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1. Introduction

Researches on biped robots have been the focus of many universities and industries around
the world Hirukawa et al. (2004). The challenges in the study of this kind of system, beyond,
of course, the stability of the walking, are strongly coupled with nonlinearities and with the
occurrence of discontinuities in the joint variables when the swing foot touches the ground.
Control strategies for biped robots can be classified in two categories according to the degree
of actuation of the joints: control strategies based on the Zero Moment Point (ZMP), which
is considered a fully actuated system, and control strategies based on the dynamic passive
walking, which the few (or even none) degrees of actuation are used.
The ZMP criterion to evaluate biped robot stability was initially proposed by Vukobratovic
& Juricic (1969). Shortly, the ZMP is the point in the ground where the resultant of reaction
moments are null. If the ZMP is inside the support polygon, defined by the contact points of
the robot with the ground, the walking is stable. In Huang et al. (2001), it is presented one of
many trajectory generators for biped robots taking into account the ZMP criterion. Specific
points of the ankle and hip trajectories are defined according to the desired step length and
duration. The minimization of a functional related to the ZMP gives the desired trajectories,
which, tracked trough the actuation of all joints, generate a stable movement of the biped
robot.
On the other hand, the movement of passive walking robots is created by the action of the
gravity in an inclined surface, without any joint actuation. In this case, when the foot of the
swing leg touches the ground there is energy spending which is compensated by the ground
slope. A passive walking occurs when the joint positions and velocities at the final of the
step are identical to the initial conditions. The movement generated can be characterized as
periodic movement or, in terms of nonlinear systems analysis, a limit cycle.
The problems related to passive dynamic walking are more complex than to the static case,
however, the dynamic walking gives higher velocities, bigger energy efficiency, and a smooth
and anthropomorphic movement. A scientific research on these mechanisms starts with
McGeer (1990). McGeer shows that a fully no actuated biped robot, and hence no control-
lable, can present a stable walking on an inclined surface for some dynamic parameter selec-
tions. In Asano et al. (2005) the passive walk is used in order to define a control law that uses
the energy trajectory as trajectory reference, which is time independent (standard trajectories
which depend on state variables are time dependent) and it assures the robustness of the sys-
tem. This is the motivation to consider the passive walk as the best model in terms of energy
consumption.
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However, the basin of attraction of the limit cycle for passive walking is generally small and
sensitive to disturbances and ground slope variations. For example, in Goswani et al. (1998),
bifurcations with period duplication occur when the ground slope varies from 3◦ to 5◦. In
Spong & Bhatia (2003), it is shown that the walking can be made slope invariant for a bidi-
mensional biped robot without knees and torso, and with actuators on the hip and ankles,
considering a controller based on gravity compensation. It is also shown that the basin of
attraction and the robustness can be increased using an energy-based controller. In Bhatia &
Spong (2004), this procedure is extended to a bidimensional biped robot with knees and torso.
Gravity compensation and energy-based controllers are also presented in Asano & Yamakita
(2001) for passive walking robots.
In this chapter, it is used a control strategy for passive walking robots to increase the robust-
ness against external disturbances based on nonlinear H∞ controllers. They are based on
linear parameter varying (LPV) representation of the biped robot. This kind of approach has
been applied to fully actuated and underactuated robot manipulators Siqueira & Terra (2002;
2004). The objective, as in Bhatia & Spong (2004), is to apply the robust controller to leads
back the robot to the basin of attraction of the limit cycle. We consider that the robot leaves it
due to the disturbances. In this way, the period of application of the controller is minimal and
the main characteristic of passive walking (energy save) is preserved.
The biped robot considered here, in addition to knees and torso of the robot presented in
Bhatia & Spong (2004), has feet. For biped robots with feet, the time instant when the foot
rotates around the toes can be determined by the Foot Rotation Indicator (FRI), described in
Goswani (1999). The FRI is a point in the ground surface where the resultant ground reaction
force would have to act to keep the foot stationary. In Choi & Grizzle (2005), the authors
consider a biped robot with feet and use the FRI as control variable in the procedure to find
the zero dynamics of the system proposed in Westervelt et al. (2003). Here, the FRI is also used
as control variable to provide to the biped robot an anthropomorphic walking.
This chapter is organized as follows: in Section 2, the dynamic model of the biped robot,
considering the foot rotation, the knee strike, and the ground collision, is presented; in Section
3.2, the robust dynamic walking control strategy using the nonlinear H∞ control is proposed;
and in Section 4, the results obtained from simulation are shown.

2. Dynamic Model of 2D Biped Robots

In this section we present the dynamic model of a planar walking robot, including the swing
and ground collision phases. These phases are characterized, respectively, by having the robot
only one foot or both feet in contact with the ground. Consider a biped robot with a torso,
knees and feet, Figure 1. The overall system has nine degrees of freedom (DOF), correspond-
ing to two DOF of the Y-Z plane, three DOF of each leg, and one DOF of the torso. The biped
robot moves over a planar surface with inclination φ with relation to the inertial coordinate
system.
The robot configuration is described by the angles: q1 (foot of the stance leg), q2 (stance leg), q3
(torso), q4 (thigh of the swing leg), q5 (shank of the swing leg), and q6 (foot of the swing leg).
The generalized coordinate q1 is defined as absolute value with relation to the horizontal axis
Y and the remaining angles are defined as relative value to the previous link. The parameters
mass (m), length (l), center of mass (c), and inertia momentum with relation to the center of
mass (I) of each link are shown in Table 1, where the indexes i = (1, · · · , 6) are related to the
foot of the stance leg, stance leg, torso, thigh of the swing leg, shank of the swing leg, and
foot of the swing leg, respectively. The parameters in Table 1 correspond to the values of the
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Fig. 1. a) Bidimensional biped robot with feet. b) Ground collision model.

bidimensional experimental robot RABBIT described in Chevallereau et al. (2003), except the
values related to the feet, since RABBIT has no feet. The robot motion in the sagittal plane is
divided in two phases: the swing phase and the ground collision phase.

2.1 Swing phase
The swing phase is considered in this chapter as consisting of three sub-phases: before the foot
rotation, after the foot rotation and before the knee strike, and after the knee strike. During the
first sub-phase, before the foot rotation, the foot link is parallel to the ground and its angular
velocity is zero. The change from this phase to the phase of foot rotation around the toe occurs
when the Foot Rotation Indicator (FRI) point is outside the foot support area.
The FRI definition was first described in Goswani (1999), as the point in the ground surface
where the resultant ground reaction force would have to act to keep the foot stationary. The
FRI has some important properties for the control of a biped robot:

• The FRI indicates the occurrence of foot rotation and its direction;

• The location of the FRI indicates the amount of unbalanced moment on the foot;

• The minimum distance between the support polygon and the FRI is a measurement of
the stability margin, since that the FRI is inside of the support polygon.

In other words to keep the foot stationary, the FRI must remain inside the foot support area.
The FRI incorporates the biped robot dynamics, differently from the ground projection of the
center of mass, that represents a static characteristic. The FRI is also different from the center
of pressure, known as the zero moment point (ZMP). The ZMP is a point in the ground surface
where the resultant ground reaction force is actually applied. Hence, the ZMP never leaves
the foot support area, whereas the FRI does so. When the point of application of the resultant
ground reaction force is inside the foot support area, the FRI and ZMP are coincident. In a
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Parameter Value Unit Parameter Value Unit

m1 0, 5 kg c1 0, 05 m

m2 10 kg c2 0, 28 m

m3 20 kg c3 0, 2 m

m4 6, 8 kg c4 0, 163 m

m5 3, 2 kg c5 0, 128 m

m6 0, 5 kg c6 0, 05 m

l1 0, 1 m I1 0, 329 kg.m2

l2 0, 8 m I2 2, 06 kg.m2

l3 0, 625 m I3 1, 42 kg.m2

l4 0, 4 m I4 0, 899 kg.m2

l5 0, 4 m I5 0, 878 kg.m2

l6 0, 1 m I6 0, 329 kg.m2

Table 1. Biped Robot Parameters.

three-dimensional biped robot, the coordinates of the FRI in the X-Y plane can be obtained as:

xFRI =
m1xc1 g + ∑n

i=2 mixci (z̈ci + g)− ∑n
i=2 mizci ẍci − ∑n

i=2 (Ḣcy )i

m1g + ∑n
i=2 mi(z̈ci + g)

,

(1)

yFRI =
m1yc1 g + ∑n

i=2 miyci (z̈ci + g)− ∑n
i=2 mizci ÿci − ∑n

i=2 (Ḣcx )i
m1g + ∑n

i=2 mi(z̈ci + g)
,

where g is the gravity acceleration, xci and yci are the position coordinates of the center of
mass of the link i, ẍci , ÿci and z̈ci are the acceleration coordinates of the center of mass of the
link i and (Ḣcx )i and (Ḣcy )i are the derivative of the angular momentum around the center of
mass of the link i. As we are working with a planar biped robot in this chapter, if yIRP in Eq.
1 is above 0, the foot rotation occurs.
The foot rotation occurs in the human being due to the application of a torque around the
ankle joint at the end of the foot stance phase. Trying to reproduce this natural behavior on
the biped robot considered in this chapter, a torsional spring is introduced on the ankle joint
of the stance leg (joint 2), as shown in the Figure 2.
The function describing the torque applied by the spring, τM, with relation to the ankle joint
displacement, q2, is given by

τM = K0 − KMq2, (2)

where K0 > KM > 0 are control design parameters. They are adjusted to set the foot rotation
instant during the step, Palmer (2002). Before the foot rotation, the spring is compressed and

Fig. 2. Representation of a torsional spring in the ankle joint.

stores some part of the dynamic walking energy. During the foot rotation, the stored potential
energy is transformed into kinematic one, keeping the dynamic walking.
During the two sub-phases before the knee strike, the dynamic equations of the system are
given by:

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ, (3)

where q = [q1 q2 q3 q4 q5 q6]
T , M(q) ∈ �6×6 is the inertia matrix, C(q, q̇) ∈ �6×6 is the

Coriolis/centripetal matrix, g(q) ∈ �6 is the gravitational vector, and τ = [τ1 τ2 τ3 τ4 τ5 τ6]
T

is the applied torque vector, τi (i = 1, · · · , 6) are the torques in the toe of the stance leg, in
the ankle of the stance leg, between the stance leg and the torso, between the stance leg and
the thigh of the swing leg, in the knee of the swing leg, and in the ankle of the swing leg,
respectively. The shank of the swing leg can move around the knee only to the posterior part
of the leg, that is, q5 < 0.
At the instant of the impact, the knee displacement vanishes, q5 = 0. The joint positions do
not change during the impact, but the velocities suffer an abrupt change. This event can be
modeled by conservation of the angular momentum with relation to the stance leg:

M(q+)q̇+ = M(q−)q̇− − JT
i λi, (4)

where λi are the impulsive forces generated by the impact, q+ and q− are the values of q just
before and after the knee strike, and Ji = [0 0 0 0 1 0] is the Jacobian matrix generated by
the constraint Ji q̇+ = 0. Since M(q+) = M(q−), because q+ = q−.
From (4), the joint velocities after the impact are computed as function of the velocities just
before the impact and of the constraint forces as q̇+ = q̇− − M(q)−1 JT

i λi. From the above
considerations, the following relation is obtained:

Ji q̇+ = 0 = Ji q̇− − Ji M(q)−1 JT
i λi,

which results in λi = X−1
i Ji q̇− where Xi = Ji M(q)−1 JT

i .
After the knee strike, the swing leg remains straight due the constraint forces on the knee
generated by a mechanism that locks the joint (q5 = 0). The dynamic equations of the system,
considering the constraint forces, are given by:

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ − JT
r λr, (5)

where Jr = [0 0 0 0 1 0]. The constraint forces are given by λr = −X−1
r Jr M(q)−1(C(q, q̇)q̇ +

g(q)) where Xr = Jr M(q)−1 JT
r .
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2.2 Ground Collision Phase
The collision of the foot of the swing leg with the ground can be modeled as a contact between
two rigid bodies. It is considered that the heel and the toe of the foot impact the ground at the
same instant and the foot of the stance leg is rotated. Also, the system is modeled as a biped
robot without knees, Figure 1. In this case, there are seven DOF (two DOF on the Y-Z plane,
two DOF for each leg and the DOF of the torso). The dynamic equation is given by:

Me(qe)q̈e + Ce(qe, q̇e)q̇e + ge(qe) = τe + δFext, (6)

where qe = [qe1 qe2 qe3 qe4 qe5 y z]T , y and z are the position coordinates of the toe of the
stance leg, and δFext are the external forces acting on the robot in the contact points.
It is assumed that the collision occurs during an infinitesimal period of time. The external
forces in the impact moment can be represented by impulses. These impulsive forces gen-
erate an instantaneous change of joint velocities, but the positions remain the same. In this
case the torques given by the actuators are not impulsive and can be neglected. Under these
conditions, integrating (6) during the impact duration we obtain:

Me(qe)(q̇+e − q̇−e ) = Fext, (7)

where Fext are the impulsive forces, and q̇+e and q̇−e are the joint velocities just after and before
the impact, respectively. The joint positions do not change during the impact, then q+e = q−e .
It is also assumed that the stance leg lifts from the ground without interaction, no external
forces are applied at its contact point. In this case, the external forces, Fext, contain only the
forces acting on the heel and toe of the foot of the swing leg. Let Ψc and Ψd be the vectors of
position coordinates of the heel and the toe, respectively. Hence:

Fext = [ET
c (qe) ET

d (qe)]




FcT

FcN

FdT

FdN


 , (8)

where

Ec(qe) =
∂Ψc

∂qe
, Ed(qe) =

∂Ψd
∂qe

, (9)

and FcT , FcN , FdT , and FdN are the tangential and normal forces applied on the heel and on
the toe. An additional set of four equations is obtained from the condition that the heel and
the toe of the swing leg can not move after the impact, d/dtΨc(qe) = (∂Ψc/∂qe)q̇+e = 0 and
d/dtΨd(qe) = (∂Ψd/∂qe)q̇+e = 0, that is:

Ec(qe)q̇+e = 0, Ed(qe)q̇+e = 0. (10)

From (7) and (10):



Me(qe) −Ec(qe)T −Ed(qe)T

Ec(qe) 0 0
Ed(qe) 0 0



[

q̇+e
F

]
=

[
q̇−e
0

]
, (11)

with F = [FcT FcN FdT FdN ]
T . The value of q̇+ is expressed in terms of q̇+e by:

q̇+ = [q̇+e1
q̇+e2

q̇+e3
q̇+e4

0 q̇+e5
]T . (12)

After the impact, the swing leg becomes the stance leg and vice-versa. Hence, a coordinate
transformation is needed to reinitialize the System (3). Considering x = [qT q̇T ]T , the trans-
formation can be given by

x = ∆(x), (13)

where

∆(x) =




π
−q6

(q1 + q2 + q3 − π + q6)
(−2π − q4)

0
−q2

0
−q̇6

(q̇1 + q̇2 + q̇3 + q̇6)
−q̇4
−q̇2




. (14)

3. Robust Dynamic Walking Control

The main problem on passive walking consists on finding a stable limit cycle without actua-
tion of the joints for a given ground slope. However, stable limit cycles cannot be found for the
biped robot considered in this paper without a loop of control be applied to the torso. In this
way, PD controllers are used to keep the torso in a fixed position with relation to the horizontal
line, that is, the absolute angle, θ4 = q1 + q2 + q3, is controlled. The foot of the swing leg must
also be controlled to reach the ground surface parallel to it at the impact instant to guarantee
that the toe and the ankle touch the ground in the same time. In this case, the absolute angle
θ6 = q1 + q2 + q4 + q5 + q6, must be zero, θd

6 = 0. The PD controllers are given by:

τ4 = KP4 (θ
d
4 − θ4)− KD4 θ̇4,

(15)

τ6 = KP6 (θ
d
6 − θ6)− KD6 θ̇6,

where KP4 , KD4 , KP6 , and KD6 are proportional and derivative gains, and qd
4 and qd

6 are the
desired joint position for the torso and the foot of the swing leg, respectively.
In order to guarantee the passive walking at any ground slope, including zero inclination, a
gravity compensation control developed by Spong & Bhatia (2003) is used. The key idea is to
consider the existence of an initial condition x(φ0) = [q1(0) q2(0) · · · q6(0) q̇1(0) · · · q̇6(0)]T

such that, with only the PD controllers described above, a limit cycle is found for ground slope
φ0. Now suppose that the desired slope is φ. Let β = φ0 − φ, Rβ be the rotation defined by
angle β and P(θ) the potential energy, where θ is the absolute joint position vector. In the robot
configuration space the representation of angle β is given by
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2.2 Ground Collision Phase
The collision of the foot of the swing leg with the ground can be modeled as a contact between
two rigid bodies. It is considered that the heel and the toe of the foot impact the ground at the
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two DOF for each leg and the DOF of the torso). The dynamic equation is given by:
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Fext = [ET
c (qe) ET

d (qe)]




FcT

FcN

FdT

FdN


 , (8)

where

Ec(qe) =
∂Ψc

∂qe
, Ed(qe) =

∂Ψd
∂qe

, (9)

and FcT , FcN , FdT , and FdN are the tangential and normal forces applied on the heel and on
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F

]
=

[
q̇−e
0

]
, (11)
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x = ∆(x), (13)

where

∆(x) =




π
−q6

(q1 + q2 + q3 − π + q6)
(−2π − q4)

0
−q2

0
−q̇6
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3. Robust Dynamic Walking Control
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tion of the joints for a given ground slope. However, stable limit cycles cannot be found for the
biped robot considered in this paper without a loop of control be applied to the torso. In this
way, PD controllers are used to keep the torso in a fixed position with relation to the horizontal
line, that is, the absolute angle, θ4 = q1 + q2 + q3, is controlled. The foot of the swing leg must
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d
4 − θ4)− KD4 θ̇4,

(15)

τ6 = KP6 (θ
d
6 − θ6)− KD6 θ̇6,
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4 and qd

6 are the
desired joint position for the torso and the foot of the swing leg, respectively.
In order to guarantee the passive walking at any ground slope, including zero inclination, a
gravity compensation control developed by Spong & Bhatia (2003) is used. The key idea is to
consider the existence of an initial condition x(φ0) = [q1(0) q2(0) · · · q6(0) q̇1(0) · · · q̇6(0)]T

such that, with only the PD controllers described above, a limit cycle is found for ground slope
φ0. Now suppose that the desired slope is φ. Let β = φ0 − φ, Rβ be the rotation defined by
angle β and P(θ) the potential energy, where θ is the absolute joint position vector. In the robot
configuration space the representation of angle β is given by

Rβ(θ) =
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Now, defining Pβ(θ) = P(Rβ(θ)) and

gβ =
∂Pβ(θ)

T

∂θ
, (17)

the feedback control law is given by

τ = B−1(g(θ)− gβ(θ)). (18)

This control law allows the biped robot to perform a limit cycle for ground slope φ, consider-
ing as initial condition x(φ) = [q1(0) + β q2(0) · · · q6(0) q̇1(0) · · · q̇6(0)]T .

3.1 Nonlinear H∞ control
In this work, nonlinear H∞ control is applied to biped robots to increase the basin of attraction
of the limit cycle and the robustness against disturbances. The proposed controller is based
on design procedures developed for LPV systems. This approach provides a systematic way,
using solutions based on Linear Matrix Inequalities (LMI), to design controllers that satisfy the
L2 gain condition Wu et al. (1996). The nonlinear dynamics of the biped robot is represented
as a LPV system whose parameters are in function of the state (ρ(x)), namely, quasi-LPV
representation.
Consider the system:




ẋ
z1
z2


 =




A(ρ) B1(ρ) B2(ρ)
C1(ρ) 0 0
C2(ρ) 0 I






x
w
u


 , (19)

where x is the state vector, u is the control input vector, w is the external input vector, z1 and
z2 are the output variables, and ρ is the parameter varying vector.
To present H∞ performance the closed loop system need to satisfy the L2 gain condition given
by: ∫ T

0
‖z‖2 dt ≤ γ2

∫ T

0
‖w‖2 dt. (20)

If it is possible to find a solution X(ρ) > 0 to the following set of LMIs:



E(ρ) X(ρ)CT
1 (ρ) B1(ρ)

C1(ρ)X(ρ) −I 0
BT

1 (ρ) 0 −γ2 I


 < 0 (21)

where

E(ρ)=−
m

∑
i=1

±
(

νi
∂X
∂ρi

)
−B2(ρ)BT

2 (ρ) + Â(ρ)X(ρ) + X(ρ)Â(ρ)T

and Â(ρ) = A(ρ)− B2(ρ)C2(ρ), then, the closed loop system has L2 gain ≤ γ under the state
feedback law

u = −(B2(ρ)X−1(ρ) + C2(ρ))x.

Hence, it is need to solve a set of parametric LMIs, (21), that is an infinitesimal convex opti-
mization problem. Fortunately, a practical scheme using basis functions for X(ρ) and griding
the parameter set was developed in Wu et al. (1996) to solve this problem.
The quasi-LPV representation we are considering in this chapter for biped robots is shown
in the following. The hybrid control strategy proposed in the next section considers that the

nonlinear H∞ control is applied in the two sub-phases of the movement before the knee strike.
For the sub-phase before the foot rotation, the system is considered fully-actuated since the
first joint value (q1) is fixed. It is considered the following dynamic equation with the inclusion
of a disturbance vector d, corresponding to external disturbance and parametric uncertainties:

Maa(qa)q̈a + Caa(qa, q̇a)q̇a + ga(qa) = τa + d, (22)

where qa = [q2 q3 q4 q5 q6]
T are the active joints, and Maa(qa), Caa(qa, q̇a), ga(qa), and τa

are the corresponding partitions of the dynamic matrices.
Define the state as the composition of the trajectory tracking error and its derivative as:

x̃ =

[
q̇a − q̇d

a
qa − qd

a

]
=

[ ˙̃qa
q̃a

]
. (23)

From (22) and (23), the biped robot state space equation is given by

˙̃x = A(qa, q̇a)x̃ + B1w + B2u, (24)

with

A(qa, q̇a) =

[
−M−1

aa (qa)Caa(qa, q̇a) 0
I 0

]
, B1 =

[
I
0

]
,

B2 =

[
I
0

]
, w = M−1

aa (qa)d,

u = M−1
aa (qa)(τa − Maa(qa)q̈d

a − Caa(qa, q̇a)q̇d
a − ga(q)).

The applied torque is computed as

τa = Maa(qa)(q̈d
a + u) + Caa(qa, q̇a)q̇d

a + ga(qa). (25)

For the sub-phase after the foot rotation and before the knee strike, the system is underactu-
ated since no torque is applied to the first joint and it is free. In this work, it is proposed to
control only the active joints in this phase, considering the dynamic coupling with first joint
and its dynamics. The following dynamic equation is used to design the quasi-LPV controller:

M̄(q)q̈a + C̄(q, q̇)q̇a + D̄(q, q̇)q̇1 + ḡ(qa) = τa + d̄. (26)

where M̄ = Maa − Ma1 M11
−1 M1a, C̄ = Caa − Ma1 M11

−1C1a, D̄ = Ca1 − Ma1 M11
−1C11,

ḡ = ga − Ma1 M11
−1g1, and d̄ are the external disturbances and parametric uncertainties. Fol-

lowing the steps described above, a quasi-LPV representation of the biped robot, similar to
(24), can be found for this sub-phase of the movement.

3.2 Hybrid Control
The PD controllers and the gravity compensation controller provide a stable walking for dif-
ferent ground slopes for initial positions close to the limit cycle. However, the basin of attrac-
tion of a limit cycle must be large enough to provide the system robustness against distur-
bances, parametric uncertainties and terrain variations. The controllers presented above are
combined to produce a robust dynamic walking Bhatia & Spong (2004).
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Now, defining Pβ(θ) = P(Rβ(θ)) and
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the feedback control law is given by
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L2 gain condition Wu et al. (1996). The nonlinear dynamics of the biped robot is represented
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where x is the state vector, u is the control input vector, w is the external input vector, z1 and
z2 are the output variables, and ρ is the parameter varying vector.
To present H∞ performance the closed loop system need to satisfy the L2 gain condition given
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and Â(ρ) = A(ρ)− B2(ρ)C2(ρ), then, the closed loop system has L2 gain ≤ γ under the state
feedback law

u = −(B2(ρ)X−1(ρ) + C2(ρ))x.

Hence, it is need to solve a set of parametric LMIs, (21), that is an infinitesimal convex opti-
mization problem. Fortunately, a practical scheme using basis functions for X(ρ) and griding
the parameter set was developed in Wu et al. (1996) to solve this problem.
The quasi-LPV representation we are considering in this chapter for biped robots is shown
in the following. The hybrid control strategy proposed in the next section considers that the

nonlinear H∞ control is applied in the two sub-phases of the movement before the knee strike.
For the sub-phase before the foot rotation, the system is considered fully-actuated since the
first joint value (q1) is fixed. It is considered the following dynamic equation with the inclusion
of a disturbance vector d, corresponding to external disturbance and parametric uncertainties:

Maa(qa)q̈a + Caa(qa, q̇a)q̇a + ga(qa) = τa + d, (22)

where qa = [q2 q3 q4 q5 q6]
T are the active joints, and Maa(qa), Caa(qa, q̇a), ga(qa), and τa

are the corresponding partitions of the dynamic matrices.
Define the state as the composition of the trajectory tracking error and its derivative as:

x̃ =

[
q̇a − q̇d

a
qa − qd

a

]
=

[ ˙̃qa
q̃a

]
. (23)

From (22) and (23), the biped robot state space equation is given by

˙̃x = A(qa, q̇a)x̃ + B1w + B2u, (24)

with
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a − ga(q)).

The applied torque is computed as

τa = Maa(qa)(q̈d
a + u) + Caa(qa, q̇a)q̇d

a + ga(qa). (25)

For the sub-phase after the foot rotation and before the knee strike, the system is underactu-
ated since no torque is applied to the first joint and it is free. In this work, it is proposed to
control only the active joints in this phase, considering the dynamic coupling with first joint
and its dynamics. The following dynamic equation is used to design the quasi-LPV controller:
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ḡ = ga − Ma1 M11
−1g1, and d̄ are the external disturbances and parametric uncertainties. Fol-

lowing the steps described above, a quasi-LPV representation of the biped robot, similar to
(24), can be found for this sub-phase of the movement.

3.2 Hybrid Control
The PD controllers and the gravity compensation controller provide a stable walking for dif-
ferent ground slopes for initial positions close to the limit cycle. However, the basin of attrac-
tion of a limit cycle must be large enough to provide the system robustness against distur-
bances, parametric uncertainties and terrain variations. The controllers presented above are
combined to produce a robust dynamic walking Bhatia & Spong (2004).
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The minimum distance between the current position to the limit cycle is computed and com-
pared to an adjustable value C, corresponding to the limit cycle basin of attraction. The mini-
mum distance is given as

d̄ = mini||q − qr(i)||, (27)

where qr(i) are discrete points on the limit cycle.
If the distance of the initial position limit cycle is lower than C, the system converges to the
limit cycle. If the trajectory leaves the basin of attraction, that is, the value of d̄ is greater than
C, a control strategy based on the nonlinear H∞ controller is used to come back the system to
the basin of attraction as shown in Figure 3.

(a) Passive Diagram

(b) Controlled Diagram

Fig. 3. Hybrid Control Strategy.

The changing point between the nonlinear H∞ controller and when there is not trajectory
tracking controllers (gravity compensation and PD ones) must be chosen to guarantee a
smooth and natural walking. Considering the walking cycle, it is chosen the instant when

the knee strike as been this point. At this moment the swing leg is ahead the stance leg. The
desired trajectory, qd, between the position where the biped leaves the basin of attraction and
the position of the knee strike is defined in this work as a 5-th polynomial, with duration
corresponding to the remaining time to the impact.
Since the third sub-phase (after the knee strike and before the ground collision) is very short in
the limit cycle, the nonlinear H∞ controller is applied only before the knee strike. If the biped
robot leaves the basin of attraction after the knee strike, only the PD controllers are used until
the ground collision, and then, the nonlinear H∞ controller is applied from this point until the
next knee strike.

4. Results

In this section, it is presented the limit cycle for the bidimensional biped robot with feet de-
scribed in Section 2 and the simulated results obtained from the implementation of the pro-
posed hybrid control strategy. Using the Newton-Raphson method and considering a ground
slope φ = 3◦, the initial conditions to the limit cycle is given by

x(φ) =
[

π −1.30 −0.55 −3.89 0 1.52 0 −1.22 2.09 0.34 0.34 −1.33
]T .

The values used to find the solution, and the values used thorough this section, are

KP4 = 150, KD4 = 100, KP6 = 80 e KD6 = 10,

for the gains of the PD controllers, and θd
4 = 80◦ and θd

6 = 0◦, for the desired joint positions.
The reference position to the trunk, θd

4 , was selected closer to the human trunk position for a
walking ahead movement. The foot rotation instant is properly adjusted through K0 and KM
of the torsional spring on the ankle (2). For this case they were chosen as

K0 = −10 and KM = 30.

With the above values, it is found a walking cycle close to the human being with the foot
rotation occurring after the swing leg to pass the normal to the ground surface and before
the knee strike, which occurs just before the ground collision of the swing leg. The joint
trajectories as function of the time are shown in Figure 4 and the limit cycles for the joints
are shown in Figure 5, where each number in the limit cycles represents a pose of the robot
during the step. These points are described below and shown in Figure 6, where the green leg
is the support one and the red leg is the stance one:

1. Beginning of the limit cycle: support leg in front of the swing leg;
2. Intermediary point of the swing phase, before the foot rotation: support foot parallel to

the ground;
3. Beginning of the foot rotation around the toe;
4. Intermediary point of the swing phase, before the knee strike: angle of the shank is

negative (q5 < 0);
5. Knee strike: angle of the shank is zero and the swing leg is straight;
6. Collision of the swing foot with the ground: support leg in the back of the swing leg.

The limit cycle found is stable. This characteristic can be verified computing the eigenval-
ues of the Jacobian matrix, J, obtained at the last Newton-Raphson method iteration. It is
observed that the eigenvalues of J are all within the unitary circle of the complex plane, show-
ing the stability. However, the maximum absolute value of the eigenvalues of J is given by:
max|λ(J)| = 0, 99411, that is, the limit cycle has a low convergence rate.
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C, a control strategy based on the nonlinear H∞ controller is used to come back the system to
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corresponding to the remaining time to the impact.
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the limit cycle, the nonlinear H∞ controller is applied only before the knee strike. If the biped
robot leaves the basin of attraction after the knee strike, only the PD controllers are used until
the ground collision, and then, the nonlinear H∞ controller is applied from this point until the
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In this section, it is presented the limit cycle for the bidimensional biped robot with feet de-
scribed in Section 2 and the simulated results obtained from the implementation of the pro-
posed hybrid control strategy. Using the Newton-Raphson method and considering a ground
slope φ = 3◦, the initial conditions to the limit cycle is given by

x(φ) =
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]T .
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for the gains of the PD controllers, and θd
4 = 80◦ and θd

6 = 0◦, for the desired joint positions.
The reference position to the trunk, θd

4 , was selected closer to the human trunk position for a
walking ahead movement. The foot rotation instant is properly adjusted through K0 and KM
of the torsional spring on the ankle (2). For this case they were chosen as

K0 = −10 and KM = 30.

With the above values, it is found a walking cycle close to the human being with the foot
rotation occurring after the swing leg to pass the normal to the ground surface and before
the knee strike, which occurs just before the ground collision of the swing leg. The joint
trajectories as function of the time are shown in Figure 4 and the limit cycles for the joints
are shown in Figure 5, where each number in the limit cycles represents a pose of the robot
during the step. These points are described below and shown in Figure 6, where the green leg
is the support one and the red leg is the stance one:

1. Beginning of the limit cycle: support leg in front of the swing leg;
2. Intermediary point of the swing phase, before the foot rotation: support foot parallel to

the ground;
3. Beginning of the foot rotation around the toe;
4. Intermediary point of the swing phase, before the knee strike: angle of the shank is

negative (q5 < 0);
5. Knee strike: angle of the shank is zero and the swing leg is straight;
6. Collision of the swing foot with the ground: support leg in the back of the swing leg.

The limit cycle found is stable. This characteristic can be verified computing the eigenval-
ues of the Jacobian matrix, J, obtained at the last Newton-Raphson method iteration. It is
observed that the eigenvalues of J are all within the unitary circle of the complex plane, show-
ing the stability. However, the maximum absolute value of the eigenvalues of J is given by:
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Fig. 4. Joint position and velocity time variations.

4.1 Nonlinear H∞ Control
To apply the algorithm described in Section 3.1, the parameters ρ(x̃) are chosen as been the
states representing only the position errors of the joints 2, 3, and 4 ( q̃2, q̃3, and q̃4, respectively).
This simplification is considered to alleviate the computational effort to find the solution for
the set of LMIs (21). This is possible since the influence of the other states is small on the
computation of the dynamic matrix A(qa, q̇a). Figure 7 shows the value of ||A(qa, q̇a)|| for a
variation of each joint within its operation range. Hence, m = 3 and:

ρ(x̃) = [q̃2 q̃3 q̃4]
T .

In order to find the solution for the LMIs, the compact set where the parameters vary is de-
fined as ρ ∈ [−0.3, 0.3]rad × [−0.4, 0.4]rad × [−0.8, 0.8]rad and divided in (L = 3). Also the
parameter variation rate is bounded by |ρ̇| ≤ [1, 5 2, 0 3]rad/s. These values are obtained from
the limit cycle. The basis functions for X(ρ) are selected as f1(ρ(x̃)) = 1 f2(ρ(x̃)) = cos(q̃2),
f3(ρ(x̃)) = cos(q̃3) e f3(ρ(x̃)) = cos(q̃4). The best attenuation level found was γ = 1.5.

4.2 Initial Conditions with Zero Velocities
Since the limit cycle has small basin of attraction, the biped robot cannot reach the limit cycle
on its own from initial conditions with zero velocities. To do this, it is used the control strategy
proposed in Section 3.2. The nonlinear H∞ control is applied from the initial conditions to
knee strike, considered as desired final position. After the knee strike, the PD and gravity
compensation controllers are used. If at the beginning of the next step the initial conditions are
again outside the basin of attraction, the procedure is repeated. To illustrate the effectiveness
of the control strategy, consider the following initial conditions

x0 = [π 1.3 − 0.6 − 3.68 0 1.84 0 0 0 0]T .
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These initial conditions correspond to the legs be close to the normal to the ground surface and
the feet be parallel to it. Figures 8 and 9 show the limit cycle trajectory for all joints and the
joint position and velocity time variations. With the hybrid control strategy, the biped robot
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4.1 Nonlinear H∞ Control
To apply the algorithm described in Section 3.1, the parameters ρ(x̃) are chosen as been the
states representing only the position errors of the joints 2, 3, and 4 ( q̃2, q̃3, and q̃4, respectively).
This simplification is considered to alleviate the computational effort to find the solution for
the set of LMIs (21). This is possible since the influence of the other states is small on the
computation of the dynamic matrix A(qa, q̇a). Figure 7 shows the value of ||A(qa, q̇a)|| for a
variation of each joint within its operation range. Hence, m = 3 and:

ρ(x̃) = [q̃2 q̃3 q̃4]
T .

In order to find the solution for the LMIs, the compact set where the parameters vary is de-
fined as ρ ∈ [−0.3, 0.3]rad × [−0.4, 0.4]rad × [−0.8, 0.8]rad and divided in (L = 3). Also the
parameter variation rate is bounded by |ρ̇| ≤ [1, 5 2, 0 3]rad/s. These values are obtained from
the limit cycle. The basis functions for X(ρ) are selected as f1(ρ(x̃)) = 1 f2(ρ(x̃)) = cos(q̃2),
f3(ρ(x̃)) = cos(q̃3) e f3(ρ(x̃)) = cos(q̃4). The best attenuation level found was γ = 1.5.

4.2 Initial Conditions with Zero Velocities
Since the limit cycle has small basin of attraction, the biped robot cannot reach the limit cycle
on its own from initial conditions with zero velocities. To do this, it is used the control strategy
proposed in Section 3.2. The nonlinear H∞ control is applied from the initial conditions to
knee strike, considered as desired final position. After the knee strike, the PD and gravity
compensation controllers are used. If at the beginning of the next step the initial conditions are
again outside the basin of attraction, the procedure is repeated. To illustrate the effectiveness
of the control strategy, consider the following initial conditions

x0 = [π 1.3 − 0.6 − 3.68 0 1.84 0 0 0 0]T .
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These initial conditions correspond to the legs be close to the normal to the ground surface and
the feet be parallel to it. Figures 8 and 9 show the limit cycle trajectory for all joints and the
joint position and velocity time variations. With the hybrid control strategy, the biped robot
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Fig. 6. Ilustration of the step in different moments.
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reached the limit cycle after three steps, with a smooth trajectory from the initial conditions to
the first knee strike. This example shows the basin of attraction of the limit cycle was increased
for beyond the initial conditions with zero velocities with the application of the nonlinear H∞
controller.

4.3 Disturbance Rejection
As seen before, the basin of attraction is small when only the PD and gravity compensation
controllers are acting. Hence, even little disturbances can generate gait instability. In this
section, the hybrid control strategy is used to give robustness against disturbances. In the
example shown, the biped robot starts from the limit cycle initial condition, x(φ), with only
the PD and gravity compensation controllers. External disturbances composed of normal and
sine functions, as described in (28), are applied to the variable robot joints. At t f = 0, 1 s,
occurs the maximum peak of the disturbance.
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Fig. 8. Phase plane of the limit cycles with zero inicial velocities.
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reached the limit cycle after three steps, with a smooth trajectory from the initial conditions to
the first knee strike. This example shows the basin of attraction of the limit cycle was increased
for beyond the initial conditions with zero velocities with the application of the nonlinear H∞
controller.

4.3 Disturbance Rejection
As seen before, the basin of attraction is small when only the PD and gravity compensation
controllers are acting. Hence, even little disturbances can generate gait instability. In this
section, the hybrid control strategy is used to give robustness against disturbances. In the
example shown, the biped robot starts from the limit cycle initial condition, x(φ), with only
the PD and gravity compensation controllers. External disturbances composed of normal and
sine functions, as described in (28), are applied to the variable robot joints. At t f = 0, 1 s,
occurs the maximum peak of the disturbance.
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The value of C, the constant that indicates the basin of attraction size, is empirically obtained
from simulations with different initial conditions. In this example, C = 0, 15. Figures 10 and
11 show the results obtained. With the disturbance application, the robot leaves the basin of
attraction at the beginning of the second step at t = 1, 25 s, instant where the control changes
to the nonlinear H∞ controller. It is then computed the joint desired trajectory considering
as desired final position the knee strike position, with duration time corresponding to the
remaining time to the impact. Note that after the knee strike at the second step, the robot
does not leave any more the basin of attraction and converges to the limit cycle. Hence, the
nonlinear H∞ controller leads back the robot trajectory to the basin of attraction in only one
step, showing the robustness of the adopted control strategy. Note also from Figure 11 that
the trajectory performed by the robot during the nonlinear H∞ control application is close to
the limit cycle trajectory.
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Fig. 10. Phase plane with disturbance rejection.

5. Conclusions

In this chapter, a stable limit cycle is found for a biped robot with torso, knees, and feet.
However, the basin attraction is extremely small. To increase it, a control strategy based on
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The value of C, the constant that indicates the basin of attraction size, is empirically obtained
from simulations with different initial conditions. In this example, C = 0, 15. Figures 10 and
11 show the results obtained. With the disturbance application, the robot leaves the basin of
attraction at the beginning of the second step at t = 1, 25 s, instant where the control changes
to the nonlinear H∞ controller. It is then computed the joint desired trajectory considering
as desired final position the knee strike position, with duration time corresponding to the
remaining time to the impact. Note that after the knee strike at the second step, the robot
does not leave any more the basin of attraction and converges to the limit cycle. Hence, the
nonlinear H∞ controller leads back the robot trajectory to the basin of attraction in only one
step, showing the robustness of the adopted control strategy. Note also from Figure 11 that
the trajectory performed by the robot during the nonlinear H∞ control application is close to
the limit cycle trajectory.
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5. Conclusions

In this chapter, a stable limit cycle is found for a biped robot with torso, knees, and feet.
However, the basin attraction is extremely small. To increase it, a control strategy based on
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Fig. 11. Joint position and velocity time variations with disturbance rejection.

nonlinear H∞ control and on a suitable choice of the switch point between the passive walking
and the controlled trajectory is proposed. The results show that the basin of attraction is
increased with the adopted strategy, for example, to beyond the initial conditions with zero
velocities. In addition, system robustness is verified with the fast convergence to the stable
gait, only one step, after the application of external torque disturbances.
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nonlinear H∞ control and on a suitable choice of the switch point between the passive walking
and the controlled trajectory is proposed. The results show that the basin of attraction is
increased with the adopted strategy, for example, to beyond the initial conditions with zero
velocities. In addition, system robustness is verified with the fast convergence to the stable
gait, only one step, after the application of external torque disturbances.
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