J. Mark Sutton's Lab

About the lab

The Technology Development Group, part of the Research and Evaluation Directorate within UKHSA, aims to develop new interventions for antimicrobial resistance (AMR) and healthcare associated infections (HCAI). The group uses a variety of approaches to develop real life solutions to practical problems. The group takes an interdisciplinary approach working with a variety of groups in life sciences, chemistry, physical sciences and engineering.
Active research areas: i) Assessing bacterial responses to antiseptics and disinfectants, ii) Understanding the impact of single and mixed species biofilms, iii) Development and evaluation of new antimicrobial agents, iv) Rapid detection and diagnosis, v) Decontamination, applied infection control.

Twitter: @HealthcareUKHSA

Featured projects (3)

PHE was awarded funding from the Department of Health and Social Care (Open Innovation in AMR capital award; Contract NIHR200658) to develop additional capability to support the UK AMR research community across three areas of activity: • Evaluation of non-traditional therapeutic approaches, including antimicrobial peptides, bacteriophage, immune modulators and microbiome modulators, against multidrug resistant pathogens • Studies on the role of built environment on transmission of AMR and Infection Prevention and Control (IPC) procedures to reduce transmission and improve antibiotic stewardship • Research using a new Unified Infection Database (UID) to study antibiotic prescribing practice and patient outcomes The grant award enables PHE to provide funding to support direct costs of seed studies, which will be carried out at PHE. Applications to undertake studies, either for targeted projects to be carried out by PHE staff or through short research projects by visiting scientists at PHE, are invited. Interested parties are encouraged to discuss proposals with the PHE project team at
Evaluating novel antimicrobial compounds for antimicrobial activity on ESKAPEE and other pathogens, exploring mode of action and resistance potential .
Developing a phenotypic antibiotic susceptibility test that can give results within 1 hour in a diagnostic laboratory.

Featured research (72)

Tuberculosis (TB) remains a significant global health crisis and the number one cause of death for an infectious disease. The health consequences in high-burden countries are significant. Barriers to TB control and eradication are in part caused by difficulties in diagnosis. Improvements in diagnosis are required for organisations like the World Health Organisation (WHO) to meet their ambitious target of reducing the incidence of TB by 50% by the year 2025, which has become hard to reach due to the COVID-19 pandemic. Development of new tests for TB are key priorities of the WHO, as defined in their 2014 report for target product profiles (TPPs). Rapid triage and biomarker-based confirmatory tests would greatly enhance the diagnostic capability for identifying and diagnosing TB-infected individuals. Protein-based test methods e.g. lateral flow devices (LFDs) have a significant advantage over other technologies with regard to assay turnaround time (minutes as opposed to hours) field-ability, ease of use by relatively untrained staff and without the need for supporting laboratory infrastructure. Here we evaluate the diagnostic performance of nine biomarkers from our previously published biomarker qPCR validation study; CALCOCO2, CD274, CD52, GBP1, IFIT3, IFITM3, SAMD9L, SNX10 and TMEM49, as protein targets assayed by ELISA. This preliminary evaluation study was conducted to quantify the level of biomarker protein expression across latent, extra-pulmonary or pulmonary TB groups and negative controls, collected across the UK and India, in whole lysed blood samples (WLB). We also investigated associative correlations between the biomarkers and assessed their suitability for ongoing diagnostic test development, using receiver operating characteristic/area under the curve (ROC) analyses, singly and in panel combinations. The top performing single biomarkers for pulmonary TB versus controls were CALCOCO2, SAMD9L, GBP1, IFITM3, IFIT3 and SNX10. TMEM49 was also significantly differentially expressed but downregulated in TB groups. CD52 expression was not highly differentially expressed across most of the groups but may provide additional patient stratification information and some limited use for incipient latent TB infection. These show therefore great potential for diagnostic test development either in minimal configuration panels for rapid triage or more complex formulations to capture the diversity of disease presentations.
Bacterial vaginosis (BV) is the most common vaginal infection for women of childbearing age. Although 50% of women with BV do not have any symptoms, it approximately doubles the risk of catching a sexually transmitted infection and also increases the risk of preterm delivery in pregnant women.
Background Silver ions have potent broad-spectrum antimicrobial activity and are widely incorporated into a variety of products to limit bacterial growth. In Enterobacteriaceae, decreased silver susceptibility has been mapped to two homologous operons; the chromosomally located cus operon and the plasmid based sil operon. Here we characterised the mechanisms and clinical impact of induced silver tolerance in Klebsiella pneumoniae. Results In K. pneumoniae carriage of the sil operon alone does not give elevated silver tolerance. However, when exposed to increasing concentrations of silver nitrate (AgNO3), K. pneumoniae strains which contain the sil operon, will preferentially mutate SilS, resulting in overexpression of the genes encoding the RND efflux pump silCBA. Those strains which do not carry the sil operon also adapt upon exposure to increasing silver concentrations through mutations in another two-component regulator CusS. Secondary mutations leading to disruption of the outer membrane porin OmpC were also detected. Both routes result in a high level of silver tolerance with MIC’s of >512 mg/L. When exposed to a high concentration of AgNO3 (400 mg/L), only strains that contained the sil operon were able to survive, again through mutations in SilS. The AgNO3 adapted strains were also resistant to killing by challenge with several clinical and commercial silver containing dressings. Conclusions This study shows that K. pneumoniae has two possible pathways for development of increased silver tolerance but that the sil operon is preferentially mutated. This operon is essential when K. pneumoniae is exposed to high concentrations of silver. The potential clinical impact on wound management is shown by the increased survivability of these adapted strains when exposed to several silver impregnated dressings. This would make infections with these strains more difficult to treat and further limits our therapeutic options.
Introduction. We are becoming increasingly reliant on the effectiveness of biocides to combat the spread of Gram-negative multi-drug-resistant (MDR) pathogens, including Klebsiella pneumoniae . It has been shown that chlorhexidine exposure can lead to mutations in the efflux pump repressor regulators SmvR and RamR, but the contribution of each individual efflux pump to biocide tolerance is unknown. Hypothesis. Multiple efflux pumps, including SmvA and AcrAB-TolC, are involved in increased tolerance to biocides. However, strains with upregulated AcrAB-TolC caused by biocide exposure are more problematic due to their increased MDR phenotype. Aim. To investigate the role of AcrAB-TolC in the tolerance to several biocides, including chlorhexidine, and the potential threat of cross-resistance to antibiotics through increased expression of this efflux pump. Methodology. Antimicrobial susceptibility testing was performed on K. pneumoniae isolates with ramR mutations selected for after exposure to chlorhexidine, as well as transposon mutants in components and regulators of AcrAB-TolC. RTPCR was used to detect the expression levels of this pump after biocide exposure. Strains from the globally important ST258 clade were compared for genetic differences in acrAB -TolC and its regulators and for phenotypic differences in antimicrobial susceptibility. Results. Cross-resistance to antimicrobials was observed following mutations in ramR . Exposure to chlorhexidine led to increased expression of acrA and its activator ramA , and transposon mutants in AcrAB-TolC have increased susceptibility to several biocides, including chlorhexidine. Variations in ramR within the ST258 clade led to an increase in tolerance to certain biocides, although this was strain dependent. One strain, MKP103, that had increased levels of biocide tolerance showed a unique mutation in ramR that was reflected in enhanced expression of acrA and ramA . MKP103 transposon variants were able to further enhance their tolerance to specific biocides with mutations affecting SmvA. Conclusions. Biocide tolerance in K. pneumoniae is dependent upon several components, with increased efflux through AcrAB-TolC being an important one.
The pharmacodynamic profile of antimicrobial peptides (AMPs) and their in vivo synergy are two factors that are thought to restrict resistance evolution and ensure their conservation. The frog Rana temporaria secretes a family of closely related AMPs, temporins A-L, as an effective chemical dermal defence. The antibacterial potency of temporin L has been shown to increase synergistically in combination with both temporins B and A but this is modest. Here we show that the less potent temporin B enhances the cooperativity of the in vitro antibacterial activity of the more potent temporin L against EMRSA-15 and that this may be associated with an altered interaction with the bacterial plasma membrane, a feature critical for the antibacterial activity of most AMPs. Addition of buforin II, a histone H2A fragment, can further increase the cooperativity. Molecular dynamics simulations indicate temporins B and L readily form hetero-oligomers in models of Gram-positive bacterial plasma membranes. Patch-clamp studies show transmembrane ion conductance is triggered with lower amounts of both peptides and more quickly, when used in combination, but conductance is of a lower amplitude and pores are smaller. Temporin B may therefore act by forming temporin L/B hetero-oligomers that are more effective than temporin L homo-oligomers at bacterial killing and/or by reducing the probability of the latter forming until a threshold concentration is reached. Exploration of the mechanism of synergy between AMPs isolated from the same organism may therefore yield antibiotic combinations with advantageous pharmacodynamic properties.

Lab head

J. Mark Sutton
  • Research and Development Institute, National Infection Service

Members (9)

Karen E Kempsell
  • Public Health England
Lucy Jane Bock
  • United Kingdom Health Security Agency, Porton Down
Carrie Turner
  • Public Health England
Khanzadi Nazneen Manzoor
  • Public Health England
Harriet Garlant
  • UK Health Security Agency
Bethany Martin
  • University of Southampton and UKHSA

Alumni (8)

Melanie Clifford
  • Public Health England
Mark Laws
  • King's College London
Neil Mcleod
  • Public Health England
Matthew James Shepherd
  • University of Bath