π™½πš˜πš›πš‹πšŽπš›πš π™ΌπšŠπš›πš πšŠπš—

π™½πš˜πš›πš‹πšŽπš›πš π™ΌπšŠπš›πš πšŠπš—
Potsdam Institute for Climate Impact Research | PIKΒ Β·Β Complexity Science – Research Department 4

πŸ‘¨πŸ»β€πŸ’»πŸ•Š

About

379
Publications
108,131
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
17,569
Citations
Additional affiliations
August 2008 - September 2021
Potsdam Institute for Climate Impact Research
Position
  • Deputy head department "Complexity Science"
January 1999 - August 2008
UniversitΓ€t Potsdam

Publications

Publications (379)
Article
Full-text available
The influence of climate change on civil conflict and societal instability in the premodern world is a subject of much debate, in part because of the limited temporal or disciplinary scope of case studies. We present a transdisciplinary case study that combines archeological, historical, and paleoclimate datasets to explore the dynamic, shifting re...
Preprint
Atmospheric rivers (ARs) are filaments of extensive water vapor transport in the lower troposphere, that play a crucial role in the distribution of water, but can also cause natural and economical damage by facilitating heavy rainfall. Here, we investigate the large-scale spatio-temporal synchronization patterns of heavy rainfall over the western c...
Preprint
Full-text available
Couplings in complex real-world systems are often nonlinear and scale-dependent. In many cases, it is crucial to consider a multitude of interlinked variables and the strengths of their correlations to adequately fathom the dynamics of a high-dimensional nonlinear system. We propose a recurrence based dependence measure that quantifies the relation...
Preprint
Full-text available
Cyclones are amongst the most hazardous extreme weather events on Earth. When two co-rotating cyclones come in close proximity, a possibility of complete merger (CM) arises due to their interactions. However, identifying the transitions in the interaction of binary cyclones and predicting the merger is challenging for weather forecasters. In the pr...
Article
Understanding the influence of climate change and population pressure on human con- flict remains a critically important topic in the social sciences. Long-term records that evaluate these dynamics across multiple centuries and outside the range of modern climatic variation are especially capable of elucidating the relative effect ofβ€”and the intera...
Article
Full-text available
A novel idea for an optimal time delay state space reconstruction from uni-and multivariate time series is presented. The entire embedding process is considered as a game, in which each move corresponds to an embedding cycle and is subject to an evaluation through an objective function. This way the embedding procedure can be modeled as a tree, in...
Article
Capturing the complex spatiotemporal flame dynamics inside a rocket combustor is essential to validate high-fidelity simulations for developing high-performance rocket engines. Utilizing tools from a complex network theory, we construct positively and negatively correlated weighted networks from methylidyne (CH * ) chemiluminescence intensity oscil...
Article
The analysis of irregularly sampled time series remains a challenging task requiring methods that account for continuous and abrupt changes of sampling resolution without introducing additional biases. The edit distance is an effective metric to quantitatively compare time series segments of unequal length by computing the cost of transforming one...
Article
Full-text available
We investigate the response characteristics of a two-dimensional neuron model exposed to an externally applied extremely low frequency (ELF) sinusoidal electric field and the synchronization of neurons weakly coupled with gap junction. We find, by numerical simulations, that neurons can exhibit different spiking patterns, which are well observed in...
Preprint
A better understanding of ENSO dynamics is essential for modelling future climate change and its impacts on the ecosystems and lives of the inhabitants of the tropical Pacific islands, which face considerable environmental risk in the coming decades. This study reconstructs past ENSO dynamics using a multi-proxy approach applied to a stalagmite fro...
Article
Full-text available
The quantification of spatial propagation of extreme precipitation events is vital in water resources planning and disaster mitigation. However, quantifying these extreme events has always been challenging as many traditional methods are insufficient to capture the nonlinear interrelationships between extreme event time series. Therefore, it is cru...
Preprint
Full-text available
Extreme precipitation events have a significant impact on life and property. The United States experiences huge economic losses due to severe floods caused by extreme precipitation. With the varied terrain, it becomes increasingly important to understand the spatial variability of extreme precipitation to conduct a proper risk assessment of natural...
Preprint
Full-text available
The analysis of irregularly sampled time series remains a challenging task requiring methods that account for continuous and abrupt changes of sampling resolution without introducing additional biases. The edit-distance is an effective metric to quantitatively compare time series segments of unequal length by computing the cost of transforming one...
Article
Full-text available
Identifying and characterising dynamical regime shifts, critical transitions or potential tipping points in palaeoclimate time series is relevant for improving the understanding of often highly nonlinear Earth system dynamics. Beyond linear changes in time series properties such as mean, variance, or trend, these nonlinear regime shifts can manifes...
Preprint
Full-text available
Identifying and characterising dynamical regime shifts, critical transitions or potential tipping points in palaeoclimate time series is relevant for improving the understanding of often highly nonlinear Earth system dynamics. Beyond linear changes in time series properties such as mean, variance, or trend, these nonlinear regime shifts can manifes...
Article
The role of seasonality is indisputable in climate and ecosystem dynamics. Seasonal temperature and precipitation variability are of vital importance for the availability of food, water, shelter, migration routes, and raw materials. Thus, understanding past climatic and environmental changes at seasonal scale is equally important for unearthing the...
Preprint
Full-text available
A novel idea for an optimal time delay state space reconstruction from uni- and multivariate time series is presented. The entire embedding process is considered as a game, in which each move corresponds to an embedding cycle and is subject to an evaluation through an objective function. This way the embedding procedure can be modeled as a tree, in...
Article
Deep-time paleoclimatic records document large-scale shifts and perturbations in Earth's climate; during the Cenozoic in particular transitions have been recorded on time scales of 10 thousand to 1 million years. Bifurcations in the leading dynamical modes could be a key element driving these events. Such bifurcation-induced critical transitions ar...
Article
The complex interaction between the turbulent flow, combustion and the acoustic field in gas turbine engines often results in thermoacoustic instability that produces ruinously high-amplitude pressure oscillations. These self-sustained periodic oscillations may result in a sudden failure of engine components and associated electronics, and increase...
Article
Full-text available
In the present study, we quantify the vorticity interactions in a bluff body stabilized turbulent combustor during the transition from combustion noise to thermoacoustic instability via intermittency using complex networks. To that end, we perform simultaneous acoustic pressure, high-speed particle image velocimetry and high-speed chemiluminescence...
Conference Paper
The complex interaction between the turbulent flow, combustion and the acoustic field in gas turbine engines often results in thermoacoustic instability that produces ruinously high-amplitude pressure oscillations. These self-sustained periodic oscillations may result in a sudden failure of engine components and associated electronics, and increase...
Article
Full-text available
We propose lacunarity as a novel recurrence quantification measure and illustrate its efficacy to detect dynamical regime transitions which are exhibited by many complex real-world systems. We carry out a recurrence plot-based analysis for different paradigmatic systems and nonlinear empirical data in order to demonstrate the ability of our method...
Article
The Chew Bahir Drilling Project (CBDP) aims to test possible linkages between climate and hominin evolution in Africa through the analysis of sediment cores that have recorded environmental changes in the Chew Bahir basin (CHB). In this statistical project we used recurrence plots (RPs) together with a recurrence quantification analysis (RQA) to di...
Article
Full-text available
The identification of recurrences at various timescales in extreme event-like time series is challenging because of the rare occurrence of events which are separated by large temporal gaps. Most of the existing time series analysis techniques cannot be used to analyze an extreme event-like time series in its unaltered form. The study of the system...
Article
Full-text available
An unresolved issue in the vegetation ecology of the Indian subcontinent is whether its savannas, characterized by relatively open formations of deciduous trees in C4-grass dominated understories, are natural or anthropogenic. Historically, these ecosystems have widely been regarded as anthropogenic-derived, degraded descendants of deciduous forest...
Article
Full-text available
The use of cyclostratigraphy to reconstruct the timing of deposition of lacustrine deposits requires sophisticated tuning techniques that can accommodate continuous long-term changes in sedimentation rates. However, most tuning methods use stationary filters that are unable to take into account such long-term variations in accumulation rates. To ov...
Poster
The spatio-temporal patterns of precipitation are of considerable relevance in the context of understanding the underlying mechanism of climate phenomena. The application of the complex network paradigm as a data-driven technique for the investigation of the climate system has contributed significantly to identifying the key regions influencing the...
Article
Full-text available
We present a fully automated method for the optimal state space reconstruction from univariate and multivariate time series. The proposed methodology generalizes the time delay embedding procedure by unifying two promising ideas in a symbiotic fashion. Using non-uniform delays allows the successful reconstruction of systems inheriting different tim...
Preprint
Full-text available
We propose lacunarity as a novel recurrence quantification measure and illustrate its efficacy to detect dynamical regime transitions which are exhibited by many complex real-world systems. We carry out a recurrence plot based analysis for different paradigmatic systems and nonlinear empirical data in order to demonstrate the ability of our method...
Article
Complex systems can, to a first approximation, be characterized by the fact that their dynamics emerging at the macroscopic level cannot be easily explained from the microscopic dynamics of the individual constituents of the system. This property of complex systems can be identified in virtually all natural systems surrounding us, but also in many...
Article
Full-text available
In this paper, we present the new frequency spectrum recurrence analysis technique by means of electro-encephalon signals (EES) analyses. The technique is suitable for time series analysis with noise and disturbances. EES were collected, and alpha waves of the occipital region were analysed by comparing the signals from participants in two states,...
Preprint
Full-text available
We present a fully automated method for the optimal state space reconstruction from univariate and multivariate time series. The proposed methodology generalizes the time delay embedding procedure by unifying two promising ideas in a symbiotic fashion. Using non-uniform delays allows the successful reconstruction of systems inheriting different tim...
Preprint
Full-text available
The identification of recurrences at various time scales in extreme event-like time series is challenging because of the rare occurrence of events which are separated by large temporal gaps. Most of the existing time series analysis techniques cannot be used to analyse extreme event-like time series in its unaltered form. The study of the system dy...
Article
Full-text available
Self-organization is the spontaneous formation of spatial, temporal, or spatiotemporal patterns in complex systems far from equilibrium. During such self-organization, energy distributed in a broadband of frequencies gets condensed into a dominant mode, analogous to a condensation phenomenon. We call this phenomenon spectral condensation and study...
Article
Full-text available
Extreme climate events have been identified both in meteorological and long-term proxy records from the Indian summer monsoon (ISM) realm. However, the potential of palaeoclimate data for understanding mechanisms triggering climate extremes over long time scales has not been fully exploited. A distinction between proxies indicating climate change,...
Article
Full-text available
Much of our understanding of Earth's past climate comes from the measurement of oxygen and carbon isotope variations in deep-sea benthic foraminifera. Yet, long intervals in existing records lack the temporal resolution and age control needed to thoroughly categorize climate states of the Cenozoic era and to study their dynamics. Here, we present a...
Article
Full-text available
Coupling of the El NiΓ±o-Southern Oscillation (ENSO) and Indian monsoon (IM) is central to seasonal summer monsoon rainfall predictions over the Indian subcontinent, although a nonstationary relationship between the two nonlinear phenomena can limit seasonal predictability. Radiative effects of volcanic aerosols injected into the stratosphere during...
Article
In turbulent combustors, the transition from stable combustion (i.e. combustion noise) to thermoacoustic instability occurs via intermittency. During stable combustion, the acoustic power production happens in a spatially incoherent manner. In contrast, during thermoacoustic instability, the acoustic power production happens in a spatially coherent...
Article
Full-text available
In the last three decades, recurrence plot (RP) and quantification (RQA) techniques have become important research tools in the analysis of short, noisy, and non-stationary data. Theoretical work on RPs has reached considerable maturity, and the method's popularity in recent years continues to increase due to a large number of practical RP/RQA appl...
Article
Full-text available
Cave microclimate and geochemical monitoring is vitally important for correct interpretations of proxy time series from speleothems with regard to past climatic and environmental dynamics. We present results of a comprehensive cave-monitoring programme in Waipuna Cave in the North Island of New Zealand, a region that is strongly influenced by the S...
Article
Full-text available
Many complex systems exhibit periodic oscillations comprising slow–fast timescales. In such slow–fast systems, the slow and fast timescales compete to determine the dynamics. In this study, we perform a recurrence analysis on simulated signals from paradigmatic model systems as well as signals obtained from experiments, each of which exhibit slow–f...
Article
Full-text available
Hydrometric networks play a vital role in providing information for decision-making in water resource management. They should be set up optimally to provide as much information as possible that is as accurate as possible and, at the same time, be cost-effective. Although the design of hydrometric networks is a well-identified problem in hydrometeor...
Preprint
Full-text available
Self-organization is the spontaneous formation of spatial, temporal, or spatiotemporal patterns in complex systems far from equilibrium. During such self-organization, energy distributed in a broadband of frequencies gets condensed into a dominant mode, analogous to a condensation phenomena. We call this phenomenon spectral condensation and study i...
Preprint
Full-text available
We consider the problem of estimating causal influences between observed processes from time series possibly corrupted by errors in the time variable (dating errors) which are typical in palaeoclimatology, planetary science and astrophysics. "Causality ratio" based on the Wiener -- Granger causality is proposed and studied for a paradigmatic class...
Article
Full-text available
The magnitudes of river floods in Europe have been observed to change, but their alignment with changes in the spatial coverage or extent of individual floods has not been clear. We analyze flood magnitudes and extents for 3,872 hydrometric stations across Europe over the past five decades and classify each flood based on antecedent weather conditi...
Article
Full-text available
Forests are important in sequestering CO2 and therefore play a significant role in climate change. However, the CO2 cycle is conditioned by drought events that alter the rate of photosynthesis, which is the principal physiological action of plants in transforming CO2 into biological energy. This study applied recurrence quantification analysis (RQA...
Preprint
Full-text available
We have introduced a novel multiplex recurrence network (MRN) approach by combining recurrence networks with the multiplex network approach in order to investigate multivariate time series. The potential use of this approach is demonstrated on coupled map lattices and a typical example from palaeobotany research. In both examples, topological chang...
Article
Intrinsic predictability is imperative to quantify inherent information contained in a time series and assists in evaluating the performance of different forecasting methods to get the best possible prediction. Model forecasting performance is the measure of the probability of success. Nevertheless, model performance or the model does not provide u...
Article
Full-text available
We use Recurrence Quantification Analysis (RQA) to study features of Generalized Synchronization (GS) between El NiΓ±o-Southern Oscillation (ENSO) and monthly hydrological anomalies (HyAns) of rainfall and streamflows in Colombia. To that end, we check the sensitivity of the RQA concerning diverse HyAns estimation methods, which constitutes a fundam...
Article
Self-organization driven by feedback between subsystems is ubiquitous in turbulent fluid mechanical systems. This self-organization manifests as emergence of oscillatory instabilities and is often studied in different system-specific frameworks. We uncover the existence of a universal scaling behaviour during self-organization in turbulent flows le...
Preprint
Full-text available
Abstract. Cave microclimatic and geochemical monitoring is vitally important for correct interpretations of proxy time series from speleothems with regard to past climatic and environmental dynamics. We present results of a comprehensive cave monitoring programme in Waipuna Cave in the North Island of New Zealand, a region that is strongly influenc...