Lab

Cornelia Kasper's Lab - ICTCT

About the lab

The expertise of our lab comprises the isolation, characterization, expansion and differentiation of human primary/stem cells. For the isolation and expansion we develop optimized 3 D cell culture conditions mimicking physiological environment, thus generating „healthy“ cells and cell based products. For the guided differentiation we generate functional 3 D tissue like structures under defined and controlled dynamic conditions using specialized incubator and bioreactor systems.

Featured projects (1)

Project
Time resolved non-destructive monitoring and sampling from within 3D cell- and tissue-based models (4D applications).

Featured research (17)

Extracellular vesicles (EVs) are cell-derived membrane structures exerting major effects in physiological as well as pathological processes by functioning as vehicles for the delivery of biomolecules to their target cells. An increasing number of effects previously attributed to cell-based therapies have been recognized to be actually mediated by EVs derived from the respective cells, suggesting the administration of purified EVs instead of living cells for cell-based therapies. In this review, we focus on the heterogeneity of EVs derived from mesenchymal stem/stromal cells (MSC) and summarize upstream process parameters that crucially affect the resulting therapeutic properties and biological functions. Hereby, we discuss the effects of the cell source, medium composition, 3D culture, bioreactor culture and hypoxia. Furthermore, aspects of the isolation and storage strategies influences EVs are described. Conclusively, optimization of upstream process parameters should focus on controlling MSC-derived EV heterogeneity for specific therapeutic applications. Graphical Abstract
Gangliosides are an indispensable glycolipid class concentrated on cell surfaces with a critical role in stem cell differentiation. Nonetheless, owing to the lack of suitable methods for scalable analysis covering the full scope of ganglioside molecular diversity, their mechanistic properties in signaling and differentiation remain undiscovered to a large extent. This work introduces a sensitive and comprehensive ganglioside assay based on liquid chromatography, high-resolution mass spectrometry, and multistage fragmentation. Complemented by an open-source data evaluation workflow, we provide automated in-depth lipid species-level and molecular species-level annotation based on decision rule sets for all major ganglioside classes. Compared to conventional state-of-the-art methods, the presented ganglioside assay offers (1) increased sensitivity, (2) superior structural elucidation, and (3) the possibility to detect novel ganglioside species. A major reason for the highly improved sensitivity is the optimized spectral readout based on the unique capability of two parallelizable mass analyzers for multistage fragmentation. In addition to the significant technological advance, we identified 263 ganglioside species including cell-state-specific markers and previously unreported gangliosides in native and differentiated human mesenchymal stem cells. A general increase of the ganglioside numbers upon differentiation was observed as well as cell-state-specific clustering based on the ganglioside species patterns. By proving the predictive power of gangliosides as ubiquitous cell state-specific markers, we demonstrated the high throughput universal capability of our novel analytical strategy, which comes with new insights on the biological role of gangliosides in stem cell differentiation. Our analytical workflow will pave the way for new ganglioside- and glycolipid-based clusters of differentiation markers to determine stem cell phenotypes.
The use of 3D cell cultures has gained increasing importance in medical and pharmaceutical research. However, the analysis of the culture medium is hardly representative for the culture conditions within a 3D model which hinders the standardization of 3D cultures and translation of results. Therefore, we developed a modular monitoring platform combining a perfusion bioreactor with an integrated minimally invasive sampling system and implemented sensors that enables the online monitoring of culture parameters and medium compounds within 3D cultures. As a proof-of-concept, primary cells as well as cell lines were cultured on a collagen or gelatin methacryloyl (GelMA) hydrogel matrix, while monitoring relevant culture parameters and analytes. Comparing the interstitial fluid of the 3D models versus the corresponding culture medium, we found considerable differences in the concentrations of several analytes. These results clearly demonstrate that analyses of the culture medium only are not relevant for the development of standardized 3D culture processes. The presented bioreactor with an integrated sampling and sensor platform opens new horizons for the development, optimization, and standardization of 3D cultures. Furthermore, this technology holds the potential to reduce animal studies and improve the transferability of pharmaceutical in vitro studies by gaining more relevant results, bridging the gap towards clinical translation.
The utilization of mesenchymal stem/stromal cells raises new hopes in treatment of diseases and pathological conditions, while at the same time bringing immense challenges for researchers, manufacturers and physicians. It is essential to consider all steps along the in vitro fabrication of cell‐based products in order to reach efficient and reproducible treatment outcomes. Here, the optimal protocols for isolation, cultivation and differentiation of mesenchymal stem cells are required. In this review we discuss these aspects and their influence on the final cell‐based product quality. We demonstrate that physiological in vitro cell cultivation conditions play a crucial role in therapeutic functionalities of cultivated cells. We show that three‐dimensional cell culture, dynamic culture conditions and physiologically relevant in vitro oxygen concentrations during isolation and expansion make a decisive contribution towards the improvement of cell‐based products in regenerative medicine.

Lab head

Cornelia Kasper
Department
  • Biotechnology Institute for Cell and Tissue Culture Technologies
About Cornelia Kasper
  • The focus in my institute is the isolation, characterization, expansion and differentiation of human primary/stem cells. For the expansion and guided differentiation we develop optimized 3 D cell culture conditions mimicking physiological environment, thus generating functional 3 D tissue like structures under defined and controlled dynamic conditions. Furthermore we develop cell based therapy strategies and cell based 3 D test systems.

Members (6)

Dominik Egger
  • University of Natural Resources and Life Sciences Vienna
Oscar Garcia
  • University of Natural Resources and Life Sciences Vienna
Sabrina Nebel
  • University of Natural Resources and Life Sciences Vienna
Farhad Chariyev-Prinz
  • University of Natural Resources and Life Sciences Vienna
Ilias Nikolits
  • University of Natural Resources and Life Sciences Vienna
Julia Moldaschl
  • University of Natural Resources and Life Sciences Vienna

Alumni (3)

Adrián Mancebo Giménez
  • Campus Vienna Biocenter (CVBC)
Verena Charwat
  • University of Natural Resources and Life Sciences Vienna
Anne Neumann
  • University of Natural Resources and Life Sciences Vienna