On the Average Redundancy Rate of Adaptive Block Codes under Mixed Sources

Yuriy A. Reznik
RealNetworks, Inc.
2601 Elliott Ave, Seattle, WA 98121
E-mail: yreznik@ieee.org

Anatoly V. Anisimov
Faculty of Cybernetics, Kiev University
2 Acad. Glushkov Ave, 03680 Kiev, Ukraine
E-mail: ava@mi.unicyb.kiev.ua

We study the average redundancy rate of Krichevsky’s sample-based universal block codes [1, 2, 3] in a situation when samples and blocks to be compressed are produced by two different memoryless sources. We prove the following.

Theorem 1. The average redundancy rate of adaptive block codes \(\phi_{\ell,T} \) constructed using samples of length \(\ell \) from a source \(T \) and used to encode blocks of length \(n \) from a source \(S \) is asymptotically (with \(\ell, n \to \infty, \ell/(\ell + n) \to 0 \)):

\[
R(\phi_{\ell,T}, n, S) = \frac{1}{n} \left[\frac{m - 1}{2} \log \frac{n}{\ell} + \ell D(T \| S) + O(1) \right],
\]

where \(m \) is a cardinality of the alphabet, \(D(T \| S) \) is a relative entropy (or Kullback-Leibler distance [4]) between sources \(T \) and \(S \), and \(\log := \log_b \), where \(b \) corresponds to a unit of information (e.g. bits or nats) being used.

Theorem 2. If \(D(T \| S) \neq 0 \), then there exists a sample length \(\ell^* \) such that

\[
R(\phi_{\ell^*,T}, n, S) = \min_{\ell} R(\phi_{\ell,T}, n, S).
\]

Corollary 1. The optimal length of samples \(\ell^* \) is asymptotically (with \(n \to \infty \)):

\[
\ell^* = \frac{m - 1}{2 D(T \| S)} + O\left(\frac{1}{n}\right).
\]

Corollary 2. The minimum average redundancy rate \(R(\phi_{\ell^*,T}, n, S) \) is asymptotically (with \(n \to \infty \)):

\[
R(\phi_{\ell^*,T}, n, S) = \frac{1}{n} \left[\frac{m - 1}{2} \log n + \frac{m - 1}{2} \log \frac{2 e D(T \| S)}{m - 1} + O(1) \right].
\]

Theorem 3. Adaptive block codes constructed using samples from a source \(T \) and applied to a source \(S \) can achieve a lower average redundancy than (pure) universal codes [3] if:

\[
D(T \| S) < \delta_1 = \frac{1}{2} + O\left(\frac{1}{m}\right).
\]

References

