Discussion
Started 18 January 2025
  • Private Oral and Biomaterials Research Lab

Mathematics for All: From Equations to 3D Imaging – The Role of Math in Advancing Medical Imaging

Under the theme “Mathematics for All, Mathematics as a Path to Development,” one of the best examples of math's impact on daily life is its application in medical imaging, such as CT and CBCT scanners.
How do these devices work?
Mathematics is at the heart of it! When X-rays are emitted from a source, they pass through tissues and are captured by detectors. Along their path, these rays undergo absorption or attenuation, which depends on the properties of the tissue they traverse. Each ray's path represents a unique equation, where the unknowns are the attenuation values of the points it passes through.
As the source rotates around the object, it generates multiple paths, creating a system of n equations with n unknowns. Sophisticated software solves this complex system using advanced algorithms, such as the Radon Transform or iterative methods, to reconstruct the internal structure of the object as a detailed 3D image.
How does this contribute to development?
Mathematics is the backbone of such groundbreaking technologies, enabling precise diagnostics and effective treatment planning. This practical application of equations demonstrates how math can transform our world.
Now it’s your turn:
What other applications of mathematics in medicine and engineering do you think are underexplored? How can we further harness the power of math as a tool for development?
Let’s explore the incredible role of mathematics in everyday life together in this discussion!

All replies (2)

Ammar Kuti Nasser
Mustansiriyah University
Following@
Ammar Kuti Nasser
Mustansiriyah University
Follower@

Similar questions and discussions

On the importance of the research of mathematicians older than forty years.
Discussion
4 replies
  • José Alfonso López NicolásJosé Alfonso López Nicolás
It is well known that Medal Fields Prize is intended for excellent research of mathematicians under forty years old because many mathematicians think that the main contributions in the life of the researchers are obtained when they are younger than forty. I do not believe so. It is true, by common experience, that the students of Mathematics, which are constantly in interaction at the same time, with several (and sometimes, very different) subjects, develop a high degree of good ideas which inspire them and lead them to obtain new and interesting results. This interaction between different branches is expected to remain (more or less consciently) up to forty years old. By the same reason, if necessary, whoever researcher, independently of his/her age, may return to study the different mathematical matters and create new important contributions, even in his/her very definite area of research. Furthemore, it may help to overcome a blockade. It is incredible the fact that when one studies again different matters it inspires you, and combined with your experience and knowledge, you see the contents of these different subjects with new perspective, often helping in your area of research creating new knowledge and solving problems. This is the motive why I believe that the career of each mathematician is always worthly and continuous independently of his/her age as demonstrated by most senior mathematicians in all the areas of research who are living examples for us.
What is your opinion on the relationship between the age of a researcher and the quality of his/her contributions?
Thank you very much beforehand.

Related Publications

Got a technical question?
Get high-quality answers from experts.