Lab
Behavioral Ecophysics Lab
Institution: University of Washington Seattle
Department: Department of Biology
About the lab
In the Behavioral Ecophysics lab, we study organismal mechanisms (e.g. physiology, biomechanics) in light of biotic and abiotic interactions.
Featured research (28)
Synopsis
We investigated the kinematics and biomechanics of nectar feeding in five species of honeyeater (Phylidonyris novaehollandiae, Acanthagenys rufogularis, Ptilotula penicillata, Certhionyx variegatus, Manorina flavigula). There is abundant information on honeyeater foraging behaviors and ecological relationships with plants, but there has never been an examination of their nectar-feeding from kinematic and biomechanical perspectives. We analyzed high-speed video of feeding in captive individuals to describe the kinematics of their nectar feeding, with specific focus on describing tongue movements and bill-tongue coordination, and to characterize the mechanism of nectar uptake in the tongue. We found clear interspecific variation in kinematics and tongue filling mechanics. Species varied in lick frequency, tongue velocity, and protrusion and retraction duration, which, in some cases, are relevant for differences in tongue filling mechanisms. We found support for the use of capillary filling in Certhionyx variegatus only. By contrast, Phylidonyris novaehollandiae, Acanthagenys rufogularis, Ptilotula penicillata, and Manorina flavigula employed a modified version of the expansive filling mechanism seen in hummingbirds, as there was dorsoventral expansion of the tongue body, even the portions that remain outside the nectar, once the tongue tip entered the nectar. All species use fluid trapping in the distal fimbriated portion of the tongue, which supports previous hypotheses describing the honeyeater tongue as a “paintbrush.”
Hummingbirds are the most speciose group of vertebrate nectarivores and exhibit striking bill variation in association with their floral food sources. To explicitly link comparative feeding biomechanics to hummingbird ecology, deciphering how they move nectar from the tongue to the throat is as important as understanding how this liquid is collected. We employed synced, orthogonally positioned, high-speed cameras to describe the bill movements, and backlight filming to track tongue and nectar displacements intraorally. We reveal that the tongue base plays a central role in fluid handling, and that the bill is neither just a passive vehicle taking the tongue inside the flower nor a static tube for the nectar to flow into the throat. Instead, we show that the bill is actually a dynamic device with an unexpected pattern of opening and closing of its tip and base. We describe three complementary mechanisms: (1) distal wringing: the tongue is wrung out as soon as it is retracted and upon protrusion, near the bill tip where the intraoral capacity is decreased when the bill tips are closed; (2) tongue raking: the nectar filling the intraoral cavity is moved mouthwards by the tongue base, leveraging flexible flaps, upon retraction; (3) basal expansion: as more nectar is released into the oral cavity, the bill base is open (phase-shifted from the tip opening), increasing the intraoral capacity to facilitate nectar flow towards the throat.
Traits that exhibit differences between the sexes have been of special interest in the study of phenotypic evolution. Classic hypotheses explain sexually dimorphic traits via intra-sexual competition and mate selection, yet natural selection may also act differentially on the sexes to produce dimorphism. Natural selection can act either through physiological and ecological constraints on one of the sexes, or by modulating the strength of sexual/social selection. This predicts an association between the degree of dimorphism and variation in ecological environments. Here, we characterize the variation in hummingbird dimorphism across ecological gradients using rich databases of morphology, colouration and song. We show that morphological dimorphism decreases with elevation in the understorey and increases with elevation in mixed habitats, that dichromatism increases at high altitudes in open and mixed habitats, and that song is less complex in mixed habitats. Our results are consistent with flight constraints, lower predation pressure at high elevations and with habitat effects on song transmission. We also show that dichromatism and song complexity are positively associated, while tail dimorphism and song complexity are negatively associated. Our results suggest that key ecological factors shape sexually dimorphic traits, and that different communication modalities do not always evolve in tandem.
Female-limited polymorphisms, where females have multiple forms but males have only one, have been described in a variety of animals, yet are difficult to explain because selection typically is expected to decrease rather than maintain diversity. In the white-necked jacobin (Florisuga mellivora), all males and approximately 20% of females express an ornamented plumage type (androchromic), while other females are non-ornamented (heterochromic). Androchrome females benefit from reduced social harassment, but it remains unclear why both morphs persist. Female morphs may represent balanced alternative behavioural strategies, but an alternative hypothesis is that androchrome females are mimicking males. Here, we test a critical prediction of these hypotheses by measuring morphological, physiological and behavioural traits that relate to resource-holding potential (RHP), or competitive ability. In all these traits, we find little difference between female types, but higher RHP in males. These results, together with previous findings in this species, indicate that androchrome females increase access to food resources through mimicry of more aggressive males. Importantly, the mimicry hypothesis provides a clear theoretical pathway for polymorphism maintenance through frequency-dependent selection. Social dominance mimicry, long suspected to operate between species, can therefore also operate within species, leading to polymorphism and perhaps similarities between sexes more generally.
Nectar‐feeding birds provide an excellent system in which to examine form‐function relationships over evolutionary time. There are many independent origins of nectarivory in birds, and nectar feeding is a lifestyle with many inherent biophysical constraints. We review the morphology and function of the feeding apparatus, the locomotor apparatus, and the digestive and renal systems across avian nectarivores with the goals of synthesizing available information and identifying the extent to which different aspects of anatomy have morphologically and functionally converged. In doing so, we have systematically tabulated the occurrence of putative adaptations to nectarivory across birds and created what is, to our knowledge, the first comprehensive summary of adaptations to nectarivory across body systems and taxa. We also provide the first phylogenetically informed estimate of the number of times nectarivory has evolved within Aves. Based on this synthesis of existing knowledge, we identify current knowledge gaps and provide suggestions for future research questions and methods of data collection that will increase our understanding of the distribution of adaptations across bodily systems and taxa, and the relationship between those adaptations and ecological and evolutionary factors. We hope that this synthesis will serve as a landmark for the current state of the field, prompting investigators to begin collecting new data and addressing questions that have heretofore been impossible to answer about the ecology, evolution, and functional morphology of avian nectarivory. This article is protected by copyright. All rights reserved.