Featured research (3)

The nutritional composition of food is often complex as resources contain a plethora of different chemical compounds, some of them more, some less meaningful to consumers. Plant pollen, a major food source for bees, is of particular importance as it comprises nearly all macro- and micronutrients required by bees for successful development and reproduction. However, perceiving and evaluating all nutrients may be tedious and impair quick foraging decisions. It is therefore likely that nutrient perception is restricted to specific nutrients or nutrient groups. To better understand the role of taste in pollen quality assessment by bees we investigated nutrient perception in the Western honey bee, Apis mellifera. We tested if the bees were able to perceive concentration differences in amino acids, fatty acids, and sterols, three highly important nutrient groups in pollen, via antennal reception. By means of proboscis extension response (PER) experiments with chemotactile stimulation, we could show that honey bees can distinguish between pollen differing in amino and fatty acid concentration, but not in sterol concentration. Bees were also not able to perceive sterols when presented alone. Our finding suggests that assessment of pollen protein and lipid content is prioritized over sterol content.
An adequate supply of macro- and micronutrients determines health and reproductive success in most animals. Many bee species, for example, collect nectar and pollen to satisfy their demands for carbohydrates, protein and fat, respectively. Bees can assess the quality of pollen by feeding on it, but also pre-digestively by means of chemotactile assessment. Whether they additionally use larval nutritional experience, as has been shown for Drosophila melanogaster and Bombyx mori , is unknown. In this study, we tested whether pollen selection of bumblebee foragers is affected by nutritional experience (acquired before the onset of foraging) or solely by food quality. Bumblebee larvae were fed with one out of three different pollen blends. As adults, they were offered all three blends when they started foraging for the first time. We found all treatment groups to prefer one out of the three blends. This blend provided the highest nutritional quality and increased the bees' lifespan, as shown by feeding studies with microcolonies. Besides, bees also chose the pollen blend fed during their larval stage more often than expected, indicating a significant effect of pre-foraging experience on adult pollen foraging behaviour. The combination of both direct pollen quality assessment and pre-foraging experience (i.e. during the larval phase or as early imagines) seems to allow foraging bumblebees to efficiently select the most suitable pollen for their colony.
Dietary macro-nutrients (i.e., carbohydrates, protein, and fat) are important for bee larval development and, thus, colony health and fitness. To which extent different diets (varying in macro-nutrient composition) affect adult bees and whether they can thrive on nectar as the sole amino acid source has, however, been little investigated. We investigated how diets varying in protein concentration and overall nutrient composition affected consumption, longevity, and breeding behavior of the buff-tailed bumble bee, Bombus terrestris (Hymenoptera: Apidae). Queenless micro-colonies were fed either natural nutrient sources (pollen), nearly pure protein (i.e., the milk protein casein), or sucrose solutions with low and with high essential amino acid content in concentrations as can be found in nectar. We observed micro-colonies for 110 days. We found that longevity was highest for pure pollen and lowest for pure sucrose solution and sucrose solution supplemented with amino acids in concentrations as found in the nectar of several plant species. Adding higher concentrations of amino acids to sucrose solution did only slightly increase longevity compared to sucrose alone. Consequently, sucrose solution with the applied concentrations and proportions of amino acids or other protein sources (e.g., casein) alone did not meet the nutritional needs of healthy adult bumble bees. In fact, longevity was highest and reproduction only successful in micro-colonies fed pollen. These results indicate that, in addition to carbohydrates and protein, adult bumble bees, like larvae, need further nutrients (e.g., lipids and micro-nutrients) for their well-being. An appropriate nutritional composition seemed to be best provided by floral pollen, suggesting that pollen is an essential dietary component not only for larvae but also for adult bees.

Lab head

Sara Diana Leonhardt
Department
  • Department of Ecology and Ecosystem Management
About Sara Diana Leonhardt
  • No living being survives without food and shelter. The struggle for resource acquisition has thus shaped most biotic interactions. Plant-insect interactions, both antagonistic and mutualistic ones, frequently (if not always) involve resource allocation, shaping the ecology and life history traits of plants and insects alike. I am interested in the mechanisms by which insects exploit resources and how resources influence their (chemical) ecology, fitness and diversity.

Members (4)

Fabian Ruedenauer
  • Technische Universität München
Ugo Diniz
  • Technische Universität München
Carmen Alexandra Nebauer
  • Technische Universität München
Shao Xiong Chui
  • Technische Universität München