Angela Arciello's Lab

Featured research (8)

Topical antimicrobial treatments are often ineffective on recalcitrant and resistant skin infections. This necessitates the design of antimicrobials that are less susceptible to resistance mechanisms, as well as the development of appropriate delivery systems. These two issues represent a great challenge for researchers in pharmaceutical and drug discovery fields. Here, we defined the therapeutic properties of a novel peptidomimetic inspired by an antimicrobial sequence encrypted in human apolipoprotein B. The peptidomimetic was found to exhibit antimicrobial and anti-biofilm properties at concentration values ranging from 2.5 to 20 µmol L−1, to be biocompatible toward human skin cell lines, and to protect human keratinocytes from bacterial infections being able to induce a reduction of bacterial units by two or even four orders of magnitude with respect to untreated samples. Based on these promising results, a hyaluronic-acid-based hydrogel was devised to encapsulate and to specifically deliver the selected antimicrobial agent to the site of infection. The developed hydrogel-based system represents a promising, effective therapeutic option by combining the mechanical properties of the hyaluronic acid polymer with the anti-infective activity of the antimicrobial peptidomimetic, thus opening novel perspectives in the treatment of skin infections.
Background: medical device-induced infections affect millions of lives worldwide and innovative preventive strategies are urgently required. Antimicrobial peptides (AMPs) appear as ideal candidates to efficiently functionalize medical devices surfaces and prevent bacterial infections. In this scenario, here, we produced antimicrobial polydimethylsiloxane (PDMS) by loading this polymer with an antimicrobial peptide identified in human apolipoprotein B, r(P)ApoBLPro. Methods: once obtained loaded PDMS, its structure, anti-infective properties, ability to release the peptide, stability, and biocompatibility were evaluated by FTIR spectroscopy, water contact angle measurements, broth microdilution method, time-killing kinetic assays, quartz crystal microbalance analyses, MTT assays, and scanning electron microscopy analyses. Results: PDMS was loaded with r(P)ApoBLPro peptide which was found to be present not only in the bulk matrix of the polymer but also on its surface. ApoB-derived peptide was found to retain its antimicrobial properties once loaded into PDMS and the antimicrobial material was found to be stable upon storage at 4 °C for a prolonged time interval. A gradual and significant release (70% of the total amount) of the peptide from PDMS was also demonstrated upon 400 min incubation and the antimicrobial material was found to be endowed with anti-adhesive properties and with the ability to prevent biofilm attachment. Furthermore, PDMS loaded with r(P)ApoBLPro peptide was found not to affect the viability of eukaryotic cells. Conclusions: an easy procedure to functionalize PDMS with r(P)ApoBLPro peptide has been here developed and the obtained functionalized material has been found to be stable, antimicrobial, and biocompatible.
Host defense peptides (HDPs) are gaining increasing interest, since they are endowed with multiple activities, are often effective on multidrug resistant bacteria and do not generally lead to the development of resistance phenotypes. Cryptic HDPs have been recently identified in human apolipoprotein B and found to be endowed with a broad-spectrum antimicrobial activity, with anti-biofilm, wound healing and immunomodulatory properties, and with the ability to synergistically act in combination with conventional antibiotics, while being not toxic for eukaryotic cells. Here, a multidisciplinary approach was used, including time killing curves, differential scanning calorimetry, circular dichroism, ThT binding assays, and transmission electron microscopy analyses. The effects of a single point mutation (Pro → Ala in position 7) on the biological properties of ApoB-derived peptide r(P)ApoBLPro have been evaluated. Although the two versions of the peptide share similar antimicrobial and anti-biofilm properties, only r(P)ApoBLAla peptide was found to exert bactericidal effects. Interestingly, antimicrobial activity of both peptide versions appears to be dependent from their interaction with specific components of bacterial surfaces, such as LPS or LTA, which induce peptides to form β-sheet-rich amyloid-like structures. Altogether, obtained data indicate a correlation between ApoB-derived peptides self-assembling state and their antibacterial activity.
The effectiveness of three novel “host defence peptides” identified in human Apolipoprotein B (ApoB) as novel antimicrobial and antibiofilm agents to be employed in food industry is reported. ApoB-derived peptides have been found to exert significant antimicrobial effects towards Salmonella typhimurium ATCC® 14,028 and Salmonella enteritidis 706 RIVM strains. Furthermore, they have been found to retain antimicrobial activity under experimental conditions selected to simulate those occurring during food storage, transportation and heat treatment, and have been found to be endowed with antibiofilm properties. Based on these findings, to evaluate the applicability of ApoB-derived peptides as food biopreservatives, coating solutions composed by chitosan (CH) and an ApoB-derived peptide have been prepared and found to be able to prevent Salmonella cells attachment to different kinds of surfaces employed in food industry. Finally, obtained coating solution has been demonstrated to hinder microbial proliferation in chicken meat samples. Altogether, obtained findings indicate that ApoB-derived peptides are promising candidates as novel biopreservatives for food packaging.

Lab head

Angela Arciello
  • Department of Chemical Sciences
About Angela Arciello
  • Angela Arciello currently works at the Department of Chemical Sciences, University of Naples Federico II. Angela does research in Biotechnology, Cancer Research and Cell Biology. Their current project is "Applicability of antimicrobial peptides in food and cosmeceutical industries" and "Laser UV cross-linking in living cells".

Members (4)

Rosa Gaglione
  • University of Naples Federico II
Shurooq Ismail
  • An-Najah National University
Martina Schibeci
  • University of Naples Federico II
Maria De Luca
  • University of Naples Federico II

Alumni (1)

Angela Cesaro
  • University of Pennsylvania