Lab
Kyoung-Soon Jang's Lab
Institution: Korea Basic Science Institute KBSI
About the lab
Dr. Jang's Lab is primarily doing ultra-high resolution mass spectrometry-based biological and environmental metabolomics to understand the molecular details of life and environment.
Featured research (29)
Dissolved organic matter (DOM) is a large and complex mixture of molecules that fuels microbial metabolism and regulates biogeochemical cycles. Individual DOM molecules have unique functional traits, but how their assemblages vary deterministically under global change remains poorly understood. Here, we examine DOM and associated bacteria in 300 aquatic microcosms deployed on mountainsides that span contrasting temperatures and nutrient gradients. Based on molecular trait dimensions of reactivity and activity, we partition the DOM composition into labile-active, recalcitrant-active, recalcitrant-inactive, and labile-inactive fractions and quantify the relative influences of deterministic and stochastic processes governing the assembly of each. At both subtropical and subarctic study sites, the assembly of labile or recalcitrant molecules in active fractions is primarily governed by deterministic processes, while stochastic processes are more important for the assembly of molecules within inactive fractions. Surprisingly, the importance of deterministic selection increases with global change gradients for recalcitrant molecules in both active and inactive fractions, and this trend is paralleled by changes in the deterministic assembly of microbial communities and environmental filtering, respectively. Together, our results highlight the shift in focus from potential reactivity to realized activity and indicate that active and inactive fractions of DOM assemblages are structured by contrasting processes, and their recalcitrant components are consistently sensitive to global change. Our study partitions the DOM molecular composition across functional traits and links DOM with microbes via a shared ecological framework of assembly processes. This integrated approach opens new avenues to understand the assembly and turnover of organic carbon in a changing world.
Microbes regulate the composition and turnover of organic matter. Here we developed a framework called Energy-Diversity-Trait integrative Analysis to quantify how dissolved organic matter and microbes interact along global change drivers of temperature and nutrient enrichment. Negative and positive interactions suggest decomposition and production processes of organic matter, respectively. We applied this framework to manipulative field experiments on mountainsides in subarctic and subtropical climates. In both climates, negative interactions of bipartite networks were more specialized than positive interactions, showing fewer interactions between chemical molecules and bacterial taxa. Nutrient enrichment promoted specialization of positive interactions, but decreased specialization of negative interactions, indicating that organic matter was more vulnerable to decomposition by a greater range of bacteria, particularly at warmer temperatures in the subtropical climate. These two global change drivers influenced specialization of negative interactions most strongly via molecular traits, while molecular traits and bacterial diversity similarly affected specialization of positive interactions.
Streptomyces species have attracted considerable interest as a reservoir of medically important secondary metabolites, which are even diverse and differ between strains. Here, we reassess ten Streptomyces venezuelae strains by presenting the highly resolved classification, using 16S rRNA sequencing, MALDI-TOF MS protein profiling, and whole-genome sequencing. The results revealed that seven of the ten strains were misclassified as S. venezuelae species. Secondary metabolite biosynthetic gene cluster (smBGC) mining and targeted LC-MS/MS based metabolite screening of S. venezuelae and misclassified strains identified total 59 secondary metabolites production. In addition, a comparison of pyrrolamide-type antibiotic BGCs of four misclassified strains, followed by functional genomics, revealed that athv28 is critical in the synthesis of the anthelvencin precursor, 5-amino-3,4-dihydro-2H-pyrrole-2-carboxylate (ADPC). Our findings illustrate the importance of the accurate classification and better utilization of misclassified Streptomyces strains to discover smBGCs and their secondary metabolite products.
Large rivers are the main arteries for transportation of carbon to the ocean; yet, how hydrology and anthro-pogenic disturbances may change the composition and export of dissolved organic matter along large river continuums is largely unknown. The Yangtze River has a watershed area of 1.80 × 10 6 km 2. It originates from the Qinghai-Tibet Plateau and flows 6300 km eastward through the center of China. We collected samples (n = 271) along the river continuum and analyzed weekly samples at the most downstream situated gauging station in 2017-2018 and gathered long-term (2006-2018) water quality data. We found higher gross domestic product, population density, and urban and agricultural land use downstream than upstream of the Three Gorges Dam, coinciding with higher dissolved organic carbon (DOC), UV absorption (a 254), specific ultraviolet absorbance (SUVA 254), parallel factor analysis-derived C1-C5, aliphatic compounds, and lower a 250 :a 365 and spectral slope (S 275-295). Chemical oxygen demand, humic-like C1-C2 and C6, and protein-like C4 and C7 increased, while dissolved oxygen and ammonium decreased with increasing discharge at most of the sites studied, including the intensively monitored downstream site. The annual DOC fluxes were ca. 1.5-1.8 Tg yr −1 , and 12-18% was biodegradable in a 28-d bio-incubation. Our results highlight that urbanization and stormwater periods enhanced the export of both terrestrial organic-rich substances and household effluents from nearshore residential areas. Our study emphasizes the continued need to protect the Yangtze River watershed as increased organic carbon loading or altered composition and bio-lability may change the ecosystem function and carbon cycling.
We use an ultrahigh‐resolution 15 Tesla Fourier transform ion cyclotron resonance mass spectrometer (15T FT‐ICR MS) to elucidate the compositional changes in Arctic organic aerosols collected at Ny‐Ålesund, Svalbard, in May 2015. The FT‐ICR MS analysis of airborne organic matter provided information on the molecular compositions of aerosol particles collected during the Arctic spring period. The air mass transport history, combined with satellite‐derived geographical information and chlorophyll concentration data, revealed that the molecular compositions of organic aerosols drastically differed depending on the origin of the potential source region. The protein and lignin compound populations contributed more than 70% of the total intensity of assigned molecules when the air masses mainly passed over the ocean region. Interestingly, the intensity of microbe‐derived organics (protein and carbohydrate compounds) was positively correlated with the air mass exposure to phytoplankton biomass proxied as chlorophyll. Furthermore, the intensities of lignin and unsaturated hydrocarbon compounds, typically derived from terrestrial vegetation, increased with an increase in the advection time of the air mass over the ocean domain. These results suggest that the accumulation of dissolved biogenic organics in the Arctic Ocean possibly derived from both phytoplankton and terrestrial vegetation could significantly influence the chemical properties of Arctic organic aerosols during a productive spring period. The interpretation of molecular changes in organic aerosols using an ultrahigh‐resolution mass spectrometer could provide deep insight for understanding organic aerosols in the atmosphere over the Arctic and the relationship of organic aerosols with biogeochemical processes in terms of aerosol formation and environmental changes.
Lab head

Department
- Center for Research Equipment
About Kyoung-Soon Jang
- Kyoung-Soon Jang currently works for the Center for Research Equipment, Korea Basic Science Institute (KBSI), as a Director. Kyoung-Soon does research in Mass Spectrometry-based Environmental & Biological Metabolomics to understand the molecular details of life and environment.