Lab

Larry L Barton's Lab


Featured projects (1)

Project
Examination of fundamental aspects related to the understanding of lead toxicity in bacteria. The practical aspects would be related to the bioremediation of metal-laden industrial effluents and the production of functional materials, e.g. PbS

Featured research (4)

Bacillus sp. Abq, belonging to Bacillus cereus sensu lato, was isolated from an aquifer in New Mexico, USA and phylogenetically classified. The isolate possesses the unusual property of precipitating Pb(II) by using cysteine, which is degraded intracellularly to hydrogen sulfide (H2S). H2S is then exported to the extracellular environment to react with Pb(II), yielding PbS (galena). Biochemical and growth tests showed that other sulfur sources tested (sulfate, thiosulfate, and methionine) were not reduced to hydrogen sulfide. Using equimolar concentration of cysteine, 1 mM of soluble Pb(II) was removed from Lysogeny Broth (LB) medium within 120 h of aerobic incubation forming black, solid PbS, with a removal rate of 2.03 µg L-1 h-1 (∼8.7 µM L-1 h-1). The mineralogy of biogenic PbS was characterized and confirmed by XRD, HRTEM, and EDX. Electron microscopy and electron diffraction identified crystalline PbS nanoparticles with a diameter <10 nm, localized in the extracellular matrix and on the surface of the cells. This is the first study demonstrating the use of cysteine in Pb(II) precipitation as insoluble PbS and it may pave the way to PbS recovery from secondary resources, such as Pb-laden industrial effluents.
Sulfate-reducing bacteria have been suggested to have an etiological role in the development of inflammatory bowel diseases and ulcerative colitis in humans. Traditionally. bismuth compounds have been administered to alleviate gastrointestinal discomfort and disease symptoms. One mechanism by which this treatment occurs is through binding bacterial derived hydrogen sulfide in the intestines. With the addition of bismuth-deferiprone, bismuth-citrate and bismuth subsalicylate to reactions containing cells of D. desulfuricans ATCC 27774, the oxidation of H2 with sulfate as the electron acceptor was inhibited but H2 oxidation with nitrate, nitrite and sulfite was not reduced. Our research suggests that a target for bismuth inhibition of D. desulfuricans is the F1 subunit of the ATP synthase and, thus, dissimilatory sulfate reduction does not occur. At sublethal concentrations, bismuth as Bi(III) is precipitated by hydrogen sulfide produced from respiratory sulfate reduction by D. desulfuricans. Nanocrystals of bismuth sulfide were determined to be Bi2S3 through the use of high resolution transmission electron microscopy imaging with X-ray energy-dispersive spectroscopy analysis. In the absence of sulfate, D. desulfuricans oxidizes H2 with the reduction of Bi(III) to Bi0 and this was also established by X-ray energy-dispersive spectroscopy analysis.

Lab head

Larry L Barton
Department
  • Department of Biology

Members (6)

Thomas G. Zocco
  • Los Alamos National Laboratory
Francisco Alberto Tomei Torres
  • Centers for Disease Control and Prevention
Guy Fauque
  • Mediterranean institute of oceanology
Cheryl L. Lemanski
  • Los Alamos National Laboratory
Derek M Lin
  • U.S. Department of Veterans Affairs
Nicole A Woodards
  • QA Manager/Chemist A
R C Hider
R C Hider
  • Not confirmed yet
Henry C. Lin
Henry C. Lin
  • Not confirmed yet
Nathaniel L. Ritz
Nathaniel L. Ritz
  • Not confirmed yet
Benjamin J. Burnett
Benjamin J. Burnett
  • Not confirmed yet
Richard M. Plunkett
Richard M. Plunkett
  • Not confirmed yet
Alex S. Granat
Alex S. Granat
  • Not confirmed yet
H. E. Nutt all
H. E. Nutt all
  • Not confirmed yet