Lab
Stephen T. Liddle's Lab
Featured research (2)
We report the synthesis and characterisation of the compounds [An(TrenDMBS){Pn(SiMe3)2}] and [An(TrenTIPS){Pn(SiMe3)2}] [TrenDMBS = N(CH2CH2NSiMe2But)3, An = U, Pn = P, As, Sb, Bi; An = Th, Pn = P, As; TrenTIPS = N(CH2CH2NSiPri3)3, An = U, Pn = P, As, Sb; An = Th, Pn = P, As, Sb]. The U-Sb and Th-Sb moieties are unprecedented examples of any kind of An-Sb molecular bond, and the U-Bi bond is the first electron-precise one. The Th-Bi combination was too unstable to isolate, underscoring the fragility of these linkages. However, the U-Bi complex is the heaviest electron-precise pairing of two elements involving an actinide on a macroscopic scale under ambient conditions, and this is exceeded only by An-An pairings prepared under cryogenic matrix isolation conditions. Thermolysis and photolysis experiments suggest that the U-Pn bonds degrade by hemolytic bond cleavage, whereas the more redox robust thorium compounds engage in an acid-base/dehydrocoupling route.
We report the synthesis and characterisation of the compounds [An(TrenDMBS){Pn(SiMe3)2}] and [An(TrenTIPS){Pn(SiMe3)2}] [TrenDMBS = N(CH2CH2NSiMe2But)3, An = U, Pn = P, As, Sb, Bi; An = Th, Pn = P, As; TrenTIPS = N(CH2CH2NSiPri3)3, An = U, Pn = P, As, Sb; An = Th, Pn = P, As, Sb]. The U-Sb and Th-Sb moieties are unprecedented examples of any kind of An-Sb molecular bond, and the U-Bi bond is the first electron-precise one. The Th-Bi combination was too unstable to isolate, underscoring the fragility of these linkages. However, the U-Bi complex is the heaviest electron-precise pairing of two elements involving an actinide on a macroscopic scale under ambient conditions, and this is exceeded only by An-An pairings prepared under cryogenic matrix isolation conditions. Thermolysis and photolysis experiments suggest that the U-Pn bonds degrade by hemolytic bond cleavage, whereas the more redox robust thorium compounds engage in an acid-base/dehydrocoupling route.
Lab head
Members (4)
Manfred Scheer
Benedict M. Gardner
Matthew Gregson
Elizabeth P. Wildman