Lab
RMIT UAS Research Team
Institution: RMIT University
About the lab
The RMIT Unmanned Aircraft Systems Research Team (RUASRT) is dedicated to enabling the safe and efficient operation of Unmanned Aircraft Systems (UAS) in a variety of civil, commercial and defence applications.
The RUASRT conducts research into the critical technical, operational, social and safety challenges facing the emerging UAS aviation sector. Our research is proven through the strength of our research collaborations.
The RUASRT conducts research into the critical technical, operational, social and safety challenges facing the emerging UAS aviation sector. Our research is proven through the strength of our research collaborations.
Featured research (12)
This study investigates the use of rapidly actuated leading-edge and trailing-edge control surfaces to improve the control authority of small fixed-wing drones. Static and dynamic characteristics were investigated and presented in two separate papers. In this paper, the focus is on the dynamic effects observed from rapidly actuated 30% chord leading- or trailing-edge hinged control surfaces affixed to two flat-plate airfoils. Forces were resolved from surface pressure measurements and are augmented by PIV measurements, smoke flow visualization and analyses. The static study revealed that trailing-edge control surfaces exhibited higher effectiveness in producing time-averaged CL compared to leading-edge control surfaces. However, leading-edge control surfaces exhibit significantly less fluctuation in pressure and lift coefficients at fixed angles of attack and control surface deflections, indicating better stability. Unsteady aerodynamic effects of the airfoil at α=0∘ and “ramp” deflections of trailing- and leading-edge control surfaces from 0∘ to 40∘ with variations in actuation rates showed that CL peaks are approximately three to four times greater than static values for the case of the leading-edge control surface. This has significant implications for fixed-wing drone maneuverability and countering the effects of atmospheric turbulence.
There is a growing desire to operate Uncrewed Air Vehicles (UAVs) in urban environments for parcel delivery, and passenger-carrying air taxis for Advanced Air Mobility (AAM). The turbulent flows and gusts around buildings and other urban infrastructure can affect the steadiness and stability of such air vehicles by generating a highly transient relative flow field. Our aim is to review existing gust models, then consider gust encounters in the vicinity of buildings as experienced by flight trajectories over the roof of a nominally cuboid building in a suburban atmospheric boundary layer. Simplified models of fixed- and rotary-wing aircraft are used to illustrate the changes in lift and thrust experienced by flight around the building. The analysis showed that fixed-wing aircraft experienced a substantial increase in angle of attack over a relatively short period of time (<1 s) as they fly through the shear layer at a representative forward velocity, which can be well above typical stall angles. Due to the slow flight speeds required for landing and take-off, significant control authority of rotor systems is required to ensure safe operation due to the high disturbance effects caused by localized gusts from buildings and protruding structures. Currently there appears to be negligible certification or regulation for AAM systems to ensure safe operations when traversing building flow fields under windy conditions and it is hoped that the insights provided in this paper will assist with future certification and regulation.
This paper addresses one of the recognized barriers to the unrestricted adoption of Unmanned Aircraft (UA) in mainstream urban use—noise—and reviews existing approaches for estimating and mitigating this problem. The aircraft noise problem is discussed upfront in general terms by introducing the sound emission, propagation, and psychoacoustic effects. The propagation of sound in the atmosphere, which is the focus of this paper, is then analysed in detail to isolate the environmental and operational factors that predominantly influence the perceived noise on the ground, especially looking at large-scale low-altitude UA operations, such as in the envisioned Urban Air Mobility (UAM) concepts. The physics of sound propagation are presented, considering all attenuation effects and the anomalies due to Doppler and atmospheric effects, such as wind, thermal inversion, and turbulence. The analysis allows to highlight the limitations of current mainstream aircraft noise modelling and certification approaches and, in particular, their inadequacy in addressing the noise of UA and, more generally, UAM vehicles. This finding is important considering that, although reducing noise at the source has remained a priority for manufacturers to enable the scaling up of UAM and drone delivery operations in the near future, the impact of poorly considered propagation and psychoacoustic effects on the actual perceived noise on the ground is equally important for the same objective. For instance, optimizing the flight paths as a function of local weather conditions can significantly contribute to minimizing the impact of noise on communities, thus paving the way for the introduction of full-scale UAM operations. A more reliable and accurate modelling of noise ground signatures for both manned and unmanned low-flying aircraft will aid in identifying the real-time data stream requirements from distributed sensors on the ground. New developments in surrogate sound propagation models, more pervasive real-time sensor data, and suitable computing resources are expected to both yield more reliable and effective estimates of noise reaching the ground listeners and support a dynamic planning of flight paths.
This paper describes a methodology to quantify inter-frequency modulation in the acoustic field of a small-scale rotor. How the blade passing frequency modulates the intensity of the higher-frequency (broadband) noise content is of specific interest, as this modulation is a major factor in the human perception of rotor noise from advanced air mobility vehicles and drones. A proposed modulation-parameter is based on post-processing steps that are applicable to a single acoustic time series. First, an auto-bispectral analysis assesses the dominant nonlinear, quadratic inter-frequency coupling between the blade passing frequency and the higher-frequency noise content. Secondly, the degree of modulation is determined using a robust parameter: a correlation parameter between the (low-frequency) modulating BPF signal and an envelope of the (higher-frequency) carrier signal. Provided that a single parameter is obtained for a given acoustic time series, the directivity pattern of the modulation strength can be inferred from data available from standard acoustic measurement campaigns. For illustration, an 11 inch diameter single-rotor in hover is considered, with acoustic data taken at 420 microphone positions within a plane perpendicular to the rotor disk. It is revealed that modulation is confined to a sector $\theta \approx (10^\circ,-45^\circ)$, where $\theta = 0^\circ$ is the rotor plane and negative angles are in the direction of the rotor-induced flow. The strongest modulation appears around $\theta \approx -15^\circ$. This work aids in quantifying the phenomenological description of modulation, namely that it results from the periodic advance and retreat of certain rotor blade's noise sources, relative to a stationary observer.
Lab head
Members (4)
Simon Watkins
Matthew Marino
Alex Fisher
A Fisher
George Yi
Liam Bullard
David Tennent
nicola kloet