The Interdisciplinary Hydrology Laboratory

About the lab

The Interdisciplinary Hydrology Laboratory (IHL) mission is to improve understanding of physical hydrologic processes and advance watershed management and water security.

Specific Areas of Focus Include:

- Physical Hydrology
- Hydrology and Watershed Management
- Freshwater Supply Regimes (Quantity, Timing)
- Plant Water Relations / Evapotranspiration
- Biophysical Ecology and Ecohydrology
- Water Quality / Biogeochemistry
- Shallow Groundwater Processes
- Hydrologic / Watershed Modeling
- Climate and Hydrologic Change

Featured research (12)

Best management practices (BMP) are defined in the United States Clean Water Act (CWA) as practices or measures that have been demonstrated to be successful in protecting a given water resource from nonpoint source pollution. Unfortunately, the greatest majority of BMPs remain unvalidated in terms of demonstrations of success. Further, there is not a broadly accepted or standardized process of BMP implementation and monitoring methods. Conceivably, if standardized BMP validations were a possibility, practices would be much more transferrable, comparable, and prescriptive. The purpose of this brief communication is to present a generalized yet integrated and customizable BMP decision-making process to encourage decision makers to more deliberately work towards the establishment of standardized approaches to BMP monitoring and validation in mixed-use and/or municipal watersheds. Decision-making processes and challenges to BMP implementation and monitoring are presented that should be considered to advance the practice(s) of BMP implementation. Acceptance of standard approaches may result in more organized and transferrable BMP implementation policies and increased confidence in the responsible use of taxpayer dollars through broad acceptance of methods that yield predictable and replicable results.
Stream and shallow groundwater responses to rainfall are characterized by high spatial variability, but hydrologic response variability across small, agro‐forested sub‐catchments remains poorly understood. Conceivably, improved understanding in this regard will result in agricultural practices that more effectively limit nutrient runoff, erosion, and pollutant transport. Terrestrial hydrologic response approaches can provide valuable information on stream‐aquifer connectivity in these mixed‐use watersheds. A study was implemented, including eight stream and co‐located shallow groundwater monitoring sites, in a small sub‐catchment of the Chesapeake Bay Watershed in the Northeast, USA to advance this ongoing need. During the study period, 100 precipitation receiving days (i.e., 24‐hour periods, midnight to midnight) were observed. On average, the groundwater table responded more to precipitation than stream stage (level change of 0.03 versus 0.01 m and rainfall‐normalized level change estimate of 3.81 versus 3.37). Median stream stage responses, groundwater table responses, and response ratios were significantly different between sub‐catchments (n = 8; p < 0.001). Study area average precipitation thresholds for runoff and shallow groundwater flow were 2.8 and 0.6 cm, respectively. Individual sub‐catchment thresholds ranged from 0.5 to 2.8 cm for runoff and 0.2 to 1.3 cm for shallow groundwater flow. Normalized response lag times between the stream and shallow groundwater ranged from ‐0.50 to 3.90 s·cm‐1, indicating that stormflow in one stream section was regulated by groundwater flow during the period of study. The observed differences in hydrologic responses to precipitation advance future modeling efforts by providing examples of how terrestrial groundwater response methods can be used to investigate sub‐catchment spatial variability in stream‐aquifer gradients with co‐located shallow groundwater and stream stage data. Additionally, results demonstrate asynchronous stream and shallow groundwater responses on precipitation‐receiving days, which may hold important implications for modeling hydrologic and biogeochemical fate and transport processes in small, agro‐forested catchments. This article is protected by copyright. All rights reserved.
Anthropogenic and natural disturbances to freshwater quantity and quality is a greater issue for society than ever before. To successfully restore water resources in impaired watersheds requires understanding the interactions between hydrology, climate, land use, water quality, ecology, social and economic pressures. Current understanding of these interactions is limited primarily by a lack of innovation, investment, and interdisciplinary collaboration. This Special Issue of Water includes 18 articles broadly addressing investigative areas related to experimental study designs and modeling (n = 8), freshwater pollutants of concern (n = 7), and human dimensions of water use and management (n = 3). Results demonstrate the immense, globally transferable value of the experimental watershed approach, the relevance and critical importance of current integrated studies of pollutants of concern, and the imperative to include human sociological and economic processes in water resources investigations. Study results encourage cooperation, trust and innovation, between watershed stakeholders to reach common goals to improve and sustain the resource. The publications in this Special Issue are substantial; however, managers remain insufficiently informed to make best water resource decisions amidst combined influences of land use change, rapid ongoing human population growth, and changing environmental conditions. There is thus, a persistent need for further advancements in integrated and interdisciplinary research to improve scientific understanding, management and future sustainability of water resources.
There is an immediate need to use available modeling tools to quantify environmental flows targets where changing climate and human activity has altered hydroecologically important streamflow regimes. A model performance assessment was undertaken using observed data collected from five nested gauging sites in a mixed land use watershed of the central US. An integrated modeling approach was used to couple The Soil and Water Assessment Tool (SWAT version 2012), and The Hydrologic Engineering Center's River Analysis System (HEC-RAS version 5.0.7). SWAT was used to generate effective rainfall needed to run HEC-RAS rain-on-grid two-dimensional hydrodynamic simulations. Model calibration results showed the potential usefulness of coupling SWAT and HEC-RAS using an integrated modeling approach. For example, PBIAS of 8.3%, NSE value of 0.84, and coefficient of determination (R 2) value of 0.80 at a highly urbanized monitoring site used for model calibration. Split-site validation results showed PBIAS values that ranged from 10.4 to 33.8%, NSE values that ranged from 0.33 to 0.92, and R 2 values that ranged from 0.86 to 0.97. Results showed that 2D rain-on-grid HEC-RAS simulations can produce realistic simulations of stage hydrograph response when: (1) areal effective precipitation is used for 2D HEC-RAS rain-on-grid forcing's, (2) HEC-RAS is calibrated to observed data during the event of interest, (3) there are not substantial sources of backwatering from outside the models geometric data, and (4) during saturated antecedent soil moisture conditions surface DEM's adequately describe overland flow paths. This model performance assessment is among the first, if not the first, to show calibration and validation results associated with 2D HEC-RAS rain-on-grid simulations at a watershed scale. Results highlight the need for time-varying roughness coefficients to account for soil moisture conditions, and point to the efficacy of using a SWAT/ HEC-RAS integrated modeling approach to generate event-based environmental flows information.
Urbanization and agricultural intensification can transform landscapes. Changes in land-use can lead to increases in storm runoff and nutrient loadings which can impair the health and function of stream ecosystems. Microorganisms are an integral component of stream ecosystems. Due to the sensitivity of microorganisms to perturbations, changes in hydrology and water chemistry may alter microbial activity and structure. These shifts in microbial community dynamics may alter stream metabolism and water quality, potentially impacting higher trophic levels. Here we examine the effects of land-use and associated changes in water chemistry on sediment microbial communities by studying the West Run Watershed (WRW) a mixed-land-use system in West Virginia, USA. Streams were sampled throughout the growing season at six sites within the WRW spanning different levels of land use intensification. The proportion of land impacted by agricultural and urban development was positively correlated with temporal variation in stream sediment microbial community composition (adj R² = 0.65), suggesting development can destabilize microbial communities. Moreover, streams in developed watersheds had an increased metabolic quotient (20-50% higher), this indicates that microorganisms have greater respiration per unit biomass and signifies reduced metabolic efficiency. Further, our results suggest that land use associated changes in water chemistry alter microbial function both directly and indirectly via changes in microbial community composition and biomass. Taken together our results suggest that highly developed watersheds with elevated conductivity, metal ion concentration, and pH impose stress on microbial communities resulting in reduced microbial efficiency and elevated respiration.

Lab head

Jason A. Hubbart
  • Division of Forestry & Natural Resources
About Jason A. Hubbart
  • Dr. Jason A. Hubbart is a professor of physical hydrology in the Davis College of Agriculture, Natural Resources and Design at West Virginia University. Among other appointments, Dr. Hubbart serves as the West Virginia gubernatorial appointee to the Science and Technical Advisory Committee of the Chesapeake Bay Program, and as the West Virginia ambassador to the World Bank Global Water Partnership.

Members (1)

Bidisha Abesh
  • West Virginia University
Lilai Jin
Lilai Jin
  • Not confirmed yet

Alumni (24)

Pennan Chinnasamy
  • Indian Institute of Technology Bombay
Elliott Kellner
  • Donald Danforth Plant Science Center
Liang Wei
  • Lanzhou University
Evan Kutta
  • Institute of Water Security and Science