Lab
Termite Research Team
Institution: Czech University of Life Sciences Prague
Department: Faculty of Tropical Agro Sciences
About the lab
We are a lab interested to termites, their phylogeny, microorganismal symbionts and ecology. We also work on behavior of termites, chemical communication and alarm communication.
Featured research (10)
The decomposition of wood and detritus is challenging to most macroscopic organisms due to the recalcitrant nature of lignocellulose. Moreover, woody plants often protect themselves by synthesizing toxic or nocent compounds which infuse their tissues. Termites are essential wood decomposers in warmer terrestrial ecosystems and, as such, they have to cope with high concentrations of plant toxins in wood. In this paper, we evaluated the influence of wood age on the gut microbial (bacterial and fungal) communities associated with the termites Reticulitermes flavipes (Rhinotermitidae) (Kollar, 1837) and Microcerotermes biroi (Termitidae) (Desneux, 1905). We confirmed that the secondary metabolite concentration decreased with wood age. We identified a core microbial consortium maintained in the gut of R. flavipes and M. biroi and found that its diversity and composition were not altered by the wood age. Therefore, the concentration of secondary metabolites had no effect on the termite gut microbiome. We also found that both termite feeding activities and wood age affect the wood microbiome. Whether the increasing relative abundance of microbes with termite activities is beneficial to the termites is unknown and remains to be investigated. IMPORTANCE Termites can feed on wood thanks to their association with their gut microbes. However, the current understanding of termites as holobiont is limited. To our knowledge, no studies comprehensively reveal the influence of wood age on the termite-associated microbial assemblage. The wood of many tree species contains high concentrations of plant toxins that can vary with their age and may influence microbes. Here, we studied the impact of Norway spruce wood of varying ages and terpene concentrations on the microbial communities associated with the termites Reticulitermes flavipes (Rhinotermitidae) and Microcerotermes biroi (Termitidae). We performed a bacterial 16S rRNA and fungal ITS2 metabarcoding study to reveal the microbial communities associated with R. flavipes and M. biroi and their impact on shaping the wood microbiome. We noted that a stable core microbiome in the termites was unaltered by the feeding substrate, while termite activities influenced the wood microbiome, suggesting that plant secondary metabolites have negligible effects on the termite gut microbiome. Hence, our study shed new insights into the termite-associated microbial assemblage under the influence of varying amounts of terpene content in wood and provides a groundwork for future investigations for developing symbiont-mediated termite control measures.
Machadotermes is one of the basal Apicotermitinae genera, living in tropical West Africa. Old observations suggested the presence of a new gland, the intramandibular gland, in Machadotermes soldiers. Here, by combining micro-computed tomography, optical and electron microscopy, we showed that the gland exists in Machadotermes soldiers only as an active exocrine organ, consisting of numerous class III cells (bicellular units made of secretory and canal cells), within which the secretion is produced in rough endoplasmic reticulum, and modified and stored in Golgi apparatus. The final secretion is released out from the body through epicuticular canals running through the mandible cuticle to the exterior. We also studied three other Apicotermitinae, Indotermes, Duplidentitermes, and Jugositermes, in which this gland is absent. We speculate that the secretion of this gland may be used as a general protectant or antimicrobial agent. In addition, we observed that the frontal gland, a specific defensive organ in termites, is absent in Machadotermes soldiers while it is tiny in Indotermes soldiers and small in Duplidentitermes and Jugositermes soldiers. At last, we could also observe in all these species the labral, mandibular and labial glands, other exocrine glands present in all termite species studied so far.
Termites are key soil bioturbators in tropical ecosystems. Apart from mound nests constructed by some advanced lineages, most of the species use their faeces, oral secretions, debris, or soil aggregates to protect themselves from predators and desiccation when they go out to forage. Although this soil ‘sheeting’ is considered to play a key role in soil functioning, the properties of this termite-made material has been poorly studied. The few available data showed that sheeting properties are highly variable with positive, neutral or negative impacts on soil C and clay content, and consequently on soil aggregate stability. Therefore, the objective of this study was to determine the factors controlling the physical (particle size fractions and structural stability) and chemical (pH, electrical conductivity and carbon content) properties of soil sheeting produced by termite species encompassing all feeding and building categories using a dataset representative of an important diversity of biotopes coming from 21 countries from all continents colonized by termites. We showed that sheeting properties were explained by the properties of their environment, and especially by those of the bulk soil (linear relationships), followed in a lesser extent by the mean annual precipitation and biotope. Classic hypotheses related to termite feeding and building strategies were not hold by our analysis. However, the distinction of termites into fungus-growing and non-fungus growing species was useful when differentiating the impact of termites on soil electrical conductivity, C content, and structural stability. The large variability observed suggests the need to redefine termite functional groups based on their impacts on soil properties using a trait-based approach from morphological, anatomical and/or physiological traits.
Soil-feeding termites are abundant in tropical regions and play an important role in soil bioturbation and in the organic matter cycle. The Apicotermitinae are arguably the most diverse lineage of soil-feeding termites, but they are also the most understudied, probably because many species are soldierless, which makes identification difficult. Although the backbone of the termite phylogenetic tree is now well-resolved, the relationships among representatives of Apicotermitinae are still largely unknown. Here, we present phylogenetic trees inferred from 113 mitochondrial genomes of Apicotermitinae representative of the group diversity. Our analyses confirm the monophyly of the Apicotermitinae and the basal position of soldiered taxa, within which two lineages of soldierless species are nested. We describe two new monotypic genera, whose phylogenetic position appeared of special interest: Koutabatermes gen. n., lies on a long branch among soldiered taxa, and Apolemotermes gen. n., is sister to Adaiphrotermes. We resolved, with high support, the position of Asian genera as sister group of a clade comprising the monophyletic neotropical Anoplotermes-group and the small African clade including Adaiphrotermes and Apolemotermes gen. n.. Our trees cast light on the intergeneric and interspecific relationships within Apicotermitinae and reveal the polyphyly of several genera, including Ruptitermes, Astalotermes and Anoplotermes. Biogeographic reconstructions revealed two dispersal events out of Africa, one to the Oriental realm and one to the Neotropical realm. Overall, the timing of Apicotermitinae diversification and dispersal, following the Eocene–Oligocene boundary, matches that found for other groups of Neoisoptera. Nomenclatural acts are registered in ZooBank:
http://zoobank.org/urn:lsid:zoobank.org:pub:CA1A21B6-573E-4855-8C88-372453C922F7.
The Neotropical family Serritermitidae is a monophyletic group of termites including two genera, Serritermes and Glossotermes, with different way-of-life, the former being the sole obligatory inquiline among “lower” termites, while the latter is a single-site nester feeding on dry rotten red wood. Like the most advanced termite’s family, the Termitidae, the Serritermitidae is an inner group of the paraphyletic family “Rhinotermitidae”, but unlike the Termitidae, it has been poorly studied so far. In this study, we bring new insights into the chemical ecology of this key taxon. We studied the trail-following pheromone of Serritermes serrifer and we identified (10Z,13Z)-nonadeca-10,13-dien-2-one as the only component of the trail-following pheromone of this termite species, as it is the case in Glossotermes, the other genus belonging to Serritermitidae. This result makes the family Serritermitidae clearly distinct from other Rhinotermitidae, such as the termites Psammotermes and Prorhinotermes, that use (3Z,6Z,8E)-dodeca-3,6,8-trien-1-ol and/or neocembrene as trail-following pheromones.
Lab head

Department
- Faculty of Tropical Agro Sciences
About Jan Šobotník
- Termite research team is not an institution, but a state of mind. We are group of people sharing the passion to science, and to insects and lives. We are opened to all new collaborations, and while Research Gate shows an overview of our history and presence, you can find more news at FaceBook (facebook.com/termiteresearchteam). Let all beings be happy!
Members (10)
Delphine Soulet
Olivier Delattre
Cédric Aumont
Katja Platt
Deniz Öztas

Jiří Kindl

Shulin He