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MITTAG-LEFFLER-HYERS-ULAM STABILITY OF A LINEAR
DIFFERENTIAL EQUATIONS OF FIRST ORDER USING

LAPLACE TRANSFORMS

R. MURALI AND A. PONMANA SELVAN∗

Abstract. In this paper, we investigate the Mittag-Leffler-Hyers-Ulam sta-
bility and Mittag-Leffler-Hyers-Ulam-Rassias stability of a homogeneous and
non-homogeneous linear differential equation of first order by using the Laplace
Transforms.

1. Introduction

A classical question in the theory of functional equations is the following :
“when is it true that a function which approximately satisfies a functional equa-
tion g must be close to an exact solution of g?” If the problem accepts a solution,
we say that the equation g is stable.

A simulating and famous talk presented by Ulam [1] in 1940, motivated the
study of stability problems for various functional equations. He gave a wide range
of talk before a Mathematical Colloquium at the University of Wisconsin in which
he presented a list of unsolved problems. Among those, the following question
concerns the stability of homomorphisms.

Theorem 1.1. (Ulam [1]) Let G1 be a group and let G2 be a group endowed with a
metric ρ. Given ε > 0, does there exists a δ > 0 such that if f : G1 → G2 satisfies
ρ(f(xy), f(x) f(y)) < δ, for all x, y ∈ G, then we can find a homomorphism
h : G1 → G2 exists with ρ(f(x), h(x)) < ε for all x ∈ G1?

If the answer is affirmative, we say that the functional equation for homomor-
phisms is stable. In 1941, Hyers [2] was the first Mathematician to present the
result concerning the stability of functional equations. He brilliantly answered
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the question of Ulam, the problem for the case of approximately additive map-
pings, when G1 and G2 are assumed to be Banach spaces. The result of Hyers is
stated in the following celebrated Theorem.

Theorem 1.2. (Hyers [2]) Assume that G1 and G2 are Banach spaces. If a
function f : G1 → G2 satisfies the inequality ‖f(x+ y)− f(x)− f(y)‖ ≤ ε for
some ε > 0 and for all x, y ∈ G1, then the limit

A(x) = lim
n→∞

2−n f(2n x)

exists for each x ∈ G1 and A : G1 → G2 is the unique additive function such
that

‖f(x)− A(x)‖ ≤ ε (1.1)

for all x ∈ G1. Moreover, if f(tx) is continuous in t for each fixed x ∈ G1, then
A is linear.

Taking the above fact into account, the additive functional equation

f(x+ y) = f(x) + f(y)

is said to have the Hyers-Ulam stability on (G1, G2). In the above Theorem, an
additive function A satisfying inequality (1.1) is constructed directly from the
given function f and it is the most powerful tool to study the stability of several
functional equations. In course of time, the theorem formulated by Hyers was
generalized by Aoki [3] for additive mappings.

There is no reason for the Cauchy difference f(x + y) − f(x) − f(y) to be
bounded as in the expression of (1.1). Towards this point, in the year of 1978,
Rassias [4] tried to weaken the condition for the Cauchy difference and succeeded
in proving what is now known to be the Hyers-Ulam-stability for the Additive
Cauchy Equation. This terminology is justified because the theorem of Rassias
has strongly influenced Mathematicians studying stability problems of functional
equation. In fact, Rassias proved the following Theorem.

Theorem 1.3. (Rassias [4]) Let X and Y be Banach spaces. Let θ ∈ (0, ∞)
and let p ∈ [0, 1). If a function f : X → Y satisfies

‖f(x+ y)− f(x)− f(y)‖ ≤ θ (‖x‖p + ‖y‖p)

for all x, y ∈ X, then there exists a unique additive mapping A : X → Y such
that

‖f(x)− A(x)‖ ≤ 2θ

2− 2p
‖x‖p

for all x ∈ X. Moreover, if f(tx) is continuous in t for each fixed x ∈ X, then A
is linear.

The findings of Rassias have exercised a delectable influence on the develop-
ment of what is addressed as the generalized Hyers-Ulam stability of functional
equations. For decades, many researchers have extended the theory of the Hyers-
Ulam stability to other functional equations, and generalized the Hyers result in
different directions (See, for example, [5–11]).
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A generalization of Ulam’s problem was recently proposed by replacing func-
tional equations with differential equations: The differential equation

φ
(
f, x, x′, x′′, ...x(n)

)
= 0

has the Hyers-Ulam stability if for a given ε > 0 and a function x such that∣∣φ (f, x, x′, x′′, ...x(n))∣∣ ≤ ε,

there exists a solution xa of the differential equation such that |x(t)− xa(t)| ≤
K(ε) and lim

ε→0
K(ε) = 0. If the preceding statement is also true when we replace ε

and K(ε) by φ(t) and ϕ(t), where φ, ϕ are appropriate functions not depending
on x and xa explicitly, then we say that the corresponding differential equation
has the generalized Hyers-Ulam stability or Hyers-Ulam-Rassias stability.

Obloza seems to be the first author who investigated the Hyers-Ulam stability
of linear differential equations [12, 13]. In 1998, Alsina and Ger [14] first investi-
gated the Hyers-Ulam stability of differential equations. They proved in [14] the
following Theorem.

Theorem 1.4. Assume that a differentiable function f : I → R is a solution of
the differential inequality ‖x′(t)− x(t)‖ ≤ ε, where I is an open sub interval of
R. Then there exists a solution g : I → R of the differential equation x′(t) = x(t)
such that for any t ∈ I, we have ‖f(t)− g(t)‖ ≤ 3ε.

This result of C. Alsina and R. Ger [14] has been generalized by Takahasi [15].
They proved in [15] that the Hyers-Ulam stability holds true for the Banach
Space valued differential equation y′(t) = λy(t). Indeed, the Hyers-Ulam stability
has been proved for the first order linear differential equations in more general
settings [16–20].

In 2006, Jung [21] investigated the Hyers-Ulam stability of a system of first or-
der linear differential equations with constant coefficients by using matrix method.
In 2007, Wang, Zhou and Sun [22] studied the Hyers-Ulam stability of a class of
first-order linear differential equations. Rus [23] discussed four types of Ulam
stability: Ulam-Hyers stability, Generalized Ulam-Hyers stability, Ulam-Hyers-
Rassias stability and Generalized Ulam-Hyers-Rassias stability of the Ordinary
Differential Equation

u′(t) = A(u(t)) + f(t, u(t)), t ∈ [a, b].

In 2014, Alqifiary and Jung [24] proved the Generalized Hyers-Ulam stability of
linear differential equation of the form

x(n)(t) +
n−1∑
k=0

αk x
(k)(t) = f(t)

by using the Laplace Transform method, where αk are scalars and x and f are
n times continuously differentiable function and of the exponential order, respec-
tively. Recently, the Ulam stability of first order, second order and third order
differential equations were investigated in a series of papers [25–35] and the in-
vestigation is going on.
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In 2019, Murali and Ponmana Selvan [36] investigated the Hyers-Ulam stability
and Hyers-Ulam-Rassias stability of a homogeneous and nonhomogeneous gen-
eral linear differential equations of first order and second order by using Fourier
transform method. Very recently, Rassias, Murali and Ponmana Selvan [37] estab-
lished the Mittag-Leffler-Hyers-Ulam stability of homogeneous and nonhomoge-
neous linear differential equations of first order and second order by using Fourier
transform method.

Motivated by the above results, by using Laplace Transforms Method, we study
the Mittag-Leffler-Hyers-Ulam stability and Mittag-Leffler-Hyers-Ulam-Rassias
stability of a general homogeneous and non-homogeneous linear differential equa-
tions of first order

u′(t) + l u(t) = 0 (1.2)

and

u′(t) + l u(t) = r(t) (1.3)

for all t ∈ I, u(t) ∈ C(I) and r(t) ∈ C(I) where I = [a, b], −∞ < a < b <∞.

2. Preliminaries

In this section, we introduce some notations, definitions and preliminaries
which are used throughout this paper.

Throughout this paper, F denotes the real field R or the complex field C. A
function f : (0,∞)→ F of exponential order if there exists a constants M(> 0) ∈
R such that |f(t)| ≤ Meat for all t > 0. For each function f : (0,∞) → F of
exponential order, we define the Laplace Transform of f by

F (s) =

∞∫
0

f(t) e−st dt.

The Laplace transform of f is sometimes denoted by L(f). It is also well known
that L is linear and one-to-one. Then, at points of continuity of f , we have

f(t) =
1

2πi
lim
n→∞

α+iT∫
α−iT

F (s)est ds

=
1

2π

∞∫
−∞

eα+iyF (α + iy) dy,

which is called the inverse Laplace transforms.

Definition 2.1. (Convolution). Given two functions f and g, both are Lebesgue
integrable on (−∞,+∞). Let S denote the set of x for which the Lebesgue
integral

h(x) =

∞∫
−∞

f(t) g(x− t) dt
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exists. This integral defines a function h on S called the convolution of f and g.
We also write h = f ∗ g to denote this function.

Theorem 2.2. The Laplace transform of the convolution of f(x) and g(x) is the
product of the Laplace transform of f(x) and g(x). That is,

L{f(x) ∗ g(x)} = L{f(x)} L{g(x)} = F (s) G(s)

or

L


∞∫
0

f(t) g(x− t) dt

 = L(f)L(g) = F (s) G(s),

where F (s) and G(s) are Laplace transform of f(x) and g(x) respectively.

Definition 2.3. [38] The Mittag-Leffler function of one parameter is denoted
by Eα(z) and defined as

Eα(z) =
∞∑
k=0

1

Γ(αk + 1)
zk

where z, α ∈ C and Re(α) > 0. If we put α = 1, then the above equation becomes

E1(z) =
∞∑
k=0

1

Γ(k + 1)
zk =

∞∑
k=0

zk

k
= ez.

Definition 2.4. [38] The generalization of Eα(z) is defined as a function

Eα,β(z) =
∞∑
k=0

1

Γ(αk + β)
zk

where z, α, β ∈ C, Re(α) > 0 and Re(β) > 0.

Let I, J ⊆ R. Throughout this paper, we denote the space of k continuously
differentiable functions from I to J by Ck(I, J) and denote Ck(I, I) by Ck(I).
Furthermore, C(I, J) = C0(I, J) denotes the space of continuous functions from
I to J . In addition, R+ := [0,∞). From now on, we assume that I = [a, b], where
−∞ < a < b <∞.

We firstly give some definitions of various forms of Mittag-Leffler-Hyers-Ulam
stability of the first order differential equations (1.2) and (1.3).

Definition 2.5. We say that the differential equation (1.2) has the Mittag-Leffler-
Hyers-Ulam stability, if there exists a positive constant K satisfies the following
conditions: For every ε > 0 and there exists u(t) ∈ C(I) satisfying the inequality

|u′(t) + lu(t)| ≤ εEα(t),

for all t ∈ I. Then there exists a solution v ∈ C(I) satisfying v′(t) + l v(t) = 0
such that

|u(t)− v(t)| ≤ KεEα(t),

for all t ∈ I. We call such K as the Mittag-Leffler-Hyers-Ulam stability constant
for (1.2).
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Definition 2.6. We say that the differential equation (1.3) has the Mittag-Leffler-
Hyers-Ulam stability, if there exists a positive constant K satisfies the following
conditions: For every ε > 0 and there exists u(t) ∈ C(I) satisfying the inequality

|u′(t) + lu(t)− r(t)| ≤ εEα(t),

for all t ∈ I. Then there exists a solution v ∈ C(I) satisfying the linear differential
equation v′(t) + l v(t) = r(t) such that

|u(t)− v(t)| ≤ KεEα(t),

for all t ∈ I. We call such K as the Mittag-Leffler-Hyers-Ulam stability constant
for (1.3).

Definition 2.7. We say that the differential equation (1.2) has the Mittag-Leffler-
Hyers-Ulam-Rassias stability with respect to φ : (0,∞) → (0,∞), if there exists
a positive constant K satisfies the following conditions: For every ε > 0 and there
exists u(t) ∈ C(I) satisfying the inequality

|u′(t) + lu(t)| ≤ φ(t)εEα(t),

for all t ∈ I. Then there exists a solution v ∈ C(I) satisfies v′(t) + l v(t) = 0 such
that

|u(t)− v(t)| ≤ Kφ(t)εEα(t),

for all t ∈ I. We call such K as the Mittag-Leffler-Hyers-Ulam-Rassias stability
constant for (1.2).

Definition 2.8. We say that the differential equation (1.3) has the Mittag-Leffler-
Hyers-Ulam-Rassias stability with respect to φ : (0,∞) → (0,∞), if there exists
a positive constant K satisfies the following conditions: For every ε > 0 and there
exists u(t) ∈ C(I) satisfying the inequality

|u′(t) + lu(t)− r(t)| ≤ φ(t)εEα(t),

for all t ∈ I. Then there exists a solution v ∈ C(I) satisfies the linear differential
equation v′(t) + l v(t) = r(t) such that |u(t)− v(t)| ≤ Kφ(t)εEα(t), for all t ∈ I.
We call such K as the Mittag-Leffler-Hyers-Ulam-Rassias stability constant for
(1.3).

3. Mittag-Leffler-Hyers-Ulam Stabilities for (1.2)

In this section, we prove the Mittag-Leffler-Hyers-Ulam stability and Mittag-
Leffler-Hyers-Ulam-Rassias stability of the first order differential equation (1.2)
by using the Laplace transforms.

Theorem 3.1. The differential equation (1.2) is Mittag-Leffler-Hyers-Ulam sta-
ble.

Proof. Given ε > 0, we suppose that u(t) ∈ C(I) satisfies

|u′(t) + lu(t)| ≤ εEα(t), (3.1)

for all t ∈ I. We aim to prove that there exists real number K > 0, which is
independent of ε and u, such that |u(t)− v(t)| ≤ KεEα(t), for some v ∈ C(I)
satisfying v′(t) + lv(t) = 0 for all t ∈ I. Define a function p : (0,∞) → R such
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that p(t) =: u′(t) + lu(t) for all t > 0. In view of (3.1), we have |p(t)| ≤ εEα(t).
Taking Laplace transform to p(t), we have

L{p} = (s+ l)L{u} − u(0). (3.2)

Thus

L{u} =
L{p}+ u(0)

s+ l
. (3.3)

In view of the (3.2), a function u0 : (0,∞) −→ R is a solution of (1.2) if and only
if

(s+ l)L{u0} − u0(0) = 0.

Setting v(t) = u(0) e−lt, we have v(0) = u(0). Taking Laplace transform to v(t),
we obtain

L{v} =
u(0)

(s+ l)
. (3.4)

On the other hand,

L{v′(t) + l v(t)} = (s+ l)L{v} − v(0).

Using (3.4), we get L{v′(t) + l v(t)} = 0. Since L is one-to-one operator and
linear, then v′(t) + l v(t) = 0. This means that v(t) is a solution of (1.2). It
follows from (3.3) and (3.4) that

L{u} − L{v} =
L{p}+ u(0)

(s+ l)
− u(0)

(s+ l)
=
L{p}

(s+ l)

L{u(t)− v(t)} = L
{
p(t) ∗ e−lt

}
.

The above equalities show that

u(t)− v(t) = p(t) ∗ e−lt.
Taking modulus on both sides and using |p(t)| ≤ εEα(t), we get

|u(t)− v(t)| =
∣∣p(t) ∗ e−lt∣∣ ≤ ∣∣∣∣∫ t

0

p(t) e−l(t−x) dx

∣∣∣∣
≤ |p(t)|

∣∣∣∣∫ t

0

e−l(t−x) dx

∣∣∣∣
≤ εEα(t)

∣∣∣∣∫ t

0

e−l(t−x) dx

∣∣∣∣
for all t > 0, where K =

∣∣∣∣ t∫
0

e−l(t−x) dx

∣∣∣∣ exists. Hence, |u(t)− v(t)| ≤ KεEα(t). By

the virtue of Definition 2.5, the linear differential equation (1.2) has the Mittag-
Leffler-Hyers-Ulam stability. This completes the proof. �

By using the same technique in Theorem 3.1, we can also prove that the fol-
lowing theorem, which shows the Mittag-Leffler-Hyers-Ulam-Rassias stability of
the differential equation (1.2). The method of proof is similar, but we still state
it for the sake of completeness.
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Theorem 3.2. The linear differential equation (1.2) has the Mittag-Leffler-Hyers-
Ulam-Rassias stability.

Proof. Given ε > 0, we suppose that u(t) ∈ C(I) and φ(t) : (0,∞) → (0,∞)
satisfies

|u′(t) + lu(t)| ≤ φ(t)εEα(t), (3.5)

for all t ∈ I. We aim to prove that there exists real number K > 0, which is
independent of ε and u such that |u(t)− v(t)| ≤ Kφ(t)εEα(t), for some v ∈ C(I)
satisfies v′(t) + lv(t) = 0 for all t ∈ I. Define a function p : (0,∞)→ R such that
p(t) =: u′(t) + lu(t) for all t > 0. In view of (3.5), we have |p(t)| ≤ φ(t)εEα(t).
Taking Laplace transform to p(t), we have

L{p} = (s+ l)L{u} − u(0), (3.6)

and thus

L{u} =
L{p}+ u(0)

s+ l
. (3.7)

In view of the (3.6), a function u0 : (0,∞) −→ R is a solution of (1.2) if and only
if

(s+ l)L{u0} − u0(0) = 0.

Setting v(t) = u(0) e−lt, we have v(0) = u(0). Taking Laplace transform to v(t),
we obtain

L{v} =
u(0)

(s+ l)
. (3.8)

On the other hand,

L{v′(t) + l v(t)} = (s+ l)L{v} − v(0).

Using (3.8), we get L{v′(t) + l v(t)} = 0. Since L is one-to-one operator and
linear, then t v′(t) + l v(t) = 0. This means that v(t) is a solution of (1.2). It
follows from (3.7) and (3.8) that

L{u} − L{v} =
L{p}+ u(0)

(s+ l)
− u(0)

(s+ l)
=
L{p}

(s+ l)

L{u(t)− v(t)} = L
{
p(t) ∗ e−lt

}
.

The above equalities show that

u(t)− v(t) = p(t) ∗ e−lt.
Taking modulus on both sides and using |p(t)| ≤ φ(t)εEα(t), we get

|u(t)− v(t)| =
∣∣p(t) ∗ e−lt∣∣ ≤ ∣∣∣∣∫ t

0

p(t) e−l(t−x) dx

∣∣∣∣
≤ |p(t)|

∣∣∣∣∫ t

0

e−l(t−x) dx

∣∣∣∣
≤ φ(t)εEα(t)

∣∣∣∣∫ t

0

e−l(t−x) dx

∣∣∣∣
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for all t > 0, whereK =
∣∣∣∫ t0 e−l(t−x) dx∣∣∣ exists. Hence, |u(t)− v(t)| ≤ Kφ(t)εEα(t).

By the virtue of Definition 2.7, the linear differential equation (1.2) has the
Mittag-Leffler-Hyers-Ulam-Rassias stability. This completes the proof. �

4. Mittag-Leffler-Hyers-Ulam Stabilities for (1.3)

In this section, we investigate the Mittag-Leffler-Hyers-Ulam stability and
Mittag-Leffler-Hyers-Ulam-Rassias stability of the differential equation (1.3). First,
we prove the Mittag-Leffler-Hyers-Ulam stability of the non-homogeneous linear
differential equation (1.3).

Theorem 4.1. The differential equation (1.3) has Mittag-Leffler-Hyers-Ulam
stability.

Proof. Given ε > 0, we suppose that u(t) ∈ C(I) satisfies

|u′(t) + l u(t)− r(t)| ≤ εEα(t), (4.1)

for all t ∈ I. We aim to prove that there exists real number K > 0, which is
independent of ε and u(t) such that |u(t)− v(t)| ≤ KεEα(t), for some v ∈ C(I)
satisfies v′(t) + lv(t) = r(t) for all t ∈ I. Define a function p : (0,∞) → R
such that p(t) =: u′(t) + l u(t) − r(t) for all t > 0. In view of (4.1), we have
|p(t)| ≤ εEα(t). Taking Laplace transform to p(t), we have

L{p} = (s+ l)L{u} − u(0)− L(r), (4.2)

and thus

L{u} =
L{p}+ u(0) + L(r)

s+ l
. (4.3)

In view of the (4.2), a function u0 : (0,∞) −→ R is a solution of (1.3) if and only
if

(s+ l)L{u0} − u0(0) = L(r).

Set v(t) = u(0) e−lt + (q ∗ r)(t), where q(t) = e−lt. Then we have v(0) = u(0).
Taking Laplace transform to v(t), we obtain

L{v} =
u(0) + L(r)

(s+ l)
=
v(0) + L(r)

(s+ l)
. (4.4)

On the other hand,

L{v′(t) + l v(t)− r(t)} = (s+ l)L{v} − v(0)− L(r).

Using (4.4), we get L{v′(t) + l v(t) − r(t)} = 0. Since L is one-to-one operator
and linear, then

v′(t) + l v(t) = r(t).

This means that v(t) is a solution of (1.3). It follows from (4.3) and (4.4) that

L{u} − L{v} =
L{p}+ u(0) + L(r)

(s+ l)
− u(0) + L(r)

(s+ l)
=
L{p}

(s+ l)
.

The above equalities show that

L{u(t)− v(t)} = L{p(t) ∗ q(t)} ,
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then it gives that u(t)−v(t) = (p∗q)(t). Taking modulus on both sides and using
|p(t)| ≤ εEα(t), we get

|u(t)− v(t)| = |(p ∗ q)(t)| ≤
∣∣∣∣∫ t

0

p(t) e−l(t−x) dx

∣∣∣∣
≤ |p(t)|

∣∣∣∣∫ t

0

e−l(t−x) dx

∣∣∣∣
≤ εEα(t)

∣∣∣∣∫ t

0

e−l(t−x) dx

∣∣∣∣
for all t > 0, where K =

∣∣∣∣ t∫
0

e−l(t−x) dx

∣∣∣∣ exists for t > 0. Then we have

|u(t)− v(t)| ≤ KεEα(t).

By the virtue of Definition 2.6, the linear differential equation (1.3) has the
Mittag-Leffler-Hyers-Ulam stability. This completes the proof. �

In analogous to Theorem 4.1, we have the following result which shows the
Mittag-Leffler-Hyers-Ulam-Rassias stability of the differential equation (1.3).

Theorem 4.2. The non-homogeneous linear differential equation (1.3) has Mittag-
Leffler-Hyers-Ulam-Rassias stability.

Proof. Given ε > 0, we suppose that u(t) ∈ C(I) and φ(t) : (0,∞) → (0,∞)
satisfies

|u′(t) + l u(t)− r(t)| ≤ φ(t)εEα(t), (4.5)

for all t ∈ I. We aim to prove that there exists real number K > 0 which is
independent of ε and u such that |u(t)− v(t)| ≤ Kφ(t)εEα(t), for some v ∈ C(I)
satisfies v′(t) + lv(t) = r(t) for all t ∈ I. Define a function p : (0,∞) → R
such that p(t) =: u′(t) + l u(t) − r(t) for all t > 0. In view of (4.5), we have
|p(t)| ≤ φ(t)εEα(t). Taking Laplace transform from p(t), we have

L{p} = (s+ l)L{u} − u(0)− L(r), (4.6)

and thus

L{u} =
L{p}+ u(0) + L(r)

s+ l
. (4.7)

In view of the (4.6), a function u0 : (0,∞) −→ R is a solution of (1.3) if and only
if

(s+ l)L{u0} − u0(0) = L(r).

Set v(t) = u(0) e−lt + (q ∗ r)(t), where q(t) = e−lt. Then we have v(0) = u(0).
Taking Laplace transform to v(t), we obtain

L{v} =
u(0) + L(r)

(s+ l)
=
v(0) + L(r)

(s+ l)
. (4.8)

On the other hand,

L{v′(t) + l v(t)− r(t)} = (s+ l)L{v} − v(0)− L(r).
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Using (4.4), we get

L{v′(t) + l v(t)− r(t)} = 0.

Since L is one-to-one operator and linear, then we get v′(t) + l v(t) = r(t). This
means that v(t) is a solution of (1.3). It follows from (4.7) and (4.8) that

L{u} − L{v} =
L{p}+ u(0) + L(r)

(s+ l)
− u(0) + L(r)

(s+ l)
=
L{p}

(s+ l)
.

The above equalities show that

u(t)− v(t) = (p ∗ q)(t).

Taking modulus on both sides and using |p(t)| ≤ φ(t)εEα(t), we get

|u(t)− v(t)| ≤
∣∣∣∣∫ t

0

p(t) e−l(t−x) dx

∣∣∣∣
≤ |p(t)|

∣∣∣∣∫ t

0

e−l(t−x) dx

∣∣∣∣
≤ φ(t)εEα(t)

∣∣∣∣∫ t

0

e−l(t−x) dx

∣∣∣∣
for all t > 0, where K =

∣∣∣∣ t∫
0

e−l(t−x) dx

∣∣∣∣ exists. Hence,

|u(t)− v(t)| ≤ Kφ(t)εEα(t).

By the virtue of Definition 2.8, the linear differential equation (1.3) has the
Mittag-Leffler-Hyers-Ulam-Rassias stability. This completes the proof. �

Conclusion

In this paper, we proved the Mittag-Leffler-Hyers-Ulam stability and Mittag-
Leffler-Hyers-Ulam-Rassias stability of the linear differential equations of first
order with constant co-efficient using the Laplace Transforms method. That is,
we established the sufficient criteria for Mittag-Leffler-Hyers-Ulam stability and
Mittag-Leffler-Hyers-Ulam-Rassias stability of the linear differential equation of
first order with constant co-efficient using Laplace Transforms method. Addition-
ally, this paper also provides another method to study the Mittag-Leffler-Hyers-
Ulam stability of differential equations. Also, this paper shows that the Laplace
Transform method is more convenient to study the Mittag-Leffler-Hyers-Ulam
stability and Mittag-Leffler-Hyers-Ulam-Rassias stability of the linear differential
equation with constant co-efficients.
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