Lab
Karsten Koehler's Lab
Institution: Technische Universität München
Department: Faculty of Sport and Health Science
Featured research (2)
EINLEITUNG: Sport führt häufig zu einer kompensatorischen Erhöhung der Nahrungsaufnahme. Mögliche Modulatoren der Energiekompensation sind Zeitpunkt und Stoffwechselzustand des Trainings, allerdings werden die Effekte häufig vermischt. Ziel war es die Effekte von Tageszeit (morgens/abends) und Stoffwechselzustand (nüchtern/nicht nüchtern) auf die sportinduzierte Energiekompensation zu entwirren.
METHODEN: In zwei randomisierten Crossover-Studien wurden die Auswirkungen eines abendlichen Nüchtern-Trainings (Studie I) und der Tageszeit (morgens/abends) von Nüchtern-Training (Studie II) auf die Energieaufnahme nach Sport (Laufband bei 65% VO2max für 30 min) untersucht. In Studie I liefen die Teilnehmer (N=23) in nüchternem (6h nüchtern) und nicht-nüchternem Zustand. In Studie II (N=8) trainierten die Teilnehmer morgens (12h nüchtern) und abends (6h und 12h nüchtern). Die Energieaufnahme nach dem Training wurde nach 30 Minuten (Testmahlzeit) und über 24 Stunden (Ernährungstagebuch) erfasst.
ERGEBNISSE: In Studie I war die Energieaufnahme am Trainingstag nach Nüchtern-Training niedriger als nach nicht-nüchternem Training (−204 kcal [95% CI: −342, −65 kcal; p=0,039]). In Studie II war die Energieaufnahme in den 24h nach dem Training nach morgendlichem Nüchtern-Training niedriger (−804 kcal [95% CI: −1317, −290 kcal; p=0,024]) als nach abendlichem Nüchtern-Training (jeweils 12h).
SCHLUSSFOLGERUNG: Abendliches Nüchtern-Training kann die 24h-Energieaufnahme verringern. Morgendliches Nüchtern-Training scheint die Energieaufnahme nach dem Sport jedoch stärker zu beeinflussen als abendliches Nüchtern-Training.
BACKGROUND: Predicting individual weight loss responses to lifestyle interventions is challenging but might help practitioners and clinicians select the most promising approach for each individual. OBJECTIVE: The primary aim of this study was to develop machine learning models to predict individual weight loss responses using only variables known before starting the intervention. In addition, we used machine learning to identify pre-intervention variables influencing the individual weight loss response. METHODS: We used 12-month data from the Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy (CALERIE™) phase 2 study, which aimed to analyze the long-term effects of caloric restriction on human longevity. Based on data from 130 subjects in the intervention group, we developed classification models to predict binary (“Success” and “No/low success”) or multi-class (“High success,” “Medium success,” and “Low/no success”) weight loss outcomes. Additionally, regression models were developed to predict individual weight change (percent). Models were evaluated based on accuracy, sensitivity, specificity (classification models), and root mean squared error (regression models). RESULTS: Best classification models used 20-40 predictors and achieved 89-97% accuracy, 91-100% sensitivity, and 56-86% specificity for binary classification. For multi-class classification, accuracy (69%) and sensitivity (50%) tended to be lower. The best regression performance was obtained with 36 variables with a root mean squared error of 2.84%. Among the 21 variables predicting individual weight change most consistently, we identified two novel predictors, namely orgasm satisfaction and sexual behavior/experience. Other common predictors have previously been associated with weight loss (16) or are already used in traditional prediction models (3). CONCLUSIONS: The prediction models could be implemented by practitioners and clinicians to support the decision of whether lifestyle interventions are sufficient or more aggressive interventions are needed for a given individual, thereby supporting better, faster, data-driven, and unbiased decisions.
Lab head
Department
- Faculty of Sport and Health Science
About Karsten Koehler
- Our overarching goal is to understand the interactions between diet and exercise and how we can use this knowledge to improve human health and performance. We are particularly interested in the multiple pathways how exercise affects energy balance, and how acute and chronic under- or overeating impact the regulation of body weight, body composition, metabolism, and musculoskeletal health.
Members (12)
Chaise Murphy
Chaise Murphy
Julia Oehler
Christina Hansen
Melanie Gresser