engineering chamber were examined. In vitro testing: L6 myoblasts were preconditioned by heat (42 °C; 1.5 h); hypoxia (<8% O(2); 1.5 h); or nitric oxide donors: S-nitroso-N-acetylpenicillamine (SNAP, 200 μM, 1.5 h) or 1-[N-(2-amino...
Dense angiogenic sprouting occurs from arteriovenous loops (AVLs) incorporating autologous vein grafts inserted into empty plastic chambers in vivo. The purpose of this study was to determine if angiogenesis from the AVL was limited by substituting an "off the shelf" cold-stored allograft vein instead of an autologous vein.
Four Sprague Dawley rat...
In in vivo tissue engineering, many implanted cells die because of hypoxic conditions immediately postimplantation. The aim of this study was to determine whether delayed myoblast implantation, at day 4 or 7, improves myoblast survival compared with implantation at day 0 in an in vivo arterio-venous loop (AB loop) chamber model. In adult inbred Spr...
Projects
Project (1)
Interfacing peripheral nerves with electronic interfacing devices within the protected space of long bones, ultimately to control prosthetic limbs.