Waste Management & Research

Published by SAGE Publications
Online ISSN: 1096-3669
Print ISSN: 0734-242X
Key drivers for change in healthcare waste management between the 1970s and 2000. 
Key developments in UK healthcare waste management from 2000 to date. 
Since the creation of the National Health Service (NHS) in the United Kingdom in 1948 there have been significant changes in the way waste materials produced by healthcare facilities have been managed due to a number of environmental, legal and social drivers. This paper reviews the key changes in legislation and healthcare waste management that have occurred in the UK between 1948 and the present time. It investigates reasons for the changes and how the problems associated with healthcare wastes have been addressed. The reaction of the public to offensive disposal practices taking place locally required political action by the UK government and subsequently by the European legislature. The relatively new UK industry of hazardous healthcare waste management has developed rapidly over the past 25 years in response to significant changes in healthcare practices. The growth in knowledge and appreciation of environmental issues has also been fundamental to the development of this industry. Legislation emanating from Europe is now responsible for driving change to UK healthcare waste management. This paper examines the drivers that have caused the healthcare waste management to move forward in the 60 years since the NHS was formed. It demonstrates that the situation has moved from a position where there was no overall strategy to the current situation where there is a strong regulatory framework but still no national strategy. The reasons for this situation are examined and based upon the experience gained; suggestions are made for the benefit of countries with systems for healthcare waste management still in the early stages of development or without any provisions at all.
Waste flows in the Municipality of Aarhus. 
Environmental impacts from scenarios A and B. 
Normalized potential impacts for sensitivity scenarios, organic MSW only. 
Primary energy savings for sensitivity scenarios for approximately 17 000 ton year-1 , organic MSW only. 
A new computer based life cycle assessment model (EASEWASTE) was used to evaluate a municipal solid waste system with the purpose of identifying environmental benefits and disadvantages by anaerobic digestion of source-separated household waste and incineration. The most important processes that were included in the study are optical sorting and pre-treatment, anaerobic digestion with heat and power recovery, incineration with heat and power recovery, use of digested biomass on arable soils and finally, an estimated surplus consumption of plastic in order to achieve a higher quality and quantity of organic waste to the biogas plant. Results showed that there were no significant differences in most of the assessed environmental impacts for the two scenarios. However, the use of digested biomass may cause a potential toxicity impact on human health due to the heavy metal content of the organic waste. A sensitivity analysis showed that the results are sensitive to the energy recovery efficiencies, to the extra plastic consumption for waste bags and to the content of heavy metals in the waste. A model such as EASEWASTE is very suitable for evaluating the overall environmental consequences of different waste management strategies and technologies, and can be used for most waste material fractions existing in household waste.
LCA study system boundary for fast pyrolysis (a) and slow pyrolysis (b). 492
Slow pyrolysis raw data. Source: (Demirbas, 2004, Demirbas, 2001). 496
Raw data fast pyrolysis (Source: see Appendix A). 
Performance of alternatives under uncertainty conditions 
The olive oil industry in Australia has been growing at a rapid rate over the past decade. It is forecast to continue growing due to the steady increase in demand for olive oil and olive products in the local and regional market. However, the olive oil extraction process generates large amounts of solid waste called olive husk which is currently underutilized. This paper uses life-cycle methodology to analyse the carbon emission reduction potential of utilizing olive husk as a feedstock in a mobile pyrolysis unit. Four scenarios, based on different combinations of pyrolysis technologies (slow versus fast) and end-use of products (land application versus energy utilization), are constructed. The performance of each scenario under conditions of uncertainty was also investigated. The results show that all scenarios result in significant carbon emission abatement. Processing olive husk in mobile fast pyrolysis units and the utilization of bio-oil and biochar as substitutes for heavy fuel oil and coal is likely to realize a carbon offset greater than 32.3 Gg CO(2)-eq annually in 90% of the time. Likewise, more than 3.2 Gg-C (11.8 Gg CO(2)-eq) per year could be sequestered in the soil in the form of fixed carbon if slow mobile pyrolysis units were used to produce biochar.
Abattoir waste disposal must be carefully managed because the wastes can be a source of food-borne diseases (Nemerow & Dasgupta Industrial and Hazardous Waste Treatment, p. 284, Van Nostrand Reinhold, New York, 1991; Bradshaw et al. The Treatment and Handling of Wastes, p. 183, The Royal Society, Chapman & Hall, London, 1992). Disposal of food that has been condemned because it is known to be diseased is of particular concern, and this paper looks at current disposal methods for such waste in the light of new scientific developments and waste-management strategies. Questionnaires were presented to management and workers at low- and high-throughput red meat abattoirs in the Free State Province, South Africa to determine current waste-handling procedures for condemned products. The waste-handling practices, almost without exception, did not fully comply with the requirements of the South African Red Meat Regulations of 2004, framed under the Meat Safety Act (Act 40 of 2000). The survey highlighted the need to improve current waste-handling strategies to prevent condemned products from re-entering the food chain and contributing to environmental pollution.
Some members of the public living near landfills perceive the sites as a source of nuisance flies and their associated diseases. Both these factors contribute to frequent complaints to Environmental Health Officers about landfill operations. Fly monitoring using sticky targets was done at a working landfill site in the West Midlands in order to identify the key species of flies present at the site, and to establish whether these flies were similar to those occurring in the surrounding area. Targets were positioned in concentric rings, radiating away from the working face into the surrounding residential area. The abundance of the flies, both in and around the landfill site was monitored over a 6-week period commencing 16 August 1999. The key families of flies present on targets on the landfill site were Muscidae, principally Musca domestica L.(common house fly), Calliphoridae, (primarily ‘blue’ and ‘green’ bottles), and Sarcophagidae (flesh flies). In contrast, the families of flies found on targets immediately outside the working landfill site and in the nearby surrounding area, were largely vegetation-feeding or parasitic flies, together with other non-fly insects. The overall abundance of all flies increased significantly during the monitoring period.
In recent years the issue of the municipal waste in Poland has become increasingly topical, with a considerable rise in the waste generation, much of which can be attributed to a boom in product packaging (mainly plastic). The annual production of plastics packaging has been constantly increasing over the last 20 to 30 years, and now exceeds 3.7 million tons. Due to a lack of processing technologies and poorly developed selective segregation system, packaging waste is still treated as a part of the municipal solid waste (MSW) stream, most of which is landfilled. As a result of Poland's access to the European Union, previous legal regulations governing municipal waste management have been harmonized with those binding on the member countries. One of the main changes, the most revolutionary one, is to make entrepreneurs liable for environmental risks resulting from the introduction of packaging to the market, and for its recycling. In practice, all entrepreneurs are to ensure recovery, and recycling, of used packaging from products introduced to the market at the required level. In recent year, the required recycling levels were fulfilled for all types of materials but mainly by large institutions using grouped and transport packaging waste for that matter. Household packaging gathered in the selective segregation system at the municipalities was practically left alone. This paper is an attempt to describe the system and assess the first year of functioning of the new, revamped system of packaging waste management in Poland. Recommendations are made relating to those features that need to be included in packaging waste management systems in order to maximize their sustainability and harmonization with the EU legal system.
Steps taken to counter the climate change problem have a significant impact on the municipal solid waste management (MSW) sector, which must tackle regional environmental problems such as the shortage of sanitary landfills, especially in Japan. Moreover, greenhouse gas emissions and final disposal have a trade-off relationship. Therefore, alleviation of both these environmental problems is difficult, and Japanese local municipalities are anxious for action to solve these problems and reduce treatment costs. Although ambitious waste management measures have been enacted in many countries, they appear to lack a holistic view and do not adopt a life cycle approach. Therefore, it is important to reconstruct the MSW management system, taking into account environmental and economic aspects. In the present study, life cycle assessment and mathematical modelling were used to seek ways of redesigning the MSW management system in order to minimize environmental impacts and/or reduce treatment costs. One economic block was selected as the study area (Iwate Prefecture in Japan). The life cycle inventory and costs data for every MSW transportation and treatment process in this region were collected and processed. Then, taking account of geographic information, an optimal solution for the minimization of environmental impact or treatment costs was derived. To solve the trade-off problem, a sensitivity analysis was conducted to find optimal reduction targets for climate change and final disposal.
Chemical composition of dried carbide sludge. 
Characteristics of untreated carbide sludge from the acetylene manufacturing factories before vacuum filtration. 
Characteristic of solid or residue and liquid or filtrate from the acetylene manufacturing factories after vacuum filtration. 
Carbide sludge (10.4-11.5 tonnes day(-1)) is generated from the reaction of calcium carbide (900 kg) and water (6,000 L) in the production of acetylene (2,400 m3), in three selected acetylene manufacturing plants. The sludge (of pH 12.2 and containing Cu, Pb, Fe, Mn, Ni and Zn ions whose concentrations exceed the Department of Environment limits for industrial wastewater) was treated by vacuum filtration as a substitute for the ponding system, which is environmentally less acceptable. A similar system by flocculation was also developed. The filtration system represents an improvement over the ponding method, as shown by a pH of 7 for the clear filtrate; the solid cake, which contains 98% of the metals, can be conveniently disposed at an integrated scheduled waste treatment centre.
Waste is a by-product of economic growth. Consequently, economic growth presents challenges for sustainable resource management and development because continued economic growth implies continued growth in waste outputs. Poor management of waste results in the inappropriate depletion of natural resources and potentially adverse effects on the environment, health and the economy. It is unsustainable. This paper begins by outlining the magnitude of and the current response to the growth in the quantity of waste outputs. This is followed by a consideration of why the international response to date, including the Rio Declaration and Agenda 21, fails to address the issue adequately. The paper concludes with a discussion on why and how an international treaty or other measure could advance sustainable development by providing an appropriate framework within which to address the problem.
The removal of iron, titanium and aluminium from colourless and green waste glasses has been studied under various experimental conditions in order to optimize the process parameters and to decrease the metal content in the waste glass by acidic leaching. Statistical design of experiments and ANOVA (analysis of variance) were performed in order to determine the main effects and interactions between the investigated factors (sample ratio, acid concentration, temperature and leaching time). A full factorial experiment was performed by sulphuric acid leaching of glass for metal removal. After treating, the iron content was 530 ppm, corresponding to 1880 ppm initial concentration of Fe(2)O(3) in the original colourless sample. This result is achieved using 1M H(2)SO( 4) and 30% sample ratio at 90(o)C leaching temperature for 2 hours. The iron content in the green waste glass sample was reduced from 3350 ppm initial concentration to 2470 ppm after treating.
This report describes the results from anaerobic batch acidification of chicken manure as a mono-substrate studied under mesophilic conditions. The manure was diluted with tap water to prevent methane formation during acidification and to improve mixing conditions by reducing fluid viscosity; no anaerobic digester sludge has been added as an inoculum. Highest acidification rates were measured at concentrations of 10 gVS L(-1) and 20 gVS L(-1); the pH value remained high (pH 6.9-7.9) throughout the test duration and unexpected fast methane formation was observed in every single batch. At substrate concentrations of 10 gVS L(-1) there was a remarkable methane formation representing a value of 82% of the respective biochemical methane potential of chicken manure. Increasing substrate concentrations did not supress methane formation but impaired acid production. Consequently, the liquor cannot be stored over longer periods but should immediately be used in a digestion process. © The Author(s) 2015.
The processing of solid vegetable market waste was attempted in a two-stage digester. Initially, for the hydrolysis and acidification of waste, enhanced extraction process was carried out by continuous sprinkling of water over the bed of waste in a mild steel 100 1 solid bed digester. The leachate obtained after completion of acidification phase was further treated in 24.6 1 UASB reactor for biogas production. The effect of waste-liquid ratio, dilution and sprinkling rate on the digestion of waste were studied. A high strength leachate, with a COD of 25,298 mg l(-1) and total volatile fatty acids concentration of 11.3 g l(-1), was obtained as a result of hydrolysis and acidification in a very short retention time of 40 h. The COD reduction of 94% was achieved during UASB reactor operation at organic loading rate of 19.6 kg COD m day(-3). A minimum hydraulic retention time of 16 h was achieved.
This study was performed to improve acidogenic fermentation of food waste in a continuous-flow reactor. The fermentation of food waste is affected by the fermentation constraints such as the biodegradability of substrate, the degrading capability of microorganisms and the environmental conditions. The key factors were, therefore, examined to control the fermentation constraints, such as the effect of seed inoculation and the effect of adjusting dilution rate. Acidogenic fermentation of food waste employing rumen microorganisms resulted in the enhanced efficiency (71.2%) as compared with that (59.8%) employing mesophilic acidogens. In addition, the fermentation efficiency increased from 71.2 to 82.0% by adjusting dilution rate from 3.0 to 1.0 d(-1) depending on the state of the fermentation. The main component of the acidified product was shifted from butyric to acetic acid. This meant that the increase of the fermentation efficiency was mainly caused by the enhanced degradation of vegetables and meats. The control of the fermentation constraints was, therefore, very effective in improving the fermentation efficiency of food waste.
The available expertise on managing and operating solid waste management (SWM) facilities varies among countries and among types of facilities. Few experts are willing to record their experience, while few researchers systematically investigate the chains of events that could trigger operational failures in a facility; expertise acquisition and dissemination, in SWM, is neither popular nor easy, despite the great need for it. This paper presents a knowledge acquisition process aimed at capturing, codifying and expanding reliable expertise and propagating it to non-experts. The knowledge engineer (KE), the person performing the acquisition, must identify the events (or causes) that could trigger a failure, determine whether a specific event could trigger more than one failure, and establish how various events are related among themselves and how they are linked to specific operational problems. The proposed process, which utilizes logic diagrams (fault trees) widely used in system safety and reliability analyses, was used for the analysis of 24 common landfill operational problems. The acquired knowledge led to the development of a web-based expert system (Landfill Operation Management Advisor, http://loma.civil.duth.gr), which estimates the occurrence possibility of operational problems, provides advice and suggests solutions.
Experimental design of the studied area. A quadruplet schema was designed as follow: T (control) non-treated soil; M40, 40 t FM added per ha; M120, 120 t FM added per ha; C40, 40 t MSWC added per ha; C80, 80 t MSWC added per ha and C120, 120 t MSWC added per ha.
Soil characteristics of the organic amendments tested.
Phylogenetic tree of 90 isolates related to the three genera, Streptomyces, Amycolatopsis and Nocardioides isolated from agricultural soil and organic amendment based on 16S rDNA RFLP analysis.
Phylogenetic tree of 34 isolates related to the three genera, Streptomyces, Amycolatopsis and Nocardioides isolated from agricultural soil and organic amendment based on 16S rDNA sequencing.
Characteristics differentiating of actinomycetes isolated from soil
The main objective of this investigation was to identify a collection of actinomycetes isolates and to study the influence of amendment [municipal solid waste compost (MSWC) and farmyard manure (FM)] on their distribution in agricultural soil. For this purpose, a phenotypic and molecular characterization of 226 isolates collected from soil (with and without amendment) and 55 isolates from MSWC and FM was developed. The phenotypic study showed that the majority of strains isolated belong to the genus Streptomyces. By using the 16S rDNA polymerase chain reaction-restriction fragment length polymorphism method (restriction digest using six enzymes AluI, HhaI, MspI, TaqI, RsaI and HaeIII), two clusters were found: Streptomyces, dominant genus and Amycolatopsis, followed by Nocardioides. This result agreed with phylogeny revealed by 16S rDNA sequencing. The number of these actinomycetes in soil increased with FM or MSWC application. The studied soil is a potential source for isolation of actinomycetes, especially Streptomyces, and the application of organic amendment to the soil appeared to have an impact on the diversity of actinomycetes. Amendment of the soil with MSWC and FM significantly increased the number of actinomycetes due to the contribution of bacteria originally contained in biowastes and/or by stimulation of the endogenous soil micro-organisms.
In recent years a significant increase in municipal solid waste (MSW) amount has been noted in Poland, and yet there is no fully efficient system for its treatment. Undertaking projects for rational MSW management requires considering both technical facilities and social barriers (waste reduction, re-use and segregation in households). In Poland, attempts to educate and mobilise society to segregate recyclables have not yet produced satisfactory results. Society’s awareness in this field needs to be raised. The purpose of this study was to determine the level of knowledge and understanding about MSW management and the relationship between knowledge possessed and actions undertaken for various residential age groups in two Polish provinces. In all groups, 30% of the respondents showed a satisfactory level of knowledge, whilst an equally small number of individuals had undertaken actions for MSW management at home; people with a higher level of knowledge undertook such actions slightly more often. No significant differences between the provinces were found, but residents of town, where waste segregation has been introduced simultaneously with an information campaign, showed a higher level of knowledge. The study points to the need to further educate people about MSW, and to encourage the teaching of pro-environmental attitudes.
The main objective of this paper was to analyse the present status of medical waste management in the Trachea region of Turkey and subsequently to draw up a policy regarded with generation, collection, on-site handling, storage, processing, recycling, transportation and safe disposal of medical wastes. This paper also presents the results of study about awareness on how to handle expired drugs. Initially all health-care establishments in Tekirdağ, Edirne and Kýrklareli provinces in Trachea region were identified and the amounts of hospital wastes generated by each of them were determined. Current medical waste-management practices, including storage, collection, transportation and disposal, in surveyed establishments were identified. Finally, according to results, remedial measurements for medical waste management in these establishments were suggested. Unfortunately, medical wastes are not given proper attention and these wastes are disposed of together with municipal and industrial solid wastes. The current disposal method is both a public health and environmental hazard. When landfill sites are visited, many scavengers can be seen sorting for recyclable materials, a practice which is dangerous for the scavengers. In addition, it was found that some staff in health-care establishments are unaware of the hazard of medical wastes. It is concluded that a new management system, which consists of segregation, material substitution, minimization, sanitary landfilling and alternative medical waste treatment methods should be carried out. For the best appropriate medical waste management system, health-care establishment employers, managers and especially the members of house- keeping divisions should be involved in medical waste management practice.
Sixteen zeolites and 5 activated carbons were tested for the removal of nickel, zinc, cadmium, copper, chromium, and cobalt from waste simulants mimicking effluents produced in metal plating plants. The best performances were obtained from 4 zeolites: A, X, L, and ferrierite types and from 2 carbon types made from lignite and peat. The distribution coefficients for these sorbents were in the range of 10,000-440,000 ml/g. Column experiments showed that the most effective zeolites for Zn, Ni, Cu, and Cd were A and X type zeolites. The activated carbons, Hydrodarco 3000 and Norit Row Supra, exhibited good sorption properties for metals in aqueous solutions containing complexing agents.
General properties of activated carbon used in the study. 
Plot of volume of media versus leachate pH and percentage of N-NH 3 removal.  
Percentage of N-NH 3 removal against final pH without presence of any media.  
Composition of the limestone used in the present study. 
The presence of ammoniacal nitrogen (N-NH3) in leachate is one of the problems normally faced by landfill operators. Slow leaching of wastes producing nitrogen and no significant mechanism for transformation of N-NH3 in the landfills causes a high concentration of ammoniacal nitrogen in leachate over a long period of time. A literature review showed that the removal of ammoniacal nitrogen from leachate was not well documented and to date, there were limited studies in Malaysia on this aspect, especially in adsorption treatment. The main objective of the present study was to investigate the suitability of activated carbon, limestone and a mixture of both materials as a filtering medium, in combination with other treatments capable of attenuating ammoniacal nitrogen which is present in significant quantity (between 429 and 1909 mg L(-1)) in one of the landfill sites in Malaysia. The results of the study show that about 40% of ammoniacal nitrogen with concentration of more than 1000 mg L(-1) could be removed either by activated carbon or a mixture of carbon with limestone at mixture ratio of 5:35. This result shows that limestone is potentially useful as a cost-effective medium to replace activated carbon for ammoniacal nitrogen removal at a considerably lower cost.
This is the first study on the co-pyrolysis of spent substrate of Pleurotus ostreatus and coal tar pitch, and the activated carbon prepared from the pyrolytic char. Thermogravimetry (TG) analysis was carried out taking spent substrate, coal tar pitch and spent substrate-coal tar pitch mixture. The activation energies of pyrolysis reactions were obtained via the Flynn-Wall-Ozawa and Kissinger-Akahira-Sunose methods. The kinetic models were determined by the master-plots method. The activated carbons were characterised by N2-adsorption, Fourier transform infrared spectroscopy and X-ray diffraction. Experimental results demonstrated a synergistic effect happened during co-pyrolysis, which was characterised by a decreased maximum decomposition rate and an enhanced char yield. The average activation energies of the pyrolysis reactions of spent substrate, coal tar pitch and the mixture were 115.94, 72.92 and 94.38 kJ mol(-1) for the Flynn-Wall-Ozawa method, and 112.17, 65.62 and 89.91 kJ mol(-1) for the Kissinger-Akahira-Sunose method. The reaction model functions were f(α) = (1-α)(3.42), (1-α)(1.72) and (1-α)(3.07) for spent substrate, coal tar pitch and the mixture, respectively. The mixture char-derived activated carbon had a Brunauer-Emmett-Teller surface area up to 1337 m(2) g(-1) and a total pore volume of 0.680 cm(3) g(-1). Mixing spent substrate with coal tar pitch led to the creation of more micropores and a higher surface area compared with the single spent substrate and coal tar pitch char. Also, the mixture char-derived activated carbon had a higher proportion of aromatic stacking. This study provides a reference for the utilisation of spent substrate and coal tar pitch via co-pyrolysis, and their pyrolytic char as a promising precursor of activated carbon.
In this study, chloridized mesoporous activated carbons (ClMAC) were prepared from used tyres. Their pore structure, surface chemistry and adsorptive capacities of toluene were investigated with nitrogen gas adsorption, Fourier transform infrared spectroscopy (FT-IR) and bench adsorptive experiments. A series of activated carbons were produced by pyrolysis, activation and chlorination under different temperatures. The activated carbons derived from scrap tyres had highly mesoporous volumes and surface areas, for example, the ClMAC prepared under 300 degrees C was 0.81 cm(3) g(-1), and 1078.2 m(2) g(-1), respectively. (Commercial activated carbon-F-400 was 0.16 cm(3) g(-1), and 1021.1 m(2) g(-1)). The adsorptive capacities of toluene in the activated carbon-derived waste tyres were compared with the F-400 and the experimental results showed chlorinated activated carbons had exceptional characteristics for toluene adsorption in an aqueous solution; especially, the ClMAC produced in 300 degrees C had a 471.8 mg g(-1) maximum capacity; however, F-400 had a 255.4 mg g(-1) minimum capacity. In short, by using chloridized mesoporous activated carbons the authors significantly improved the toluene removal capacity in aqueous solution.
Anaerobic co-digestion of organic fraction of municipal solid waste, with thickened waste activated sludge and primary sludge has the potential to enhance biodegradation of solid waste, increase longevity of existing landfills and lead to more sustainable development by improving waste to energy production. This study reports on mesophilic batch and continuous studies using different concentrations and combinations (ratios) of organic fraction of municipal solid waste, thickened waste activated sludge (microwave pre-treated and untreated) and primary sludge to assess the potential for improved biodegradability and specific biogas production. Improvements in specific biogas production for batch assays, with concomitant improvements in total chemical oxygen demand and volatile solid removal, were obtained with organic fraction of municipal solid waste:thickened waste activated sludge:primary sludge mixtures at a ratio of 50:25:25 (with and without thickened waste activated sludge microwave pre-treatment). This combination was used for continuous digester studies. At 15 d hydraulic retention times, the co-digestion of organic fraction of municipal solid waste:organic fraction of municipal solid waste:primary sludge and organic fraction of municipal solid waste:thickened waste activated sludge microwave:primary sludge resulted in a 1.38- and 1.46-fold increase in biogas production and concomitant waste stabilisation when compared with thickened waste activated sludge:primary sludge (50:50) and thickened waste activated sludge microwave:primary sludge (50:50) digestion at the same hydraulic retention times and volumetric volatile solid loading rate, respectively. The digestion of organic fraction of municipal solid waste with primary sludge and thickened waste activated sludge provides beneficial effects that could be implemented at municipal wastewater treatment plants that are operating at loading rates of less than design capacity.
The chemical composition and the leachability of heavy metals in municipal solid waste incinerator (MSWI) fly ash were measured and analysed. For the leachability of unstabilized MSWI fly ash it was found that the concentrations of Pb and Cr exceeded the leaching toxicity standard. Cementitious solidification of the MSWI fly ash by Na2SiO3-activated ground granulated blast-furnace slag (NS) was investigated. Results show that all solidified MSWI fly ash can meet the landfill standards after 28 days of curing. The heavy metals were immobilized within the hydration products such as C-S-H gel and ettringite through physical encapsulation, substitution, precipitation or adsorption mechanisms.
Chemical composition of materials 
Schematic representation of flexible wall permeameter 
Lime-activated pulverised fuel ash (PFA) has been leach tested under a range of pH conditions and the permeability of compacted samples determined using distilled water and aqueous solutions of Ca2+, Zn2+, Cd2+ and Mg2+. Although permeabilities were relatively high when tested with distilled water (> 1x10(-7) m/s), permeation with 0.05M metal solutions resulted in rapid reductions in permeability to less than 1x10(-10) m/s. Leachate and permeant solution analysis shows that metal ion release from samples is low. The reduction in permeability is believed to be due to pore sealing resulting primarily from metal hydroxide precipitation and results in a metal concentration gradient across the sample thickness. Lime-activated PFA therefore acts as both a chemical and physical barrier to metal ion migration and has the potential to form low permeability barriers.
The preparation of chars and activated carbon as low-cost elemental mercury adsorbents was carried out through the carbonisation of coconut husk (pith and fibre) and the activation of chars with potassium hydroxide (KOH), respectively. The synthesised adsorbents were characterised by using scanning electron microscopy, Fourier transform infrared spectroscopy and nitrogen adsorption/desorption analysis. The elemental mercury removal performance was measured using a conventional flow type packed-bed adsorber. The physical and chemical properties of the adsorbents changed as a result of the carbonisation and activation process, hence affecting on the extent of elemental mercury adsorption. The highest elemental mercury (Hg°) adsorption capacity was obtained for the CP-CHAR (3142.57 µg g(-1)), which significantly outperformed the pristine and activated carbon adsorbents, as well as higher than some adsorbents reported in the literature. © The Author(s) 2014.
Nuisance-causing flies were studied in and around a West Midlands, UK, landfill site from mid-January 2003 to mid-January 2004. The most important species was the common housefly, Musca domestica, which made up more than 92% of the total catch on traps in premises and was also frequent on the landfill site. An estimated 2 million common houseflies were imported to the site in waste as eggs, larvae or pupae during the peak month, July. Most did not apparently survive to maturity, only about 20 000 per month emerging from the tipped refuse. Lesser houseflies (Fannia canicularis) were also very commonly imported but they seemed unable to survive the conditions on the tip in their immature stages and few were found in emergence traps. No correlation was found between the distance separating premises from the landfill site and the number of M. domestica trapped in those premises. White sticky traps were effective for monitoring changes in fly populations over the longer term whereas the Scudder grill was more useful for making objective 'snapshots' of fly activity. There is scope to improve both the monitoring of fly activity and the investigation of complaints made by the general public about flies.
Stormwater run-off from twelve different areas and roads has been characterized in a modern waste disposal site, where several waste management activities are carried out. Using nonparametric statistics, medians and confidence intervals of the medians, 22 stormwater quality parameters were calculated. Suspended solids, chemical oxygen demand, biochemical oxygen demand, total nitrogen and total phosphorus, as well as run-off from several areas, showed measured values above standard limits for discharge into recipient waters--even higher than those of leachate from covered landfill cells. Of the heavy metals analyzed, copper, zinc and nickel were the most prevalent, being detected in every sample. Higher concentrations of metals such as zinc, nickel, cobalt, iron and cadmium were found in run-off from composting areas, compared to areas containing stored and exposed scrap metal. This suggests that factors other than the total amount of exposed material affect the concentration of metals in run-off, such as binding to organic compounds and hydrological transport efficiency. The pollutants transported by stormwater represent a significant environmental threat, comparable to leachate. Careful design, monitoring and maintenance of stormwater run-off drainage systems and infiltration elements are needed if infiltration is to be used as an on-site treatment strategy.
The safe management of potentially infectious healthcare waste is gaining increasing worldwide importance. In developing countries, simple incinerators are used for the treatment of this type of waste stream. However, as these incinerators produce high emissions and represent the main generators of dioxin and furans in these countries, alternative and cost-effective solutions are needed. As steam treatment systems do not produce persistent organic pollutants, the use of existing (older) medical autoclaves could represent a solution for the treatment of infectious waste. ETLog Health EnviroTech & Logistics, the German-based consulting and engineering company carried out the first research into whether gravity air displacement autoclaves can be used for the safe decontamination of infectious waste. The research showed that it is not possible to decontaminate waste using this type of autoclave. A subsequent research and development phase might, however, make it possible to develop a new process cycle. Tests carried out on the basis of international standards and norms showed that by applying this process cycle and using an add-on set, it is possible to treat healthcare waste using the existing stock of older medical autoclaves. The process cycle and the add-on set developed were tested under existing conditions in Hanoi, Vietnam using the treatment cycle developed for a 13-year-old autoclave. All the parameters for infectious waste decontamination were reached. As modified autoclaves prevent the emission of toxic substances, this approach presents an interim solution, which avoids the impacts on human health and the environment caused by the incineration of healthcare waste.
In Arizona US, most houses are built with walls covered by stuccos/coatings/mortars. This paper presents an explorative investigation of adding crumb rubber into stuccos/coatings/mortars. A series of experiments are conducted to examine the thermal and mechanical performance of the crumb rubber mixes. The results show that, the mixes with crumb rubber do exhibit more desirable performances like being high in crack-resistance and thermal insulation, and low in thermal expansion/contraction. The drawback for the crumb rubber mixes is the reduction in compressive strength, but which can be compensated by other means. As a site experiment, an area of 100 square-feet of crumb rubber coatings for two mix designs is sprayed on a tire-adobe wall. After being sprayed more than 14 months, the coatings apparently are in good condition. Significance of this study is that this practice, if accepted, will yield improved products that consume large quantities of crumb rubber.
Plastics wastes from a municipal solid waste plant have a high energy content which make it an interesting option for co-processing with coal. The potential for adding plastic waste to a coal fired Texaco IGCC (Integrated Gasification Combined Cycle) power station is examined. The resulting efficiency increases due to the improved gasification qualities of plastic over coal. For the overall economics to be the same as the coal only case, the maximum amount that the power station can afford to spend on preparing the plastic waste for use is similar to the assumed coal cost, plus the avoided landfill cost, minus the transport cost. The location of the power station plays a key role, since this has an effect on the transport costs as well as on the landfill charges. The sensitivity of the economics of co-processing plastic waste with coal for a variety of power station operational parameters is presented.
The reduction of SO2, HCl, and NO(x) concentrations using calcium magnesium acetate (CMA) as a novel sorbent in a simulated municipal waste incinerator flue gas was investigated. The reduction of individual SO2, HCl, and NO(x) concentrations was tested at 850 degrees C and it was found that CMA could reduce the SO2 concentration by 74%, HCl concentration by 64%, or NO(x) concentration by 94%. It was observed that individual SO2 or HCl capture increased with increasing initial oxygen concentration in the reacting gas or increasing sorbent input. NO(x) reduction decreased with increasing initial oxygen concentration in the reacting gas. The simultaneous reduction of SO2, HCl, and NO(x) concentrations by CMA was also investigated. It was found that CMA could simultaneously capture 60% SO2 and 61% HCl and reduce NO(x) concentrations by 26%, when the initial oxygen concentration in the reacting gas was 4%. During the simultaneous reduction of SO2, HCl, and NO(x), it was noted that as the initial oxygen concentration in the reacting gas increased, the efficiency of SO2 capture increased too, but the efficiency of HCl capture and the efficiency of NO(x) destruction decreased.
Back-scattered electron micrograph and energy-dispersive X-ray spectroscopy analysis of the particles of Bayer red mud (BRM) from Guizhou Enterprise of China Aluminum Co., Ltd (GZHE). 
Main chemical composition of Guizhou red mud samples
Trace element composition of Guizhou red mud samples
Activity concentration of natural radionuclides in Guizhou red mud samples and their calculated internal exposure indices and external exposure indices
Red mud remains as residue from the processing of bauxite using different methods. The chemical composition of red mud varies widely with respect to the types of bauxite ore and processing parameters. Red mud samples from Guizhou, China, were investigated using a X-ray fluorescence spectroscope, a quadrupole inductively coupled plasma mass spectrometer and a electron probe micro-analyzer. The results showed that red mud consisted of eight main chemical components--CaO, Al(2)O(3), SiO(2), Fe(2)O(3), TiO(2), Na(2)O, K(2)O and MgO--and dozens of trace elements, including natural radioactive elements, such as uranium and thorium. Gamma spectrometric analysis showed that the values of internal exposure index I (Ra) and external exposure index I (γ) of Guizhou red mud were 1.1-2.4 and 2.3-3.5 respectively. Thus, it should not be used as a main building material indiscriminately. The amount of red mud from Guizhou when it is used for main building materials in China should be less than 28-44%.
In this study, the possibility of using lignite fly ash in low doses for reducing the pathogen levels in wastewater sludge was investigated. The results showed that using fly ash alone in doses of 40%, 80% and 120% (on a dry weight basis), did not produce an alkaline environment for an efficient removal of pathogens. However, using fly ash in conjunction with the minimum amount of quicklime may act as an effective way of fecal coliform removal in both alkaline stabilisation and pasteurisation processes. It was shown that using fly ash in doses of 80% and 120% in alkaline stabilisation and pasteurisation processes prevented the pH decays and regrowth of pathogens during 60 days of storage period. The results of the study confirmed that alkaline pasteurisation process produces a product which is more resistant to pH decays and regrowth of fecal coliforms compared to that of alkaline stabilisation. Consequently, the overall results of this study indicated that the minimum lime and fly ash dosages required to generate a Class B biosolid were 10-15% and 80%, respectively. On the other hand, heating sludge to 50 degrees C prior to the addition of 10-15% quicklime and 80% fly ash followed by further heating to 70 degrees C and then sustaining at this temperature for 30 minutes were sufficient to generate a Class A biosolid.
This study investigated the reusability of waste material from the tile manufacturing industry as an alternative material to natural pozzolan trass. Yield strength values of mortar made from Portland cement (CEM 142.5), were measured by adding glazed ceramic waste and trass at various weight ratios (5 to 40%). The test results proved that the strength values at 2, 7, and 28 days gave good results for concentrations of waste materials less than 5-10% in the cement. A decrease in strength was observed at higher concentrations. Mathematical modelling results showed a logarithmic correlation between the mortar strength and weight fraction of cement.
Mine tailings are formed as an industrial waste during coal and ore mining and processing. In the investigated process, following the extraction of gold from the ore, the remaining tailings are subjected to a two-stage chemical treatment in order to destroy the free cyanide and to stabilize and coagulate heavy metals prior to discharge into the tailings pond. The aim of this study was the investigation of the feasibility of utilization of the tailings as an additive material in Portland cement production. For this purpose, the effects of the tailings on the compressive strength properties of the ordinary Portland cement were investigated. Chemical and physical properties, mineralogical composition, particle size distribution and microstructure of the tailings were determined by Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), particle size analyzer (Mastersizer) and scanning electron microscope (SEM). Following the characterization of the tailings, cement mortars were prepared by intergrinding Portland cement with dried tailings. Composition of the cement clinkers were adjusted to contain 5, 15, 25% (wt/wt) dried tailings and also silica fume and fly ash samples (C and F type) were added to clinker in different ratios. The mortars produced with different amounts of tailings, silica fume, fly ashes and also mixtures of them were tested for compressive strength values after 2, 7, 28 and 56 days according to the European Standard (EN 196-1). The results indicated that gold tailings up to 25% in clinker could be beneficially used as an additive in Portland cement production. It is suggested that the gold tailings used in the cement are blended with silica fume and C-type fly ash to obtain higher compressive strength values.
For resource reutilization, scrap tyres have long been investigated as an additive to concrete to form 'Rubcrete' for various applications and have shown promising results. However, the addition of rubber particles leads to the degradation of physical properties, particularly, the compressive strength of the concrete. In this study, a theoretical model was proposed to shed light on the mechanisms of decrease in compressive strength due to the addition of rubber particles as well as improvement in compressive strength through modification of particle surfaces. The literature suggests that the compressive strength can be improved by soaking the rubber particles in alkaline solution first to increase the inter-phase bonding between the rubber particles and cement. Instead, we discovered that the loss in compressive strength was due to local imperfections in the hydration of cement, induced by the addition of heterogeneous and hydrophobic rubber particles. Microscopic studies showed that the rubber particles disturbed the water transfer to create channels, which were prone to cracking and led to a loss in the compressive strength. Unexpectedly, no cracking was found along the surfaces of the rubber particles, indicating that the bonding strength between the rubber particles and cement phases was not the critical factor in determining the compressive strength. Therefore, a theoretical model was proposed to describe the water transfer in the Rubcrete specimens to explain the experimental data. In the model, the local water available for hydration (Q) is: Q = -A(slv)/6piv, where Q, A(slv), and v are mass flow rate (kg s(-1)), Hamaker constant (J), and dynamic viscosity (m2 s(-1)), respectively. By maximizing the quantity Q and, in turn, the Hamaker constant A(slv), the compressive strength could be improved. The Hamaker constant A(slv) for water film on rubber particle surfaces was smaller than that for the hydrated cement particles; the water transfer rate was lower in the presence of rubber particles because the Hamaker constant A(slv) for water film on rubber particle surfaces was smaller than that on the hydrated cement particles. Thus, the compressive strength of Rubcrete could be improved by increasing the Hamaker constant of the system. This was achieved by increasing the refractive indices of the solids (n(s)). The refractive indices of materials increase with increases in functional groups, such as OH and SH on the surface. The model provided a possible mechanism for the efficacy of treating rubber particles with NaOH in improving the compressive strength. By using NaOH solution treatment, an oxygen-containing OH group was formed on the rubber surface to increase the Hamaker constant of the system, leading to higher compressive strength. Based on this mechanism, a novel method for modification of the rubber particles was also proposed. In this process, the rubber particles were partially oxidized with hot air/steam in a fluidized bed reactor to produce the hydrophilic groups on the surface of the particles. Preliminary results obtained so far are promising in accordance with the theory.
In this work, the hazardous properties of solvent base adhesive wastes generated in the footwear manufacturing process have been studied. The characterisation procedures and criteria used are those contained in the legal documents European Union Council Decision 94/904/CE and October 13th Spanish Ministerial Order. The properties studied were the following: flash point, reactivity (gas generation), ecotoxicity, main contaminants extracted by the leaching process and main harmful substances contained in wastes. An additional study of the relationship between flash point and solvent concentration in waste was carried out for polyurethane-acetone and neoprene-toluene systems. The wastes considered were metal containers with remains of dry or semi-dry adhesive. The results obtained show that the presence of solvent in wastes confers on them hazardous characteristics (flash point and harmful composition) depending on the solvent type and its concentration.
Construction and placement of flux chamber in the upper soil layer
Examples of the concentration of methane and carbon dioxide versus time in the flux chambers. Note that the concentration axis has been multiplied by 10 for M7 CO 2 October 7 th 1997 and by 100 for H5 CH 4 April 8 th 1998
The summarised fluxes of methane, carbon dioxide and landfill gas (LFG) (mol m-1 of landfill border h-1 ) at transect Field as a function of time. Temporal variations in the averaged daily air temperature, the averaged soil temperature at 10 cm b.s., the barometric pressure, the pressure gradient and the average volumetric soil moisture content are also shown
The emissions as a function of distance from the landfill border and the correspondent soil temperature at 10 cm b.s. In transect Field on (a) December 4 th and (b) July 16 th
Field investigations of lateral gas transport and subsequent emissions in soil adjacent to an old landfill in Denmark have been conducted during a one-year period. A significant seasonal variation in the emissions with high carbon dioxide and low methane fluxes in the summer (May to October) was observed. This was attributed to methane oxidation. Diumal measurements during a drop in barometric pressure showed that the fluxes of landfill gas changed dramatically within a very short time. The concentrations and the soil moisture content in the upper part of the soil profile had significant influence on the fluxes, as did the distance from the landfill border, temperature, barometric pressure and the pressure gradient. Statistical analyses proved that soil moisture described the largest part of the variation. No methane at all emitted during the summer. Calculations and isotope analyses showed that very high fractions of the laterally migrating methane were oxidised.
Field experiments investigating lateral gas transport in soil adjacent to an old landfill in Denmark during a one-year period were conducted. A significant seasonal variation, with low concentrations of methane and high concentrations of carbon dioxide in the summer, caused by methane oxidation was observed. There was a good correlation between pressure above the barometric pressure and the methane concentration in the soil, indicating that advective flow was the controlling process. This was confirmed by calculations. Diurnal measurement during a drop in barometric pressure showed that lateral migration of landfill gas was a very dynamic system and the concentrations of LFG at a specific place and depth changed dramatically within a very short time. The experiments showed that change in barometric pressure was an important factor affecting gas migration at the Skellingsted landfill in Denmark.
The results of 2-chloroaniline (2-CA) immobilization experiments in cement matrices, using an organophilic clay modified with phenolic resins as pre-sorbent, are shown. The 2-CA suspended in water was kept in contact with the organoclay for 24 h, and the slurry obtained was then admixed with ordinary Portland cement (OPC) without additional water, to obtain a firm solid waste. Six cement-clay pastes were prepared with the same water-to-cement ratio (0.50 wt/wt), but with different slurry composition (water-to-organoclay ratio equal to 10 and 5 wt/wt, respectively) and different amounts of 2-CA suspended in water, namely 5000, 15 000, and 25 000 ppmw (weight). Dynamic leach tests were performed on solidified monoliths in order to assess the successful immobilization of the 2-CA. Moreover, X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy analyses were carried out.
The volcanic soils of southern Chile have demonstrated a high capacity to adsorb environmental pollutants, but for an industrial application, a stable solid material is necessary. The objective of this work was to produce a stable ceramic material through a process involving volcanic soil-polyurethane foam produced with recycled polyethylene terephthalate (PET)-polyols, and further thermal treatment. The selected foam formulation with 35.4% volcanic soil (< 63 microm) seems to be the most suitable for thermal treatment, with temperature steps at 700, 850, 1000 and 1200 degrees C. The porous ceramic material obtained has a stable solid form and an improved chlorophenols adsorption capacity (comparable to natural zeolites) that makes it suitable for advanced wastewater treatment and landfill leachate depuration.
The leachates produced at the municipal solid waste (MSW) landfill of Asturias (Spain) were submitted to a biological treatment consisting of a pressurized nitrification-denitrification process followed by ultrafiltration. The effluent from this treatment plant has a high chemical oxygen demand : biochemical oxygen demand (COD : BOD( 5)) ratio (about 25 : 1). The COD values of the effluent are above the discharge limits permitted by current legislation and therefore require a final treatment. In the present study, adsorption was investigated as a possible post-treatment. Three activated carbons (Organosorb 10, Organosorb 10MB and Filtracarb CC65/1240) were selected and equilibrium and column data were obtained. The best results were obtained with Organosorb 10MB, although adsorption capacities obtained were low and equilibrium was unfavourable. Adsorption capacities ranged between 150 and 157 mg COD g(-1) for an activated carbon dosage of 1 mg L(-1) and between 13.3 and 18.4 mg COD g(-1) for a dosage of 20 mg L(-1). As regards colour, adsorption capacities ranged between 145 and 175 UPtCo g(-1) for the lower dosage and between 16 and 29 UPtCo g(-1) for the higher dosage. Removal efficiency increased with the dosage of activated carbon employed, obtaining maximum COD and colour removals of 63 and 45%, respectively, for a dosage of 20 mg L(-1) after 5 h contact time.
The solubility and adsorption characteristics of Pb in leachate from municipal solid waste incineration (MSWI) bottom ash was studied by batch experiments. The solubility of Pb in leachate was 1-2 orders of magnitude lower than that of Pb in carbonate solutions. Adsorption experiments showed bottom ash have high adsorption capacity for Pb. To evaluate a controlling component in bottom ash, quartz, Al and Fe powder as well as their ions were examined over wide ranges of pH at 25 degrees C. The results showed that only Fe powder had high adsorption capacities for Pb, indicating that iron oxides in bottom ash would be one major adsorbent for Pb. Adsorption diagram, constructed by using the data of adsorption experiments, fitted the experimental data of Pb in leachate very well. It suggests that the decrease of Pb solubility in leachate is mainly due to adsorption reaction.
Landfill processes were simulated in laboratory-scale bioreactors--lysimeters. The changes in leachate characteristics as well as the influence of advanced oxidation processes (AOPs) on the processes taking place in the sanitary landfill were investigated. Lysimeters were filled with material simulating municipal waste in the city of Lodz, Poland. Compost in the amount of 30% w/w and the methanogens inoculum were added in order to enhance development of a methanogenic phase. The leachate produced in lysimeters was recirculated. In order to investigate the influence of AOPs implementation on processes taking place in landfills two runs in lysimeters were performed, each lasting about 250 days. The leachate composition and biogas composition and production changes showed trends that confirmed that the bench-scale lysimeters appeared suitable to simulate processes taking place in the landfill. The application of AOPs to the leachate recirculated into the lysimeters did not bring about unequivocally positive effects. The ozonation of the leachate, implemented at the beginning of the methanogenic phase, caused slight acceleration (about 2 weeks) of the biodegradation, whereas employment of H2O2/UV led to the inhibition of anaerobic processes.
Manned missions to the Moon and Mars will produce waste, both in liquid and solid form, from the day-to-day life-support functions of the mission—even considering a "closed" physico-chemical life support approach. An "open" life support system configuration, even one reliant on in situ resources, would result in even more waste being produced. The solution for short term missions appears to be either to store these wastes on-site or to convert them to useful products needed by other systems such as methane, water and gases which could be used for propulsion. The solution for longer term missions appears to be to incorporate their use within the life support system itself by making them a part of a closed ecological life-support system where nearly all materials are recycled. This paper discusses briefly the extent and impact of the life-support system waste production problem for a lunar base for different life support system configurations, including the impact of using in situ resources to meet life support requirements. It then discusses in more detail trade-offs among six of the currently funded physico-chemical waste processing technologies being considered for use in space.
President Bush has enunciated an unparalleled, open-ended commitment to human exploration of space called the Space Exploration Initiative (SEI). At the heart of the SEI is permanent human presence beyond Earth orbit, which implies a new emphasis on life science research and life support system technology. Proposed bioregenerative systems for planetary surface bases will require carefully designed waste processing elements whose development will lead to streamlined and efficient and efficient systems for applications on Earth.
The Old Ammässuo Landfill (Espoo, Finland) covers an area of 52 hectares and contains about 10 million tonnes of waste that was landfilled between 1987 and 2007. The majority of this waste was mixed, of which about 57% originated from households. This paper aims at describing the management of the Old Ammässuo Landfill throughout its operational lifetime (1987-2007), and at developing an environmental evaluation based on life-cycle assessment (LCA) using the EASEWASTE-model. The assessment criteria evaluate specific categories of impact, including standard impact categories, toxicity-related impact categories and an impact categorized as spoiled groundwater resources (SGR). With respect to standard and toxicity-related impact categories, the LCA results show that substantial impact potentials are estimated for global warming (GW), ozone depletion (OD), human toxicity via soil (HTs) and ecotoxicity in water chronic (ETwc). The largest impact potential was found for SGR and amounted to 57.6 person equivalent (PE) per tonne of landfilled waste. However, the SGR impact may not be viewed as a significant issue in Finland as the drinking water is mostly supplied from surface water bodies. Overall, the results demonstrate that gas management has great importance to the environmental performance of the Old Ammässuo Landfill. However, several chemicals related to gas composition (especially trace compounds) and specific emissions from on-site operations were not available or were not measured and were therefore taken from the literature. Measurement campaigns and field investigations should be undertaken in order to obtain a more robust and comprehensive dataset that can be used in the LCA-modelling, before major improvements regarding landfill management are finalized.
Top-cited authors
Mutasem El-Fadel
  • American University of Beirut
Angelos Findikakis
  • Bechtel Corporation
James O Leckie
  • Stanford University
Paul H. Brunner
Costas Velis
  • University of Leeds