Lab
Grupo de Bioingeniería y Telemedicina (GBT)
Institution: Universidad Politécnica de Madrid
Department: E.T.S.I. de Telecomunicación
About the lab
The Grupo de Bioingeniería y Telemedicina (Biomedical Engineering and Telemedicine Centre) (GBT) is a leading centre for education, research and technological development focused on bioengineering, mostly concerned about the application of information and communication technologies in biomedicine. The GBT Centre belongs to the E.T.S.I. de Telecomunicación of Madrid (ETSIT-UPM), one of the outstanding technological research universities in Europe, both in quality and size of its activities.
Featured research (6)
Training with real patients is a critical aspect of the learning and growth of doctors in training. However, this essential step in the educational process for clinicians can potentially compromise patient safety, as they may not be adequately prepared to handle real-life situations independently. Clinical simulators help to solve this problem by providing real-world scenarios in which the physicians can train and gain confidence by safely and repeatedly practicing different techniques. In addition, obtaining objective feedback allows subsequent debriefing by analysing the situation experienced and learning from other people’s mistakes. This article presents SIMUNEO, a neonatal simulator in which professionals are able to learn by practicing the management of lung ultrasound and the resolution of pneumothorax and thoracic effusions. The article also discusses in detail the hardware and software, the main components that compose the system, and the communication and implementation of these. The system was validated through both usability questionnaires filled out by neonatology residents as well as through follow-up sessions, improvement, and control of the system with specialists of the department. Results suggest that the environment is easy to use and could be used in clinical practice to improve the learning and training of students as well as the safety of patients.
Brain Health is defined as the development and preservation of optimal brain integrity and neural network functioning for a given age. Recent studies have related healthy habits with better maintenance of brain health across the lifespan. As a part of the Barcelona Brain Health Initiative (BBHI), a mHealth platform has been developed with the purpose of helping people to improve and monitor their healthy habits, facilitating the delivery of health coaching strategies. A decision support system (DSS), named Intelligent Coaching Assistant (ICA), has been developed to ease the work of professional brain health coaches, helping them design and monitor adherence to multidomain interventions in a more efficient manner. Personalized recommendations are based on users’ current healthy habits, individual preferences, and motivational aspects. Taking these inputs, an initial user profile is defined, and the ICA applies an algorithm for determining the most suitable personalized intervention plan. An initial validation has been done focusing on assessing the feasibility and usability of the solution, involving 20 participants for three weeks. We conclude that this kind of technology-based intervention is feasible and implementable in real-world settings. Importantly, the personalized intervention proposal generated by the DSS is feasible and its acceptability and usability are high.
Surgeons’ procedural skills and intraoperative decision making are key elements of clinical practice. However, the objective assessment of these skills remains a challenge to this day. Surgical workflow analysis (SWA) is emerging as a powerful tool to solve this issue in surgical educational environments in real time. Typically, SWA makes use of video signals to automatically identify the surgical phase. We hypothesize that the analysis of surgeons’ speech using natural language processing (NLP) can provide deeper insight into the surgical decision-making processes. As a preliminary step, this study proposes to use audio signals registered in the educational operating room (OR) to classify the phases of a laparoscopic cholecystectomy (LC). To do this, we firstly created a database with the transcriptions of audio recorded in surgical educational environments and their corresponding phase. Secondly, we compared the performance of four feature extraction techniques and four machine learning models to find the most appropriate model for phase recognition. The best resulting model was a support vector machine (SVM) coupled to a hidden-Markov model (HMM), trained with features obtained with Word2Vec (82.95% average accuracy). The analysis of this model’s confusion matrix shows that some phrases are misplaced due to the similarity in the words used. The study of the model’s temporal component suggests that further attention should be paid to accurately detect surgeons’ normal conversation. This study proves that speech-based classification of LC phases can be effectively achieved. This lays the foundation for the use of audio signals for SWA, to create a framework of LC to be used in surgical training, especially for the training and assessment of procedural and decision-making skills (e.g., to assess residents’ procedural knowledge and their ability to react to adverse situations).
Brain health refers to the preservation of brain integrity and function optimized for an individual’s biological age. Several studies have demonstrated that our lifestyles habits impact our brain health and our cognitive and mental wellbeing. Monitoring such lifestyles is thus critical and mobile technologies are essential to enable such a goal. Three databases were selected to carry out the search. Then, a PRISMA and PICOTS based criteria for a more detailed review on the basis of monitoring lifestyle aspects were used to filter the publications. We identified 133 publications after removing duplicates. Fifteen were finally selected from our criteria. Many studies still use questionnaires as the only tool for monitoring and do not apply advanced analytic or AI approaches to fine-tune results. We anticipate a transformative boom in the near future developing and implementing solutions that are able to integrate, in a flexible and adaptable way, data from technologies and devices that users might already use. This will enable continuous monitoring of objective data to guide the personalized definition of lifestyle goals and data-driven coaching to offer the necessary support to ensure adherence and satisfaction.
Healthy daily activities have a positive influence on many aspects of our lives. Habits have a deep impact on our health, they help to prevent the appearance of chronic and neurodegenerative diseases and will provide a healthy and active aging. This research work is aiming to analyze the need of new approaches on monitoring daily life activities, investigating new technologies and user modelling methods for healthy habits monitoring. mHealth platforms allow to perform a multivariable monitoring for allowing effective and personalized interventions. Data analytics, data mining and gamification methodologies are being applied to investigate user experience models. This user adaptation is commonly focused on personality and mood monitoring. Furthermore, new user models are built based on monitoring data, personality of user and the daily activity patterns extracted from intelligent and personalized monitoring. The final goal is contributing to improve user´s adherence to interventions, quality of life and quality of care in mHealth applications.
Lab head
Members (10)
Patricia Sánchez-González
Paloma Chausa
Francisco J. Gárate
Manuel Jiménez-Hernando