Discussion
Started 6th Feb, 2022

Consider two particles A and B in translation with uniformly accelerated vertical motion in a frame S (X,Y,T) such that the segment AB with length L remains always parallel to the horizontal axis X (XA = 0, XB = L). If we assume that the acceleration vector (0, E) is constant and we take the height of both particles to be defined by the expressions YA = YB = 0.5 ET2, we have that the vertical distance between A and B in S is always (see fig. in PR - 2.pdf):
1) YB - YA = 0
If S moves with constant velocity (v, 0) with respect to another reference s(x,y,t) whose origin coincides with the origin of S at t = T = 0, inserting the Lorentz transformation for A (Y = y, T = g(t - vxA/c2), xA = vt) into YA= 0.5 ET2 and the Lorentz transformation for B (Y = y, T = g(t - vxB/c2), xB = vt + L/g) into YB= 0.5 ET2 we get that the vertical distance between A and B in s(x,y,t) is:
2) yB - yA = 0.5 E (L2v2/c4- 2Lvt/c2g)
which shows us that, at each instant of time "t" the distance yB - yA is different despite being always constant in S (eq.1). As we know that the classical definition of translational motion of two particles is only possible if the distance between them remains constant, we conclude that in s the two particles cannot be in translational motion despite being in translational motion in S.