Lab

Robert W. Spekkens's Lab

Institution: Perimeter Institute

About the lab

Perimeter Institute Quantum Foundation Group

Featured research (7)

When should a given operational phenomenology be deemed to admit of a classical explanation? When it can be realized in a generalized-noncontextual ontological model. The case for answering the question in this fashion has been made in many previous works and motivates research on the notion of generalized noncontextuality. Many criticisms and concerns have been raised, however, regarding the definition of this notion and of the possibility of testing it experimentally. In this work, we respond to some of the most common of these objections. One such objection is that the existence of a classical record of which laboratory procedure was actually performed in each run of an experiment implies that the operational equivalence relations that are a necessary ingredient of any proof of the failure of noncontextuality do not hold, and consequently that conclusions of nonclassicality based on these equivalences are mistaken. We explain why this concern is unfounded. Our response affords the opportunity for us to clarify certain facts about generalized noncontextuality, such as the possibility of having proofs of its failure based on a consideration of the subsystem structure of composite systems. Similarly, through our responses to each of the other objections, we elucidate some under-appreciated facts about the notion of generalized noncontextuality and experimental tests thereof.
Our article [arXiv:2111.13727(2021)] argues that the phenomenology of interference that is traditionally regarded as problematic does not, in fact, capture the essence of quantum theory -- contrary to the claims of Feynman and many others. It does so by demonstrating the existence of a physical theory, which we term the "toy field theory", that reproduces this phenomenology but which does not sacrifice the classical worldview. In their Comment [arXiv:2204.01768(2022)], Hance and Hossenfelder dispute our claim. Correcting mistaken claims found therein and responding to their criticisms provides us with an opportunity to further clarify some of the ideas in our article.
Quantum interference phenomena are widely viewed as posing a challenge to the classical worldview. Feynman even went so far as to proclaim that they are the only mystery and the basic peculiarity of quantum mechanics. Many have also argued that such phenomena force us to accept a number of radical interpretational conclusions, including: that a photon is neither a particle nor a wave but rather a schizophrenic sort of entity that toggles between the two possibilities, that reality is observer-dependent, and that systems either do not have properties prior to measurements or else have properties that are subject to nonlocal or backwards-in-time causal influences. In this work, we show that such conclusions are not, in fact, forced on us by the phenomena. We do so by describing an alternative to quantum theory, a statistical theory of a classical discrete field (the `toy field theory') that reproduces the relevant phenomenology of quantum interference while rejecting these radical interpretational claims. It also reproduces a number of related interference experiments that are thought to support these interpretational claims, such as the Elitzur-Vaidman bomb tester, Wheeler's delayed-choice experiment, and the quantum eraser experiment. The systems in the toy field theory are field modes, each of which possesses, at all times, both a particle-like property (a discrete occupation number) and a wave-like property (a discrete phase). Although these two properties are jointly possessed, the theory stipulates that they cannot be jointly known. The phenomenology that is generally cited in favour of nonlocal or backwards-in-time causal influences ends up being explained in terms of inferences about distant or past systems, and all that is observer-dependent is the observer's knowledge of reality, not reality itself.
The existence of incompatible measurements is often believed to be a feature of quantum theory which signals its inconsistency with any classical worldview. To prove the failure of classicality in the sense of Kochen-Specker noncontextuality, one does indeed require sets of incompatible measurements. However, a more broadly applicable and more permissive notion of classicality is the existence of a generalized-noncontextual ontological model. In particular, this notion can imply constraints on the representation of outcomes even within a single nonprojective measurement. We leverage this fact to demonstrate that measurement incompatibility is neither necessary nor sufficient for proofs of the failure of generalized noncontextuality. Furthermore, we show that every proof of the failure of generalized noncontextuality in a prepare-measure scenario can be converted into a proof of the failure of generalized noncontextuality in a corresponding scenario with no incompatible measurements.
We take a resource-theoretic approach to the problem of quantifying nonclassicality in Bell scenarios. The resources are conceptualized as probabilistic processes from the setting variables to the outcome variables having a particular causal structure, namely, one wherein the wings are only connected by a common cause. We term them "common-cause boxes". We define the distinction between classical and nonclassical resources in terms of whether or not a classical causal model can explain the correlations. One can then quantify the relative nonclassicality of resources by considering their interconvertibility relative to the set of operations that can be implemented using a classical common cause (which correspond to local operations and shared randomness). We prove that the set of free operations forms a polytope, which in turn allows us to derive an efficient algorithm for deciding whether one resource can be converted to another. We moreover define two distinct monotones with simple closed-form expressions in the two-party binary-setting binary-outcome scenario, and use these to reveal various properties of the pre-order of resources, including a lower bound on the cardinality of any complete set of monotones. In particular, we show that the information contained in the degrees of violation of facet-defining Bell inequalities is not sufficient for quantifying nonclassicality, even though it is sufficient for witnessing nonclassicality. Finally, we show that the continuous set of convexly extremal quantumly realizable correlations are all at the top of the pre-order of quantumly realizable correlations. In addition to providing new insights on Bell nonclassicality, our work also sets the stage for quantifying nonclassicality in more general causal networks.

Lab head

Members (3)

Elie Wolfe
  • Perimeter Institute
David Schmid
  • Perimeter Institute
Tomáš Gonda
  • Perimeter Institute
Denis Rosset
Denis Rosset
  • Not confirmed yet
Thomas C. Fraser
Thomas C. Fraser
  • Not confirmed yet