Featured research (3)

Current practice to enhance resilience in Water Resource Recovery Facilities (WRRFs) is to ensure redundancy or back-up for most critical equipment (e.g. pumps or blowers). Model-based assessment allows evaluation of different strategies for quantitatively and efficiently enhancing resilience and justifying the allocation of resources. The goal of this study is to provide guidance for the development of tailored deterministic models of full-scale WRRFs. A framework for model-based resilience assessment is proposed that provides guidance on data collection, model selection, model calibration and scenario analysis. The framework is embedded into the Good Modelling Practice (GMP) Unified Protocol, providing a new application for resilience assessment and an initial set of stressors for WRRFs. The usefulness of the framework is illustrated through a resilience assessment of the WRRF of Girona against power outage. Results show that, for the Girona facility, limited energy back-up can cause non-compliance of WRRF discharge limits in the case of a blower power shut-down of 6h, and around 12h when the blower shut-down is also combined with a shut-down of the recirculation pumps. The best option to enhance resilience would be increasing the power back-up by 218%, which allows the plant to run with recirculation pumps and blowers at minimum capacity. In such a case, resilience can be further enhanced by manipulating the air supply valves to optimise the air distribution, to balance oxygen needs in each reactor with the overall system pressure. We conclude that, with industry consensus on what is considered an acceptable level of resilience, a framework for resilience assessment would be a useful tool to enhance the resilience of our current water infrastructure. Further research is needed to establish if the permit structure should accommodate levels of functionality to account for stress events.
The wastewater industry is currently facing dramatic changes, shifting away from energy-intensive wastewater treatment towards low-energy, sustainable technologies capable of achieving energy positive operation and resource recovery. The latter will shift the focus of the wastewater industry to how one could manage and extract resources from the wastewater, as opposed to the conventional paradigm of treatment. Debatable questions arise: Can the more complex models be calibrated, or will additional unknowns be introduced? After almost 30 years using well-known International Water Association (IWA) models, should the community move to other components, processes, or model structures like 'black box' models, computational fluid dynamics techniques, etc.? Can new data sources - e.g. on-line sensor data, chemical and molecular analyses, new analytical techniques, off-gas analysis - keep up with the increasing process complexity? Are different methods for data management, data reconciliation, and fault detection mature enough for coping with such a large amount of information? Are the available calibration techniques able to cope with such complex models? This paper describes the thoughts and opinions collected during the closing session of the 6th IWA/WEF Water Resource Recovery Modelling Seminar 2018. It presents a concerted and collective effort by individuals from many different sectors of the wastewater industry to offer past and present insights, as well as an outlook into the future of wastewater modelling.

Lab head

Leiv Rieger
About Leiv Rieger
  • Leiv Rieger, PhD, P.Eng., a Wastewater Technology Fellow at Jacobs with nearly three decades of academic and practical experience in optimizing water resource recovery facilities through digital tools and solutions. Leiv has extensively published his work and has been acknowledged by the 2015 WEF Eddy Wastewater Principles/Processes Medal for his paper on Ammonia-based Aeration Control and being a Fellow of the International Water Association (IWA).

Members (5)

Lluís Corominas
  • Catalan Institute for Water Research
Jens Alex
  • Institut für Automation und Kommunikation
Oliver John Schraa
  • Independent Researcher
Ivan Miletic
  • inCTRL Solutions Inc.
Mehlika A. Kiser
Mehlika A. Kiser
  • Not confirmed yet