Lab

Research Group on Human-Computer Interaction & Visual Analytics (VIS)


About the lab

The research group of Visual Analytics and Human-Computer-Interaction of the Darmstadt University of Applied Sciences (h_da | vis) researches and works on solutions on the basis of Big Data with the main focus on industrial benefits. Visual Analytics together with Data Enrichment and Data Mining is a key enabler to gather insights and finally helps in performing better decision-making.

Our major work is based on our novel Scitics technology and is aligned to Business Analytics, where we aim to support analysts in analyzing and extracting trends by using public, research and internal data for technology, innovation and strategy management.

More information you’ll find under: http://www.vis.h-da.de

Featured research (34)

The huge amount of scientific content increases the workload for evaluating state-of-the-art research and the complexity of creating novel and innovative methods and approaches. Although many approaches exist using recommendations in various application domains, the full potential of recommendation systems is not yet fully utilized. Particularly, there are missing approaches that combine interactive visualizations with recommendation systems to enable an analytical investigation of the current state of technology and science. We, therefore, propose in this work a novel Visual Analytics approach that integrates recommendation methods as the model and provides a seamless integration of both interactive visualizations and recommendation systems. We utilize MAE and RMSE metrics and human validation to identify the best approach out of eight approaches that differ in vectorization and similarity algorithms to recommend scientific items. We contribute novel approaches for recommending scientific publications, venues, and projects, based on comparing traditional and deep-learning-based recommendation approaches. Furthermore, we propose a Visual Analytics approach that uses recommendation methods for analytical elaboration. This work shows the potential of integrating recommendation systems into scientific research and identifies potential future directions for improving the proposed model.
Time series forecasting has been performed for decades in both science and industry. The forecasting models have evolved steadily over time. Statistical methods have been used for many years and were later complemented by neural network approaches. Currently, hybrid approaches are increasingly presented, aiming to combine both methods' advantages. These hybrid forecasting methods could lead to more accurate predictions and enhance and improve visual analytics systems for making decisions or for supporting the decision-making process. In this work, we conducted a systematic literature review using the PRISMA methodology and investigated various hybrid forecasting approaches in detail. The exact procedure for searching and filtering and the databases in which we performed the search were documented and supplemented by a PRISMA flow chart. From a total of 1435 results, we included 21 works in this review through various filtering steps and exclusion criteria. We examined these works in detail and collected the quality of the prediction results. We summarized the error values in a table to investigate whether hybrid forecasting approaches deliver better results. We concluded that all investigated hybrid forecasting methods perform better than individual ones. Based on the results of the PRISMA study, the possible applications of hybrid prediction approaches in visual analytics systems for decision making are discussed and illustrated using an exemplary visualization.
Studies have shown that although having more information improves the quality of decision-making, information overload causes adverse effects on decision quality. Visual analytics and recommendation systems counter this adverse effect on decision-making. Accurately identifying relevant information can reduce the noise during exploration and improve decision-making. These countermeasures also help scientists make correct decisions during research. We present a novel and intuitive approach that supports real-time collaboration. In this paper, we instantiate our approach to scientific writing and propose a system that supports scientists. The proposed system analyzes text as it is being written and recommends similar publications based on the written text through similarity algorithms. By analyzing text as it is being written, it is possible to provide targeted real-time recommendations to improve decision-making during research by finding relevant publications that might not have been otherwise found in the initial research phase. This approach allows the recommendations to evolve throughout the writing process, as recommendations begin on a paragraph-based level and progress throughout the entire written text. This approach yields various possible use cases discussed in our work. Furthermore, the recommendations are presented in a visual analytics system to further improve scientists’ decision-making capabilities.
Systematic reviews play an essential role in various disciplines. Particularly, in biomedical sciences, systematic reviews according to a predefined schema and protocol are how related literature is analyzed. Although a protocol-based systematic review is replicable and provides the required information to reproduce each step and refine them, such a systematic review is time-consuming and may get complex. To face this challenge, automatic methods can be applied that support researchers in their systematic analysis process. The combination of artificial intelligence for automatic information extraction from scientific literature with interactive visualizations as a Visual Analytics system can lead to sophisticated analysis and protocoling of the review process. We introduce in this paper a novel Visual Analytics approach and system that enables researchers to visually search and explore scientific publications and generate a protocol based on the PRISMA protocol and the PRISMA statement.
Strategic foresight, corporate foresight, and technology management enable firms to detect discontinuous changes early and develop future courses for a more sophisticated market positioning. The enhancements in machine learning and artificial intelligence allow more automatic detection of early trends to create future courses and make strategic decisions. Visual Analytics combines methods of automated data analysis through machine learning methods and interactive visualizations. It enables a far better way to gather insights from a vast amount of data to make a strategic decision. While Visual Analytics got various models and approaches to enable strategic decision-making, the analysis of trends is still a matter of research. The forecasting approaches and involvement of humans in the visual trend analysis process require further investigation that will lead to sophisticated analytical methods. We introduce in this paper a novel model of Visual Analytics for decision-making, particularly for technology management, through early trends from scientific publications. We combine Corporate Foresight and Visual Analytics and propose a machine learning-based Technology Roadmapping based on our previous work. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

Lab head

Kawa Nazemi
Department
  • Faculty of Media
About Kawa Nazemi
  • I am a full professor of Human-Computer Interaction & Visual Analytics at the Darmstadt University of Applied Sciences. My research group and I investigate in particular machine learning methods combined with humans' perception and cognition to enable new insights from heterogeneous data. I am further adjunct senior lecturer at Cork Institute of Technology and adjunct lecturer at the Technische Universität Darmstadt.

Members (6)

Dirk Burkhardt
  • Software AG
Lukas Kaupp
  • Darmstadt University of Applied Sciences
Nicola Below
  • Darmstadt University of Applied Sciences
Lennart B. Sina
  • Darmstadt University of Applied Sciences
Midhad Blazevic
  • Darmstadt University of Applied Sciences
Cristian A. Secco
  • Darmstadt University of Applied Sciences

Alumni (2)

Matthias Breyer
Matthias Breyer
Private Profile
Private Profile