Discussion
Started 16 June 2024

Concepts and premises should both adjust upon contradictions, even at high velocity and subatomic scales.

Warren C. Gibson. “Modern Physics versus Objectivism.” The Journal of Ayn Rand Studies, vol. 13, no. 2, 2013, pp. 140–59. JSTOR, https://doi.org/10.5325/jaynrandstud.13.2.0140. Accessed 16 June 2024. "Leonard Peikoff and David Harriman have denounced modern physics as incompatible with Objectivist metaphysics and epistemology. Physics, they say, must return to a Newtonian viewpoint; much of relativity theory must go, along with essentially all of quantum mechanics, string theory, and modern cosmology. In their insistence on justifications in terms of “physical nature,” they cling to a macroscopic worldview that doesn't work in the high-velocity arena of relativity or the subatomic level of quantum mechanics. It is suggested that the concept of identity be widened to accommodate the probabilistic nature of quantum phenomena."

All replies (2)

André Michaud
Independent Researcher
I completely agree with Peikoff and Harriman
Already in the 1920's Alfred Korzybski was warning:
Bending facts to theories is a constant danger, whereas bending theories to facts is essential to science. Epistemologically, the fundamental theories must develop in converging lines of investigation, and if they do not converge, it is an indication that there are flaws in the theories, and they are revised.” ([1], page liii) Alfred Korzybski, 1921
Quoted from (PDF) Our Electromagnetic Universe (Expanded republication PI).
Following his recommendation, and going back to Wilhelm Wien's 1901 project to consider electromagnetic mechanics as a better foundation to both kinematic and electromagnetic mechanics rather than kinematic mechanics chosen in 1907, the following developments were progressively described:
2 Recommendations
Ahmed Mohamed Ismail
Ain Shams University
This is true, but in order to linker the theory of general relativity and the quantum world into one law that answers the question: How does the quantum leap occur, my equation explained that.
In other words, that the electron disappears from one level and appears at the other level without crossing the distance between the levels between them. What is the explanation for the disappearance of the electron in one level and its appearance in another level? What my equation tells me is that the electron remains fixed in its position and does not gain energy.
But what gains energy is the fabric of space-time, which causes the upper level to contract, making it the same size as the electron’s orbit, and this makes the electron disappear and appear in the upper level.

Similar questions and discussions

Fundamental Physics is stuck in conceptual crisis and reached a dead end. What exactly is wrong with Fundamental Physics Research?
Discussion
321 replies
  • Gurcharn Singh SandhuGurcharn Singh Sandhu
Fundamental Physics Research is intended to explore the grand maze of the unknown. Throughout the last century, Physicists have occupied themselves with working out Quantum Mechanics, Relativity, Particle Physics, Astrophysics and Cosmology in all their implications. In the process, Fundamental Physics has absorbed mathematical ideas and notions of increasing sophistication and abstraction. The tragedy of the last century was the gradual shift in our focus from the physical reality to the abstract mathematical formulations, which are supposed to describe physical reality. We appear to have been steadily indoctrinated into believing that due to complexity of physical reality, we can not even demand deeper understanding and mental visualization of the basic phenomena in quantum mechanical world. Now we are stuck in plethora of unfounded Belief Systems which are hindering any real progress in Fundamental Physics Research. On the other hand, Applied Physics is supported by physical or experimental feedback as well as mental visualization. As such Applied Physics never gets stuck in abstract mathematical formulations or unfounded Belief Systems.
As a consequence, Fundamental Physics researchers have inadvertently adopted certain abstract mathematical concepts into their physical worldview. For example, the notions of virtual particles, exchange theory of interaction, probability density representing instantaneous particle location, spacetime curvature, Black Holes, Big Bang, metric expansion of Space, etc. are truly abstract mathematical concepts which have been erroneously adopted in our physical worldview as physical realities. Experimental proofs and validations of such physically unacceptable mathematical concepts are often claimed through erroneous interpretation of raw observations. Agreed that Fundamental Research does require a lot of mathematical support, but the end results of any complex mathematical processing must be applicable to the physical world and hence must come within the grasp of human mind and mental visualization.
Perhaps, it is a part of Human Nature that we find ourselves so prone to mass indoctrination by dominant vested interest groups in all fields. Our inherent capacity to use Logic and Reason gets restricted or diminished under such a state of mass indoctrination and we involuntarily join 'Group Thinking'. Fundamental Research is one such area where indoctrination of innocent students and mass hypnosis of general public is inhibiting the use of Reason and Logic for discarding erroneous beliefs like Black Holes, Big Bang, probability waves, spacetime curvature etc.
In my opinion, Fundamental Physics Research is currently plagued by three dominant syndromes.
(a) "Emperor's New Clothes" Syndrome.
Throughout the last century, Industrial development and technological advancements remained in the public limelight and won public acclaim. However, Fundamental Physics research being of somewhat abstract and slow, could not compete with engineering and technology for winning public limelight and appreciation. As such, Fundamental Physics researchers instinctively started adopting highly abstract but sensational models of Nature, that could attract public attention in wonder and amazement, to win higher public acclaim in comparison with technological advancements. The adoption of highly abstract and sensational models in Fundamental Physics research for gaining public limelight, represents "Emperor's New Clothes" Syndrome. This approach has been adopted by the mainstream Physics community and sensational models of Black Holes, gravitational waves, Big Bang, weird QM models, particle entanglement, metric expansion of space etc. all represent this syndrome. These highly illogical but sensational models of Nature have now got embedded in permanent Belief Systems of the Scientific Community.
(b) "Six Blind Men and the Elephant" Syndrome.
If we represent the Nature by the proverbial 'Elephant', then the popular tale of "Six Blind Men and the Elephant" aptly highlights the current state of Fundamental Physics research. The six blind men in the popular tale could be represented by the researchers in the fields of Astrophysics, Particle Physics, Quantum Physics, Relativity Physics, Gravitational Physics and Cosmology. Just as in the popular tale, all researchers are extremely busy in making appropriate observations and making most sophisticated models thereof to represent Nature - 'The Elephant'. Many of such models have won public applaud and even Nobel Prizes. However, making models from raw observations, without necessary physical insight, often leads to fallacious Belief systems that defy Logic and Reason. Prominent examples of Models in this category are - Black Holes, Big Bang, Gravitational Waves, Spacetime Curvature, Length Contraction, Time Dilation, Fields without medium, Exchange Theory of Interaction, Probability Density representing instantaneous electron location, Atomic Orbitals, Metric Expansion of Space, Quantum Gravity, Particle Entanglement, etc. etc.
(c) "A Frog in the Well" Syndrome.
In spite of tens of thousands of advanced research papers being published every year, there is hardly any perceptible advancement in Fundamental Physics. One reason is that under the current system of research dissemination, it is virtually impossible for any researcher to know about the research contributions of all other researchers. Second reason is that when a researcher develops a model of certain aspect of Nature, due to long mental association and efforts put in, the model tends to get embedded in one's permanent Belief System. Accordingly, each researcher will tend to develop a personal Belief system which will act as a Benchmark for evaluating the models or contributions of all other researchers. In the absence of any centralized or common research dissemination and evaluation system, the individual Belief systems will constitute a "A Frog in the Well" Syndrome, which is a great hinderance for any advancement in Fundamental Physics Research. Most independent researchers are likely to be affected by this syndrome.
Under the circumstances, even if a few researchers do put up valuable research contributions for advancement of Fundamental Physics, we cannot distinguish their voices from the background noise. In my opinion, one possible way to put the Fundamental Physics Research back on the Right Track, is to appoint an International Experts Panel for Research Evaluation, by co-opting experts from various specialist and multi-disciplinary fields. This Panel may Evaluate and Grade all published research papers that may be referred to it by various research bodies (like ResearchGate) and academic institutes. Only High Grade research papers may then be released to public media for wider dissemination.
Learned researchers are requested to give their considered opinion on the issue of "What exactly is wrong with Fundamental Physics Research?" and how to rectify the situation.
What are the actual problems in physics, astrophysics, and cosmology?
Question
15 answers
  • Valery TimkovValery Timkov
The lack of experimental data, the ambiguous representation of the real picture of the world in most models, theories, and hypotheses about the Universe, and the huge scale factor of the issues under study, have led to the fact that many problems have arisen in modern physics, astrophysics, and cosmology. Among this set, the most relevant and debatable are the following problems:
- the optimal choice of the metric tensor for solving the Einstein equation of the General Theory of Relativity, which most fully corresponds to modern experimental data. As a consequence of this optimal choice, there is a need to correct the basic equations of cosmology, which is also due to new experimental measurements of the Hubble constant;
- an ambiguous experimental estimate of the Hubble constant;
- stability of constants, the maximum transmission rate of physical interaction;
- dark energy and dark matter;
- correct choice of the coordinate system in cosmological studies;
- the physical nature of the cosmological constant;
- representations of the general structure of the Universe;
- concepts of the Big Bang, singularity point, initial conditions, and limitations;
- connections of the Standard Model of physics with gravitational interaction;
- understanding the features of the quantum-wave nature of the gravitational field;
- the physical nature of time and its relationship with real space;
- the optimal choice of the quantum-wave model of the gravitational field of the observable Universe and the development on this basis of its physical and mathematical description, which corresponds to the modern set of experimental data in astrophysics and cosmology;
- estimates of the scale factor between the microcosm and the macrocosm of the observable Universe; - estimates of the mass of distant objects of the observable Universe;
- carriers of the gravitational field and dark matter.

Related Publications

Preprint
Full-text available
The unifying quantum mechanics and general relativity have always been an important problem in modern physics. Relativity mainly studies space-time, quantum mechanics mainly studies microscopic particles. First, based on the operator form of quantum mechanics, we discuss the space-time operator and its generalization, and propose some operator equa...
Book
Beautifully illustrated and engagingly written, Lectures on Quantum Mechanics presents theoretical physics with a breathtaking array of examples and anecdotes. Basdevant's style is clear and stimulating, in the manner of a brisk classroom lecture that students can follow with ease and enjoyment. Here is a sample of the book's style, from the openin...
Article
A first course in two of the 20th century's most exciting contributions to physics: special relativity and quantum theory. Historical material is incorporated into the exposition. Coverage is broad and deep, offering the instructor flexibility in presentation. Nearly every section contains at least one illustrative example (with all calculations),...
Got a technical question?
Get high-quality answers from experts.