Pantheory Research Org.
Discussion
Started 15 August 2024
Is there a galactic rotation anomaly? Is it possible to find out the speed and time of the galactic rotation anomaly?
Is there a galactic rotation anomaly? Is it possible to find out the speed and time of the galactic rotation anomaly?
Is there a galactic rotation anomaly? Is it possible to find out the speed and time of the galactic rotation anomaly?
Abstract: Orbital speeds of stars, far from centre of a galaxy, are found roughly constant, instead of reductions predicted by current gravitational theories (applied on galactic and cosmological scales). This is called the anomalous rotation of galaxies. This article intends to show that constant angular speeds of all macro bodies in a galaxy are natural phenomenon and there is no mystery about it.
Keywords: Galaxy, Stable galaxy, rotational anomaly.
A planetary system is a group of macro bodies, moving at certain linear speed in circular path around galactic centre. Central body of planetary system is by far the largest and controls mean linear speeds of all other members. Gravitational attractions between macro bodies of planetary system cause perturbations in their directions of motion, resulting in additional curvatures of their paths. When perturbed paths of smaller macro bodies are related to central body in assumed static state, we get apparent orbital paths of planetary bodies. They appear to revolve around static central body in elliptical/circular paths. Apparent orbital paths are unreal constructs about imaginary static state of central body. They are convenient to find relative positions of macro bodies in the system and to predict cyclic phenomena occurring annually. In reality, planetary bodies do not orbit around central body but they move in wavy paths about the central body. Central and planetary bodies move at a mean linear speed along their curved path around galactic centre.
Perturbations of orbital paths of macro bodies in planetary system are related directly to their matter-content and inverse square of distance from central body. Distance from central body has greater effect of magnitudes of perturbations. Hence, normally, paths of planetary bodies at greater distance from central body are perturbed by lesser magnitudes. Curvatures and thus angular speeds of their apparent orbits reduce as distance from central body increases. Since planetary system has no real spin motion, this is an imaginary phenomenon. However, many learned cosmologists seem to take spin motion of planetary system as real phenomenon and consider that members of all spinning group pf macro bodies should behave in similar manner, i.e. angular (spin) speed of members should reduce as their distance from centre of system increases.
Stable galaxy consists of many macro bodies revolving around its centre. This group can be considered as a spinning fluid macro body, rotating at a constant angular speed. Gravitational collapse initiates spin motion of galactic cloud and maintains constant spin speed of outer parts of stable galaxy. Centre part of galaxy, which is usually hidden, may or may not be spinning. We can observe only visible stars and their angular speeds about galactic centre. Linear motions of macro bodies, caused by gravitational attractions towards other macro bodies in the system, have two components each. One component, due to additional linear work invested in association with it, produces macro body’s linear motion, in a direction slightly deflected away from centre of circular path. Other component, towards centre of its circular path, is caused by additional angular work invested in association with it. This component produces angular motion of macro body.
All matter-particles in a fluid macro body, spinning at constant speed, have constant angular speeds. Consider a matter-particle at O, in figure 1, moving in circular path AOB. XX is tangent to circular path at O. Instantaneous linear speed of matter-particle is represented by arrow OC, in magnitude and direction. It has two components; OD, along tangent XX and DC, perpendicular to tangent XX and away from centre of circular path. This component, DC, represents centrifugal action on matter- C particle due to its motion in circular path. In
order to maintain constant curvature of path, X D O X matter-particle has to have instantaneous A linear (centripetal) motion equal to CE E
toward centre of circular path. If magnitudes B Figure 1 and directions of instantaneous motions are as shown in figure 1, matter-particle maintains its motion along circular path AOB at constant angular speed.
Should the matter-particle increase its instantaneous linear speed for any reason, both components OD and DC would increase. Component OD tends to move matter-particle at greater linear speed along tangent XX. Outward component DC tends to move matter-particle away from centre of its circular path. The matter particle tends to increase radius of curvature of its path. This action is usually assigned to imaginary ‘centrifugal force’. In reality expansion of radius of curvature of path is caused by centrifugal component of linear motion. Reduction in centripetal action also produces similar results.
Should the matter-particle decrease its instantaneous linear speed for any reason, both components OD and DC would reduce. Component OD tends to move matter-particle at lesser linear speed along tangent XX. Reduction in outward component DC tends to move matter-particle towards centre of its circular path. The matter particle tends to reduce radius of curvature of its path. Reduction of radius of curvature of path is caused by reduction in centrifugal component of linear motion. Increase in centripetal action also produces similar results.
In other words, matter-particle regulates its distance from centre of its circular path so that its angular speed remains constant. This is the reason for action of centrifuges. As linear speeds of matterparticles increase, they move outwards, in an effort to maintain their angular speed constant.
Additional work, done for linear motion of a matter-particle and additional work, done for its angular motion are entirely separate and distinct. Additional work for linear motion of a matter-particle can produce only linear motion and additional work for angular motion can produce only angular motion. In the case, explained above, increased in linear speed of matter-particle is considered. That is, additional work invested in association with matter-particle is of linear nature. It can only increase its linear motion. As no additional work for angular motion is invested matter-particle cannot change its angular speed. Instead, matter-particle is compelled to move away from centre of its rotation, so that it can increase magnitude of linear motion while keeping magnitude of angular motion constant.
Similarly, increase in centripetal effort invests additional work required for angular motion of matterparticle. Matter-particle tends to increase magnitude of its angular motion. Curvature of its path
increases by reducing its distance from centre of circular path. Matter-particle tends to move towards centre of circular path, so that it can increase its angular speed while keeping its linear speed constant.
Every macro body in a stable galaxy behaves in a manner similar to matter-particle, represented in figure 1. They tend to position themselves in the system, so that their linear and angular speeds match corresponding works associated with them. Macro bodies strive to maintain their angular speeds constant by keeping appropriate distance from centre of rotation. Macro bodies towards the central region may experience additional centripetal effort. They might increase their angular motion and move towards central point to merge with black hole present there. In due course of time, macro bodies on outer fringes move away from galaxy and destroy its stability.
In a galaxy, various macro bodies arrive at their relative position gradually by error and trial, during which their relative positions and linear and angular speeds are stabilized. Galaxy, as a whole, stabilizes only when constituent macro bodies have reached their steady relative positions and motions. In order to maintain stability, it is essential to maintain relative positions of all constituent macro bodies by having constant and equal angular speeds and linear speeds corresponding to their distances from galactic centre. Change in relative position or linear or angular speed of even one macro body is liable to destabilize the galaxy.
As and when superior 3D matter-particles at the fringe of galaxies attain linear speeds approaching speed of light, they break-down into primary 3D matter-particles and produce halo around equatorial region. Halos of neighbouring stable galaxies interact to prevent their translational movements and maintain steady state of universe.
Therefore constant angular speeds of constituent macro bodies of stable galaxies are their natural states. There are no mysteries or anomalies about them. This phenomenon is mystified by those who consider imaginary spin motions of planetary systems are real. Therefore, assumptions of dark matter, time dilation, modification of gravitational laws, etc and complicated mathematical exercises are irrational and unnecessary to prove non-existing rotation anomaly of galaxies.
Conclusion:
Galactic rotation anomaly is a non-existing phenomenon derived from imaginary spin motions of planetary systems about their central bodies in assumed static states. Constant angular speeds of stars in a galaxy confirm static state of galactic center (in space), rather than produce an anomaly.
Reference:
[1] Nainan K. Varghese, MATTER (Re-examined), http://www.matterdoc.info
Reply to this discussion
Chuck A Arize added a reply
5 hours ago
Yes, there is a galactic rotation anomaly observed as the discrepancy between the predicted and actual rotation speeds of galaxies. This anomaly, often attributed to dark matter, shows that the outer regions of galaxies rotate faster than expected. Measuring the speed and time of this rotation anomaly involves detailed observations of galactic rotation curves and modeling, which reveal the velocity profile and suggest the presence of unseen mass influencing the rotation.
Abdul Malek added a reply
3 hours ago
Abbas Kashani > "Is there a galactic rotation anomaly?"
There is a galactic rotation anomaly, but only according to officially accepted theories of gravity and the (Big Bang) theory of the formation of the galaxies inferred for a finite, closed and a created (in the finite past) universe.
But all these theories based on causality and theology are wrong! The dialectical and scientific view is that the universe is Infinite, Eternal and Ever-changing, mediated by dialectical chance and necessity. Gravity is a dialectical contradiction of the unity of the opposites of attraction and repulsion (due to inherent free motion of matter particles, vis viva). In short (human) time scale, new galaxies are seen to be formed through the dissipation and/or ejection of matter in the form of stars, star clusters or even a large part of the galaxy as quasars from the existing galaxies.
So, the observed high orbital velocities of the starts, star clusters etc. at the periphery of the galaxies and of the planets at the periphery of the planetary systems within the galaxies is just a natural phenomena and there is no anomaly!
"Ambartsumian, Arp and the Breeding Galaxies" : http://redshift.vif.com/JournalFiles/V12NO2PDF/V12N2MAL.pdf
KEPLER -NEWTON -LEIBNIZ -HEGEL Portentous and Conflicting Legacies in Theoretical Physics, Cosmology and in Ruling https://www.rajpub.com/index.php/jap/article/view/9106
"THE CONCEPTUAL DEFECT OF THE LAW OF UNIVERSAL GRAVITATION OR ‘FREE FALL’: A DIALECTICAL REASSESSMENT OF KEPLER’S LAWS":
Article THE CONCEPTUAL DEFECT OF THE LAW OF UNIVERSAL GRAVITATION OR...
📷
Preston Guynn added a reply
4 days ago
Your discussion question statement is:
- "Is there a galactic rotation anomaly? Is it possible to find out the speed and time of the galactic rotation anomaly? Orbital speeds of stars, far from centre of a galaxy, are found roughly constant, instead of reductions predicted by current gravitational theories (applied on galactic and cosmological scales). This is called the anomalous rotation of galaxies."
The limit of galactic rotation velocity is expected because rotation minus precession has a maximum velocity. Our solar system's relative rotation velocity with respect to the Milky Way galaxy is at this maximum, and as a fraction of speed of light the observed velocity can be designated vg/c, and is determined in the single page proof of the quantum of resistance:
Article The Physical Basis of the Quantum of Resistance is Relativis...
The detailed proofs are in:
Article Thomas Precession is the Basis for the Structure of Matter and Space
Note that the observed velocity is the difference between rotation and precession.
📷
Dale Fulton added a reply
3 days ago
The galactic rotation "anomaly" (flat rotation curve) is actually a misinterpretation of the measurements of the galactic rotations, when performed with spectrographic (redshift) measurements. This has misled astronomers since the inception of the spectrographic velocity measurements, as being totally doppler shift, whereas they contain many non-linear components of redshift due to gases and other effects from each galaxy. Recent measurements of the Milky Way galaxy rotation curve prove that this is the case, i.e, that spectrographic velocities are misleading, and that proper motion or parallax is the only way to accurately measure those velocities.
📷
André Michaud added a reply
20 hours ago
There is no galactic rotation anomaly. Such a concept emerges from the lack of careful study of past historical discoveries about orbital structures in the universe established since Ticho Brahe first collected his data about the planetary orbits in the solar system, from which Johannes Kepler abstracted his 3 laws, that were then mathematically confirmed by Newton.
The galactic rotation parameters are well known by those who studied the true foundation of astrophysics. Put in perspective in this article:
Article Inside Planets and Stars Masses
📷
Abbas Kashani added a reply
44 seconds ago
Preston Guynn
Dale Fulton
André Michaud
Greetings and politeness and respect to the great and respected professors and astronomers, I am very grateful for your efforts, dear ones. Thank you and thank you
Abbas Kashani
Mohaghegh Ardabili University
All replies (1)
Of course there is. It can be easily determined for spiral galaxies. Many have what is called a flat rotation curve, meaning the velocity of its stars is the same all over the galaxy, regardless of their distances from the galactic center, totally contrary to mainstream gravity theory.
The anomaly is simply stellar velocities which is distance traveled per unit time. The mainstream presently attributes this anomaly to what they assert to be unknown matter. But this is a very week hypothesis since it requires about 6 times more unseen matter than observable matter, and even then it is a very poor predictor of stellar velocities.There are many more better predictors of stellar velocities than dark matter which may be the worst of all predictors. But most alternatives are Modified Gravity proposals, which are usually much better predictors, but have there own serious theoretical problems.
Similar questions and discussions
Endorsement on the ArXiv
Ruslan Pozinkevych
Dear research community members I would like to post a preprint of my article in Mathematics but need an endorsement If anyone can do this for me I will greatly appreciate for once Secondly I will send you my new paper with explanations
Endorsement Code: SP84WZ
Thanks a lot
P.S I don't know the procedure The moderator sent me a link
Ruslan Pozinkevych should forward this email to someone who's registered as an endorser for the cs.IT (Information Theory) subject class of arXiv
or alt visit
and enter SP84WZ
Once again thank you and apologize for bothering
Related Publications
This article focuses on Trinitarian theology during the period from the late eighth century to the beginning of the twelfth century. It considers the works of Alcuin of York, Anselm of Canterbury, Gottschalk of Orbais, and John Scotus Eriugena. It explains that Alcuin's work on the undivided Trinity defended the Augustinian emphasis on the divine u...