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ABSTRACT 

 

An analysis is made to obtain exact solutions for the flow of a second grade fluid due to an 

infinite disk rotating with a constant angular speed. The fluid is electrically conducting in the 

presence of an external uniform magnetic field applied perpendicular to the surface of the disk. 

Instead of the classical Von Kármán axisymmetric flow assumption, a rotational non-

axisymmetric flow is taken into consideration here. The obtained results point out that for the 

second grade conducting fluid, a steady asymptotic solution exists for the velocity field whose 

far-field behavior is distinct from the no slip velocities. It is observed that the flow field is 

significantly influenced by the material parameter of the second grade fluid and the magnetic 

interaction number. A comparison with the existing results for the conducting Newtonian 

fluid is also given.  

 

Keywords: Non-axisymmetric flow, MHD second grade fluid, rotating disk, exact solution 

 

 

1 INTRODUCTION 

 

The flow induced by an infinite disk rotating in an incompressible viscous fluid was first 

considered by Von Kármán and later by Cochran. Von Kármán assumed that the flow 

possessed axial symmetry and introduced a similarity transformation which reduced the 

Navier-stokes equations into a system of coupled nonlinear ordinary differential equations. He 

also obtained an approximate solution for that problem. Later Cochran (Cochran 1934, Stuart 

1954) obtained a more accurate solution by using the matched asymptotic expansion method 

for the case of zero normal velocity at the disk. This problem has received considerable 

attentions over the years and different extensions of Von Karman’s flow problem have been 

made to address various applications, see for instance Millsaps et al (Millsaps et al 1952), 

Stuart (Stuart 1954), Watanabe (Watanabe 1991), Ariel (Ariel 2003), Bikash (Bikash 2009). 

In all above studies, the Von Kármán's axisymmetric similarity transformation is used to 

reduce the governing partial differential equations to a nonlinear system of ordinary 

differential equations. These ODEs are then solved by some approximate methods either 

numerical or analytical numerical. However, exact solutions are very important for many  
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reasons. They provide a standard for checking the accuracies of many approximate methods 

such as numerical or asymptotic. Moreover, the flow induced by an infinite disk rotating with 

a constant angular speed may not possess axial symmetry (Adabala et al. 1987). Recently, 

Turkyilmazoglu (Turkyilmazoglu 2009) has obtained exact solutions of the Navier-Stokes 

equations for this classical problem by using a generalized non-similarity transformation 

which differs qualitatively from the Von Kármán's assumption in such a way that the physical 

quantities are allowed to develop non-axisymmetrically over a rotating disk. In this study, we 

have extended the analysis in (Turkyilmazoglu 2011 and A. A. Farooq, 2012) from viscous to 

a non-Newtonian second grade fluid. 

 

It is also a well-known fact that the Navier-Stokes equations seem to be an inappropriate 

model for a class of real fluids, called non-Newtonian fluids. During the last few decades, 

considerable efforts have been usefully devoted to the study of flow of non-Newtonian fluids 

because of their technological applications. A vast amount of literature is now available for 

the flow problems associated with non-Newtonian fluids in variety of situations. One 

important and simple model of non-Newtonian fluids for which one can reasonably hope to 

obtain analytic solution is the second grade fluid. Keeping in mind this fact, we have chosen 

this model in this study. Undoubtedly, the equations of motion for the second grade fluid are 

more complicated with highly non-linear terms which make the question of well-posedness 

extremely difficult to address. However, in the present case the corresponding boundary value 

problem is well posed and is integrated exactly. This analysis is important, not only from 

mathematical point of view, but mainly as an essential test for the underlying physical model. 

The following structure is pursued in the rest of the paper. In section two basic equations 

governing the problem are given. Section three concerns with the mathematical formulation of 

the problem and section four presents the flow analysis. Finally, section five includes some 

concluding remarks. 

 

 

2 BASIC EQUATIONS 

 

The basic equations of unsteady, incompressible MHD flow with the generalized Ohm's law 

and the Maxwell's equations are 

.V=0,                                                                                                                                       (1) 

 
V

V. V .T+J B,
t


 

     
                                                                                                 (2) 

 
B

.B=0, B= J, E= ,  J= E+ Bm
t

 


    


                                                                     (3) 

where V ( , , )u v w is the velocity field, T  is the Cauchy stress tensor,   is the fluid density, 

J  is the current density and B  is the total magnetic field so that B=B + b , where B  is the 

applied magnetic field and b is the induced magnetic field. The other parameters appearing in 

(3) are, respectively, E is the electric field conductivity, m is the magnetic permeability and 

  is the electric field conductivity. Under the usual MHD approximations, the 

magnetohydrodynamic force J B becomes σ(V×B)×B when imposed and induced electric 

fields are negligible and only the magnetic field B contributes to the current J= σ(V×B). 

 

The fluid considered in this article is a second grade fluid and its constitutive equations are 

(Ariel 1997, Mishra et al. 2011) 
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T= I Sp  ,  2

1 1 2 2 1S= A A A                                                                                             (4) 

 

with p  being the pressure, I  the unit tensor,   is the dynamic viscosity, 1 , 2  are material 

constants satisfying thermodynamic compatibility model 1 ≥0, and 1 + 2 =0, and 1A  and 

2A are the kinematic tensors defined through 

   1A V V
T

    ,    1
2 1 1

A
A A V V A

Td

dt
      ,                                                          (5) 

where superscript T  stands for transpose of a matrix. 

 

 

3 FORMULATION OF THE PROBLEM 

 

Consider three dimensional steady flow of an incompressible second grade fluid due to an 

infinite disk which rotates in the plane 0z  about its axis of rotation z with a constant 

angular velocity . Flow is assumed to take place in the semi-infinite space 0z  . A uniform 

magnetic field B=B  is applied to the system along the direction perpendicular to the disk 

which is taken as electrically non-conducting. It is natural to describe the flow in the 

cylindrical coordinates ( , , )r z and denote the corresponding velocity components by u , v  

and w . Boundary conditions for the problem are such that the fluid adheres to the disk at 

0z   with a given axial velocity and that the velocity field is bounded at far distances from 

the surface of the disk. 

 

Von Kármán flow and the flow in this analysis are different qualitatively in that in the 

traditional Von Kármán flow, the rotational symmetry assumption is used which removes the 

 -dependence of the flow variables. However, in the present study we allow the  -

dependence, enabling the motion of a non-axisymmetric flow to develop, but we further 

assume w =0. Under these stated assumptions, the velocity field for the problem can be taken 

in the form 

 V ( , , ), ( , , ),0u r z v r z                                                                                                          (6) 

We introduce the following dimensionless variables: 

* * * * * *

2
, , , , , , , , ,

ij

ij

Sr z u v P
r z u v P S i j r z

UL L U U U

L




      
 
 
 

                                      (7) 

where L  is the length scale and U L  . Hence, the dimensionless form of the continuity 

and the equations of motion (1)-(3), after dropping the *  are given by 

1
0

u v u

r r r

 
  

 
,                                                                                                                    (8) 

2 1 1

Re

r rrrr rz
S S SS Su v u v P

u mu
r r r r r r z r

 

 

      
               

                                     (9) 

21 1 1
( )

Re

r zS S S Sv v v uv P
u m v r

r r r r r r z r

   

  

      
                

                             (10) 

                                         
1 1

0
Re

zrz zz rzSS S SP

z r r z r





   
          

                                    (11) 

With the help of (4)-(6) the stress tensor components in (9)-(11) are given by 
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2

1

2 2 2

2

1
2 2 2

1
       4

rr

u v u v v v u v u
S u

r r r r r r r r r r

u v u v u

r r r r z


 




               
              

               

          
          

          

                          (12) 

1

2

1 1 3

1
          2

r

v u v v v u v u v u v
S u

r r r r r r r r r r r r

u v u v u v

r r r r z z

 
   




             
              
             

         
        

         

                  (13) 

1

2

1 2
3 2

1
         2

rz

u v u u u v v u v
S u

z r r z z r z r r r

u u v v u v

z r z r r r


 




            
          
            

      
     

      

                                    (14) 

1

2

2
3

1
         2

z

v v v u u u v u v
S u

z r r z z r z r r r

u v u v u v

z r r r r z

 
 




            
          
            

      
     

      

                                         (15) 

2

1

2 2 2

2

1 1
2 2 2

1
           4

u v u u v u v u v
S u

r r r r r r r r r r

u v u v v

r r r r z

 
  




               
               

               

          
          

          

                    (16) 

 
2 2

1 22zz

u v
S

z z
 

      
      

      

                                                                                           (17) 

where 1
1

U

L





  and 2

2

U

L





 are the dimensionless material parameters of the second grade 

fluid, 
2

Re
U L


 is the Reynolds number and  

2

0B
m







is the magnetic interaction 

parameter. 

 

 

4 FLOW ANALYSIS 

 

In this section we restrict ourselves to the steady magnetohydrodynamic mean flow relative to 

the non-conducting rotating disk. Let us therefore introduce a coordinate transformation 

Re

2
z   together with a solution of the following form (Turkyilmazoglu 2009, 2011) 

2
2( , ),  ( , ),  0,  cos( ) ( )

2
o o o o

r
u r F v r r W w P rr r p                                              (18) 
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such that, non-axisymmetric and periodic solutions with respect to   of F  and W  are 

determined here, subjected to the pressure field given by (18). This assumption simplifies our 

subsequent analysis. In the above transformations, the parameters or  and   correspond to the 

polar representation of a fixed point on the disk surface and ( )p   is some function of . 

On employing the above transformations in (8)-(11) along with (12)-(17), the continuity 

equation is automatically satisfied, while the momentum equations, with the help of 

periodicity assumption of F  and W  with respect to   give rise to the set of following 

ordinary differential equations 

1 2 2 2cos( )F W mF W                                                                                          (19) 

1 2 2 2sin( )W F mW F                                                                                            (20) 

 2 21 2(2 )
( )

2
p F W K 

 



                                                                                                (21) 

where the constant K can be determined from the pressure prescribed at the surface of the 

disk. The boundary conditions for the problem to be satisfied are 

0,  0 at =0, ,   bounded as F W F W                                                                         (22) 

Combining equations (19)-(20) into a single complex differential equation with real variables, 

we obtain 

 1(1 ) 2( ) 2 cos( ) sin( )i H m i H i                                                                      (23) 

where H F iW  and 1i   . The corresponding boundary conditions for H  are given as 

0 at 0 and  is bounded as H H                                                                               (24) 

We note that for 1 =0, (23) corresponds to the differential equation for the Newtonian 

conducting fluid (Turkyilmazoglu 2011). 

The solution of the above ordinary second order complex differential equation which is 

bounded with respect to   is 

 2

( )
1

1

C i m
H e

m


  


                                          (25) 

where cos( ) sin( )C i       and 
1

2
( )

1
i m

i
  


. Equating real and imaginary parts 

of the solution given in (25), F  and W  are found to be 

   2

1
( , ) ( ) ( ) cos( ) ( ) ( ) sin( )

1
F f mg g mf

m
                

                              (26) 

   2

1
( , ) ( ) ( ) sin( ) ( ) ( ) cos( )

1
G f mg g mf

m
                 

                           (27) 

in which 
1 1

2 2( ) sin( ) ,    ( ) 1 cos( )d df d e g d e                                                                             (28) 

where 

2 2

1 1

1 2

1

(1 )( 1)

(1 )

m m
d

 



   



 and 

2 2

1 1

2 2

1

(1 )( 1)

(1 )

m m
d

 



   



. 

The asymptotic behavior of f  and g  as   in (27) implies that the velocities far away 

from the disk turn to be sin( )ou r     , cos( )ov r r     which differ from the no-slip 

velocities. Thus, the fluid tends to move as a rigid body outside the layer whose thickness 

varies. The path along which the velocities vanish exactly through the space can be easily 

determined by setting zero the velocities in (18) with the consideration of (25)-(27). Moreover,  
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when  , the implication is that F f andW g . It may be easily shown that when 1 =0, 

our results are in agreement with those of (Turkyilmazoglu 2011) for Newtonian conducting 

fluid. Moreover, (27) show that the velocity distribution is in the form of an Ekman spiral 

representing the flow over a disk in a rotating system. 

In order to have better understanding of the flow field, the graphs of ( )f   and  ( )g   are 

plotted for different values of 1 and m  in Figures 1 and 2. These graphs clearly indicate that 

the flow exhibits a boundary layer like structure near the surface of the disk. Figure1 displays 

the effects of 1  on the velocity field.  It is observed that when 1  increases the oscillatory 

behavior of the flow becomes more prominent and can be seen upto a considerable distance 

from the disk. The effect of varying the magnetic interaction number m  on the velocity field 

displayed in Figure2 is almost opposite to that of 1 . It can be seen that as m  getting large, 

there is a considerable reduction in the three-dimensional nature of the flow field. 

The effects of viscosity in the fluid adjacent to the disk tend to develop tangential shear stress 

which opposes the rotation of the disk. There is also a surface shear stress in the radial 

direction. The dimensionless expressions for tangential and radial stresses are given as 

 

 1 20

Re Re
sin( ) cos( )

2 1 2

o
rz o a b

r
S r W F

m
  

    



         

                              (29) 

 1 20

Re Re
cos( ) sin( )

2 1 2

o
z o a b

r
S r F W

m
   

    


         
                             (30) 

 

where 2 1 1 2 1( )a d md md d      and 1 2 1 2 1( )b d md d md     .  In particular case 

when   , the results obtained point out the fact that the minimum and maximum 

resistance offered against the flow within the presence of a transversely applied magnetic field 

take place, respectively, at the locations 1tan b

a

   
  

 
and 1tan b

a

   
  

 
for the 

tangential stresses and at the  locations 1tan b

a

   
  

 
and 1tan b

a

   
  

 
for the radial 

stresses. From the above equations one can easily find out the locations at which minimum 

and maximum skin friction takes place against the flow.  

The boundary layer thickness in radial and tangential directions are evaluated as 

 

2

2 2

1 20

( )r

d
f d

d d
  



 
 ,        1

2 2

1 20

(1 ( ))
d

g d
d d

  


  
                                                 (31) 

 

Hence, the boundary layer thickness decay in a significant manner (see also Figure2) as the 

magnetic effect gets considerably large. Moreover, an increase in 1  results in the increase of 

boundary layer thickness. 

The vorticity components  , ,r z   = V existing within the fluid can be found out 

exactly using Eqs. (18)-(19) and are respectively 
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In order to get the nature of vorticity near the disk the expressions for r  and   are plotted 

for different values of 1 and m when  . It is observed from Figure3 that r decreases 

while   increases near the disk by increasing the value of 1  and show oscillatory behavior 

before approaching the asymptotic limits. Figure4 is to demonstrate the effects of m on 

r and  . However, the radial component r  is observed to be increasingly damped as 

compared to the tangential component  . Actually, these vorticity components are 

responsible for driving the motion of fluid flow considered in the current study. 

 

 

5 CONCLUDING REMARKS 

 

An incompressible magnetohydrodynamic  second grade fluid flow over a single rotating disk 

has been discussed in such a way that the physical quantities are allowed to develop non-

axisymmetrically within a no normal flow assumption. An exact solution of the governing 

equations in three dimensions has been obtained in closed form. We have worked through 

cylindrical coordinates which rotates with the disk, whose polar representation is ( , )or  . The 

solution is influenced by these parameters. When or =0, the associated solution corresponds to 

that for a rigid body rotation. The non-zero choice of or  has enabled us to achieve the 

solutions bounded away from the disk. The obtained results point out the well known 

damping effect of the transverse magnetic field on the motion of second grade fluid due to a 

rotating disk. Therefore, it is observed that increase in m  helps in decreasing the boundary 

layer thickness. However, an increase of 1  causes an increase in the boundary layer thickness. 
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6 FIGURES 

 

 
 

Figure1: Variations of f  and g  with   for several values of 1  when m  =0.5 
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Figure2: Variations of f  and g  with   for several values of m  when 1  =1 

 

 

 
Figure3: Variations of r  and   with   for several values of 1  when m  =0.5 
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 Figure4: Variations of r  and   with   for several values of m  when 1  =1 

 

 


