Lab

NILAB

About the lab

NanoImprint LABoratory-NILAB® is an open innovation platform founded by SILSEF in 2010. It is dedicated to the development of nanoimprint lithography and its application to a wide range of domains. NILAB® brings together leading laboratories, research centers and industrial partners. The objectives are to foster collaboration and joint development and to facilitate access to a large range of state of the art equipment, knowhow and patents. SILSEF and its partners collaborate in the context of private customer projects, as well as publicly funded programs such as ANR, French DoD, European projects. Activities include:
• Process development (patterns, stamps, press, etching and control)
• Applications for microelectronics, optics, tribology and more.

Featured projects (10)

Project
Le projet SPOT a pour objectif le développement d’un ou plusieurs procédés de gravure par plasma réactif pour structurer la surface de pièces en acier de type austénitique et martensitique jusqu’à l’échelle submicronique. En combinant les propriétés intrinsèques ou chimiques des surfaces avec les propriétés physiques générées par la topographie, des fonctionnalités nouvelles ou optimisées seront créées afin de répondre aux attentes de nombreux secteurs industriels. Cette valeur ajoutée suppose la maîtrise du procédé de structuration, et permettra de répondre aux limitations des techniques déjà disponibles (laser, gravure chimique, emboutissage). Pour garantir la durabilité des macro/nano motifs réalisés, nous développerons des traitements « duplex » de structuration suivie de traitement thermochimique (nitruration, carburation) basse température assisté par plasma, mixant ainsi les avantages conjoints des deux procédés. Cette voie innovante doit donner naissance à de nouvelles familles de produits répondant à des besoins spécifiques et très contraignants en matière de résistance mécanique, de réduction du frottement, de durée de vie des pièces en conditions extrêmes. Le marché potentiel est très important. Le consortium est composé de trois laboratoires et d’un industriel. L’Institut Jean Lamour (IJL), coordinateur, est un acteur reconnu au niveau international pour la mise en forme et le traitement des matériaux. Il développe des activités de recherche liées à la structuration de surfaces métalliques par plasma (traitement thermochimique et gravure par pulvérisation ionique). Le Centre de Nanosciences et de Nanotechnologies (C2N) possède de solides compétences en gravure plasma, tant sur le plan expérimental que fondamental pour la compréhension des mécanismes mis en jeu. Ceux-ci sont exploités dans les codes de modélisation des interactions plasma-surface développés à l’Institut des Matériaux Jean Rouxel (IMN), troisième partenaire académique de SPOT. L’IMN possède en outre de fortes compétences dans le domaine de la caractérisation physico-chimique des surfaces gravées. Enfin, la PME SILSEF possède un savoir-faire reconnu en techniques de structuration ainsi que des moyens de caractérisation fonctionnelle. Elle est largement sollicitée pour la mise au point de procédés innovants de fonctionnalisation des surfaces de pièces en acier. In fine, SPOT vise à démontrer la faisabilité industrielle de procédés de gravure par plasma de pièces en acier pour fonctionnaliser les surfaces. L’ambition est d’ouvrir de nouvelles perspectives d’application dans un marché considérable, très actif et diversifié, dans un contexte pressant pour limiter la consommation en matières premières, favoriser les matériaux recyclables, améliorer la durée de vie des systèmes existants….tout en favorisant le développement durable et de la compétitivité des produits manufacturés. Associées à des traitements thermochimiques, les gravures donneront aux pièces métalliques structurées des propriétés tribologiques renforcées et durables, utilisables en milieu sévère. Candidates au remplacement de pièces habituellement réalisées en matériau plus noble non recyclable (SiC) ou recouvertes d’une couche mince dure (DLC, TiN), elles assureront alors un gain économique et écologique. Partenaires C2N Centre de Nanosciences et de Nanotechnologies IJL Institut Jean Lamour (Matériaux - Métallurgie - Nanosciences - Plasmas - Surfaces) IMN Institut des matériaux de Nantes Jean Rouxel SILSEF
Project
--------

Featured research (4)

Titanium nitride (TiN) is a very promising new plasmonic material to replace traditional plasmonic materials like gold and silver, especially thanks to its thermal and chemical stability. However, its chemical resistance and its hardness make TiN difficult to microstructure. An alternative approach is to micro-nanostructure a titanium dioxide (TiO 2 ) coating and then to use a nitridation reaction to obtain a micro-nanostructured TiN coating. This is an easy, rapid and cost-effective structuring process. In this paper, we demonstrate that rapid thermal nitridation (RTN) can be combined with nanoimprint lithography (NIL) to rapidly micro-nanostructure a TiN layer. This innovative approach is applied to a micro-nanostructured TiN layer for plasmonic response in the near infrared range. Experimental and theoretical approaches are compared.
Deploying advanced imaging solutions to robotic and autonomous systems by mimicking human vision requires simultaneous acquisition of multiple fields of views, named the peripheral and fovea regions. Low-resolution peripheral field provides coarse scene exploration to direct the eye to focus to a highly resolved fovea region for sharp imaging. Among 3D computer vision techniques, Light Detection and Ranging (LiDAR) is currently considered at the industrial level for robotic vision. LiDAR is an imaging technique that monitors pulses of light at optical frequencies to sense the space and to recover three-dimensional ranging information. Notwithstanding the efforts on LiDAR integration and optimization, commercially available devices have slow frame rate and low image resolution, notably limited by the performance of mechanical or slow solid-state deflection systems. Metasurfaces (MS) are versatile optical components that can distribute the optical power in desired regions of space. Here, we report on an advanced LiDAR technology that uses ultrafast low FoV deflectors cascaded with large area metasurfaces to achieve large FoV and simultaneous peripheral and central imaging zones. This technology achieves MHz frame rate for 2D imaging, and up to KHz for 3D imaging, with extremely large FoV (up to 150{\deg}deg. on both vertical and horizontal scanning axes). The use of this disruptive LiDAR technology with advanced learning algorithms offers perspectives to improve further the perception capabilities and decision-making process of autonomous vehicles and robotic systems.
It is shown that substrate pixelisation before epitaxial growth can significantly impact the emission color of semiconductor heterostructures. The wavelength emission from InxGa1−xN/GaN quantum wells can be shifted from blue to yellow simply by reducing the mesa size from 90 × 90 µm2 to 10 × 10 µm2 of the patterned silicon used as the substrate. This color shift is mainly attributed to an increase of the quantum well thickness when the mesa size decreases. The color is also affected, in a lesser extent, by the trench width between the mesas. Cathodoluminescence hyperspectral imaging is used to map the wavelength emission of the InxGa1−xN/GaN quantum wells. Whatever the mesa size is, the wavelength emission is red-shifted at the mesa edges due to a larger quantum well thickness and In composition.
Living organisms have developed many strategies to produce colors and to modify appearance. Even if the use of pigments is widely spread, the effects produced by micro/nano patterning allow a larger range of possibilities. Indeed, the structuration of materials on multiple levels combined with intrinsic material properties offer a wide range of visual effects such as: metallic effect (possible without metal layer), gonio-chromatic appearance, glossy or mat surfaces (which can lead to efficient contrast effects), or super water repealing surfaces (which can punctually and locally change the surface appearance). In this way, surface patterning can generate aesthetic mimicking the beetles which often show gold or metallic green chitin shell due to 3D photonic crystal structures. However, they can also lead to wider optical effects to mimic moth eyes, which are super effective at capturing light at night thanks to nano-cones preventing the reflection of light. These effects are very attractive since they rely only on physical and topographical properties, bringing possibilities to create colors and optical effects without chemical modification or add-on. While, the patterning process is a bottom up approach for living creatures, it can easily be replicated using top down microelectronics production technologies. However, a key challenge is the scale of the patterning areas (from cm² up to m²) and flat surfaces. We report here the use of such micro-nano patterns in order to change the visual aspect of common material over large surfaces. SILSEF and NAPA have developed together a range of processes to functionalize surfaces for hydrophobicity, diffraction or antireflection. These technologies can be used on areas from mm² to m² on flat and hemispheric surfaces. Combined with effective characterization process developed internally, we aim to bring micro nano patterning to a range of industrial applications from fashion textile to windows glass. We show here functional patterning for decoration using diffractive or diffusive optics or water repellent surfaces as depicted on Figure 1.

Lab head

Members (1)

Alumni (5)

Silvia Zanettini
  • Due2lab s.r.l.
Alain Iltis
  • Damavan Imaging (SAS)
Kadiri Hind
  • Université de Technologie de Troyes