Lab

Raju Gottumukkala's Lab

Featured research (4)

Travel patterns and mobility affect the spread of infectious diseases like COVID-19. However, we do not know to what extent local vs. visitor mobility affects the growth in the number of cases. This study evaluates the impact of state-level local vs. visitor mobility in understanding the growth with respect to the number of cases for COVID spread in the United States between March 1, 2020, and December 31, 2020. Two metrics, namely local and visitor transmission risk, were extracted from mobility data to capture the transmission potential of COVID-19 through mobility. A combination of the three factors: the current number of cases, local transmission risk, and the visitor transmission risk, are used to model the future number of cases using various machine learning models. The factors that contribute to better forecast performance are the ones that impact the number of cases. The statistical significance of the forecasts is also evaluated using the Diebold–Mariano test. Finally, the performance of models is compared for three waves across all 50 states. The results show that visitor mobility significantly impacts the case growth by improving the prediction accuracy by 33.78%. We also observe that the impact of visitor mobility is more pronounced during the first peak, i.e., March– June 2020
Advances in wearable technologies provide the opportunity to continuously monitor many physiological variables. Stress detection has gained increased attention in recent years, especially because early stress detection can help individuals better manage health to minimize the negative impacts of long-term stress exposure. This paper provides a unique stress detection dataset that was created in a natural working environment in a hospital. This dataset is a collection of biometric data of nurses during the COVID-19 outbreak. Studying stress "in the wild" in a work environment is complex due to the influence of many social, cultural and individuals experience in dealing with stressful conditions. In order to address these concerns, we captured both the physiological data and associated context pertaining to the stress events. Specific physiological variables that were monitored included electrodermal activity, heart rate, skin temperature, and accelerometer data of the nurse subjects. A periodic smartphone-administered survey also captured the contributing factors for the detected stress events. A database containing the signals, stress events, and survey responses is available upon request.
Containing the COVID-19 pandemic while balancing the economy has proven to be quite a challenge for the world. We still have limited understanding of which combination of policies have been most effective in flattening the curve; given the challenges of the dynamic and evolving nature of the pandemic, lack of quality data etc. This paper introduces a novel data mining-based approach to understand the effects of different non-pharmaceutical interventions in containing the COVID-19 infection rate. We used the association rule mining approach to perform descriptive data mining on publicly available data for 50 states in the United States to understand the similarity and differences among various policies and underlying conditions that led to transitions between different infection growth curve phases. We used a multi-peak logistic growth model to label the different phases of infection growth curve. The common trends in the data were analyzed with respect to lockdowns, face mask mandates, mobility, and infection growth. We observed that face mask mandates combined with mobility reduction through moderate stay-at-home orders were most effective in reducing the number of COVID-19 cases across various states.

Lab head

Raju Gottumukkala

Members (2)

Satya Katragadda
  • University of Louisiana at Lafayette
Rizwan Merchant
  • University of Louisiana at Lafayette
Ravi Teja Bhupatiraju
Ravi Teja Bhupatiraju
  • Not confirmed yet
Paul Darby
Paul Darby
  • Not confirmed yet
Andrew Roche
Andrew Roche
  • Not confirmed yet
Adam Tauzin
Adam Tauzin
  • Not confirmed yet
Kaleb Leon
Kaleb Leon
  • Not confirmed yet