The aim of this study was to investigate the therapeutic efficacy and neuroprotective mechanisms of UCF-101, a novel Omi/HtrA2 inhibitor, following ischemia/reperfusion brain injury. Male Wistar rats were subjected to 2 hr of middle cerebral artery occlusion followed by reperfusion. Animals were divided into 3 groups: sham, vehicle-treated ischemia/reperfusion, and UCF-101 treatment. In the UCF-101 treatment group, rats were intraperitoneally administered UCF-101 (1.5 micromol/kg) 10 min prior to reperfusion. The rats were evaluated for neurological deficits, and brain infarct volume was assessed by 2,3,5-triphenyl tetrazolium chloride. TUNEL staining was utilized to evaluate the amount of apoptosis. In addition, expressions of protein caspase-8, caspase-3, FasL, and FLIP were examined by Western blot analysis. Results demonstrated that UCF-101 treatment significantly decreased cerebral infarct size by about 16.27% (P < 0.05) and also improved neurological behavior. TUNEL staining revealed that UCF-101 treatment significantly reduced TUNEL-positive cells in the cerebral cortex. Furthermore, the upregulation in the expression of FasL and the cleavage products of active caspase-8 and caspase-3 induced by ischemia was attenuated in mice treated with UCF-101, whereas upregulation of FLIP levels was increased. The present results demonstrated that UCF-101 protects against cerebral ischemia/reperfusion injury in mice. UCF-101 provided neuroprotection in vivo, and this was correlated with regulation of Fas-mediated apoptotic proteins. Taken together, the use of UCF-101 is a potent, neuroprotective factor for the treatment of focal cerebral ischemia.
We addressed the brain drainage system as inferred by the endocranial morphology of the occipito-temporal region of the El Sidrón Neandertal specimen SD-1219. Morphological details of the endocranial surface and its anatomical implications were analyzed for the reconstruction of the dural sinus drainage pattern and its comparison with Neandertals and other hominids. The specimen SD-1219 shows a pattern in which the superior sagittal sinus goes into the right transverse sinus. Comparative analyses with a large sample of fossil hominids reveal a pattern of the SD-1219 fossil that is typical for Neandertals. The analysis of the proportions of the occipital lobes prints within the occipital fossae reveals that the left occipital pole projects toward the right. This possibly indicates brain asymmetry (petalia) in this Neandertal individual, similar to that observed in some modern human brains. Conversely, no such asymmetry was observed in the cerebellar fossae. A particular feature of this fossil is the presence of two crests, located at the middle of the left cerebellar fossa that can be related to either an imprinting of a cerebellar fissure or some bone response to mechanical influence on internal bone surface morphology during cerebellar development. Specific aspects of the paleoneurology of Neandertals are discussed. Further quantitative studies on the endocranial morphology of the occipito-temporal and -mastoid region will shed light on the paleoneurological significance of this important anatomical region for the understanding of human evolution.
Ataxia-telangiectasia (A-T) is a human autosomal recessive disorder characterized by neuronal degeneration as well as many other physiological and somatic defects. ATM (A-T, mutated), the gene mutated in A-T, encodes a 370 kDa protein kinase. ATM knockout mouse models (ATM(-/-)) show growth retardation, infertility, neurological dysfunction, defects in T-lymphocytes, and extreme sensitivity to ionizing radiation. We have recently established multiple ATM(+/-) breeding pairs and discovered that all ATM(-/-) offspring exhibit a nonpigmented section of tail, usually at or near the tip. To our knowledge, this is the first time that a phenotype of nonpigmented tail has been reported in ATM(-/-) knockout mice. We believe that the sections of nonpigmented tail of 129S6/SvEvTac-ATM(tm1Awb)/J mice provide a novel phenotypic marker for research using this ATM knockout mouse model. Results from histochemistry and immunoblotting analysis further demonstrate that while melanocyte precursors or melanoblasts are present in the nonpigmented tail tissue of ATM(-/-) mice, they fail to differentiate fully into mature melanocytes. The potential connection between this phenotype and other clinical symptoms caused by ATM deficiency, such as progressive neuronal degeneration, is discussed in this article.
The aim of this study is to investigate whether BMP-2 regulates the oral sulcus formation of mouse embryonic tongue by modifying the expression of TIMP and MMP. The BMP-2 siRNA induced a 180% increase in the depth of oral sulcus cavity (P < 0.01) by stimulating the invagination of oral sulcus into the mesenchymal tissues consisting of tongue floor, whereas the recombinant BMP-2 suppressed the process in the organ culture system of mouse embryonic tongue. The BMP-2 siRNA induced a 60% decrease in the expression of TIMP-1 mRNA (P < 0.05) and a drastic decline in TIMP-1 protein was observed around the oral sulcus in the BMP-2 siRNA treated mandibles. The recombinant BMP-2 induced a 220% increases in the expression of TIMP-1 mRNA and the area of the immunostaining for TIMP-1 around the oral sulcus was larger in the mandibles treated with the recombinant BMP-2 than the vehicle. The BMP-2 siRNA induced a 60% increase in the expression of MMP-13 protein and a marked increase in the staining intensity for MMP-13 was observed in the epithelial region of the BMP-2 siRNA treated mandibles. The recombinant BMP-2 induced a 70% decrease in the expression of MMP-13 mRNA and the decrease was mainly observed in the tissues around oral sulcus. The expressions of BMP-2, TIMP-1, and MMP-13 were verified in the tissues around in vivo developing oral sulcus at E11, 12, and 13 by immunohistochemistry. These results suggest that BMP-2 regulates the formation of oral sulcus by altering the balance between TIMP-1 and MMP-13.
Interleukin 13 (IL-13) is a key cytokine involved in the regulation of inflammatory, immune responses, and cell differentiation. The present study was to investigate the effect of IL-13 on the expression of glycoprotein IIb (GPIIb), a megakaryocytic gene, in Dami cells (human megakaryoblastic leukemia cell line) and HEL cells (human erythroleukemic cell line, which has both erythroid and megakaryocytic markers). Furthermore, it addresses the mechanisms governing the regulation of GPIIb expression by IL-13. The molecular responses of Dami cells and HEL cells to IL-13 treatment were analyzed by RT-PCR, Western blot, chromatin immunoprecipitation (ChIP) and flow cytometry analysis. We show that IL-13Rα1 and IL-4Rα are expressed in Dami cells and HEL cells. The expression of GPIIb was significantly upregulated at the mRNA and protein levels by treatment with IL-13. Moreover, IL-13 induced phosphorylation of signal transducer and activator of transcription 6(STAT6). By using a STAT6-specific antibody and PCR primers designed to yield a product, which encompasses the STAT6 binding site of the GPIIb promoter, we have shown the binding of the IL-13-mediated activation of STAT6 to the promoter of GPIIb gene. These results broaden the involvement of IL-13 into megakaryocyte differentiation by STAT6 pathway.
The study examined the expression of matrix metalloproteinases (MMPs), type I collagen and osteocalcin during bone healing in a rat calvarial experimental defect model. Twelve-week-old male Wistar rats were used. A full-thickness standardized trephine defect was made in the parietal bone, with the rat under anesthesia. RNA was extracted from tissue that filled the original bone defect on days 1 and 3 and in weeks 1, 2, 3, 5, 8, 10, 12, 18, and 24 and processed for quantitative analysis of expression of type I collagen, osteocalcin and matrix metalloproteinases (MMPs) 2, 8, and 13 by using real-time polymerase chain reaction. Alternatively, the rats were fixed by perfusion through the aorta and resected calvaria were processed for in situ hybridization for these molecules. The expression of type I collagen, osteocalcin and MMPs 2 and 13 increased toward week 2 and decreased thereafter, whereas the expression of MMP 8 was the highest on day 1. The mRNA transcripts of type I collagen and osteocalcin were localized in osteoblasts and osteocytes, some of which expressed MMPs 2, 8, and 13. Osteoblasts and osteocytes may play a role in the remodeling of extracellular matrices with MMPs during healing of a defect in bone.
During the 1947 fieldwork season, Member 4 (2-3 My) of the South African Sterkfontein site yielded two important Australopithecus africanus fossils: a cranium popularly nicknamed "Mrs. Ples" (Sts 5), and a partial skeleton (Sts 14). Previous reports have proposed that Sts 5 was a nonfully grown adolescent individual (Thackeray et al., S Afr J Sci 2002a;98:21-22), and that Sts 14 was a sub-adult specimen (according to various signs of immaturity in the skeleton) (Berge and Gommery, C R Acad Sci Paris, Sciences de la terre et des planètes 1999;329:227-232; Häusler and Berger, J Hum Evol, 2001;40:411-417; Thackeray et al., S Afr J Sci, 2002b;98:211-212). It was subsequently proposed that these fossils actually belonged to the same individual (Thackeray et al., S Afr J Sci, 2002b;98:211-212), a proposition supported by their spatial positions within the site. The present work attempts to revise these different assertions. The results obtained: (i) show that the Sts 5 fossil represents a fully grown adult cranium; (ii) provide new evidence of immaturity in the Sts 14 skeletal elements (sustaining the proposed young adult age of this specimen), and (iii) suggest that although the revised ages-at-death for these fossils are partially compatible, there is no evidence to support the idea that they represent a single individual. Finally, the encephalization quotient associated with a hypothetical union of Sts 5 and Sts 14 (calculated using data from both specimens) lies between the upper and lower limits of the currently estimated range for this species and H. habilis, respectively.
Proteins in the claudin family are a main component of tight junctions and form a seal that modulates paracellular transport in intestinal epithelium. This research tests the hypothesis that claudins 3, 5, and 16 will appear in the epithelium of embryonic intestine during functional differentiation. Immunohistochemistry is utilized to explore the developmental patterns of claudin-3, -5, and -16 proteins in the epithelium of embryonic chick intestine from 9 days prior to hatching through the early post-hatch period. These claudin proteins either changed their cellular localization or first appeared around the time of hatching. After hatching, claudin-3 expression was prominent in basal-lateral regions of the epithelium along the entire villus, but was absent from crypts. Claudin-5 was expressed most strongly in the crypt and lower villus epithelium within junctional complexes, whereas immunostaining of claudin-16 was localized within goblet cells of the upper villus region. The relative mRNA levels of claudin-3, -5, and -16 showed similar patterns; transcript levels rose between 18 and 20 days of development, then dropped by 2 days post-hatch. Results of this work indicate that the claudin proteins assume their final locations within the epithelium around the time of hatching, suggesting that in addition to their known barrier and fence functions within tight junctions, these claudins may have additional roles in the differentiation and/or physiological function of chick intestine. The localization of claudin-16 to goblet cells and its distribution in the more mature cells of the upper villus region suggest an unexpected role in goblet cell maturation and mucus secretion.
This study analyzes morphometrically 17 skulls of the Mediterranean monk seal Monachus monachus housed in different Italian Museums and collections. We considered several morphometric variables (31 linear, 1 volumetric and 1 surface area measurements). In addition, we identified, measured and compared two nonmorphometric variables, namely, the bone densities of selected areas obtained using a dual-energy X-ray absorptiometry (DXA) device. The high correlation coefficient of all variables indicated continuous growth with the onset of age. The ranking of the hierarchical cluster analysis identified the presence of three main groups containing individuals of similar sizes: lactating pups and yearlings; subadult individuals and adult females; and adult males. Smaller groups were identified within these clusters, and their respective allocations into two subgroups were argued on the basis of skull development and other factors. The discriminant analysis of the three main groups indicated a discriminant diagnostic key, based on condilobasilar length (CBlr-L); maximum mandibular branch height (MB-H); and surface area of the bulla tympanica. The proposed diagnostic key is useful to classify monk seal skulls of unidentified age and sex. The data reported here suggest that in this species certain adult skull growth features (enhanced tympanic bullae surface area extension, occipital bone density) are sexually dimorphic and possibly related to specific anatomical functions. These functions may include an enhanced auditory capacity; an increased development of the cranial musculature capable of supporting a large skull and guaranteeing the mandibular strength necessary for mastication; and male to male social interactions.
Although it is well established that estrogen regulates skeletal growth and ossification in mammals, the effects of estrogen on skeletal development in amphibians are relatively uncharacterized. This study was conducted to characterize the impact of 17β-estradiol exposure on skeletal development in Xenopus laevis tadpoles. On day 48 postfertilization, tadpoles were placed in tanks containing 50% Holtfreter's Solution ±17β-estradiol at one of four concentrations (10(-11), 10(-10), 10(-9), and 10(-8) M). At 7-11 day intervals until day 91, 7-10 tadpoles per group were killed, fixed, measured, and staged. Specimens were then cleared and double-stained for cartilage and bone, and 34 skeletal elements were analyzed for ossification. Results from the study indicate that both low (10(-11) M) and high (10(-8) M) concentrations of 17β-estradiol have a significant stimulatory effect on tadpole development. Both the larval stage and ossification index of tadpoles exposed to 10(-11) or 10(-8) M 17β-estradiol were significantly greater than those observed in control animals by day 91 postfertilization. These results are consistent with the hypothesis that endogenous and exogenous estrogen could play a role in the regulation of bone ossification in amphibians.
Nasal polyposis is a chronic inflammatory disease of the nasal mucosa. The etiology and the mechanisms of formation of nasal polyps are still not clear. Interleukin (IL)-18 is a novel proinflammatory cytokine that plays important roles in regulating immune inflammatory responses. However, the presence of IL-18 in human nasal mucosa and its roles in the inflammatory process of nasal polyps has not been studied yet. In this study, it was the first time to investigate the expression of IL-18 in human nasal mucosa and nasal polyps, and its potential function in the formation of nasal polyps. Surgical samples were analyzed by Western blot and immunohistochemistry to evaluate the expression and location of IL-18, and its correlated cytokines, IL-4, and IFN-γ. Furthermore, the airway epithelial cell line, A549, was used to investigate the mutual regulation of IFN-γ, IL-4, and IL-18. IFN-γ, IL-4, and IL-18 were all highly expressed in the epithelial cells, submucosal glands, and infiltrating inflammatory cells in the nasal polyp tissues, comparing with the control samples. Especially, the expression of IL-18 was upregulated significantly in nasal polyp tissues compared with control tissues. In addition, IL-18 was expressed in A549 cells in response to lipopolysaccharide and IL-4. Our data suggest that nasal epithelial cells are involved in the pathogenesis of nasal polyps formation and potentially via the secretion of IL-18, which is likely to play important roles in the formation of nasal polyps.
A comparative anatomical study was conducted among four mobulid species (Mobula japanica, M. munkiana, M. tarapacana, and M. thurstoni), from the coasts of the Gulf of California. Characters of the skeleton (neurocranium, mandibles, scapular girdle, pelvic girdle, and synarcual) were described. Mobula species had a wide structural variation. In the skeleton, M. tarapacana displayed the most plesiomorphic characters, mainly at the cranial level (cranium longer than wide, reduced internasal width, fontanelle longer than wide), while M. japanica had the most derived characters (cranium wider than longer, fontanelle wider than longer). Based on the observations, the dorsal cephalic musculature were similar in all species; however, oppositely to other batoid species, the epiaxilis is strongly developed, as it extends toward the cephalic part of the neurocranium, at level of the postorbital processes. In the ventral musculature, ventral constrictor muscles are quite reduced, whereas complex mandibular muscles are very developed. Muscles showing the highest variation are the coracohioideus and the coracoarcual.
The morphology of the autonomic cardiac nervous system (ACNS) was examined in 24 sides of 12 New World monkeys (Platyrrhini) of all four families to document the morphology systematically and to study the evolutionary changes of the ACNS in this primate lineage. We report the following: (1) Although several trivial intra- and inter-specific variations are present, a family-dependent morphology of the ACNS does not exist in New World monkeys. (2) The sympathetic ganglia in New World monkeys consist of the superior cervical, the middle cervical, and the cervicothoracic which is composed of the inferior cervical and first and second thoracic, and the thoracic ganglia starting with the third thoracic. The general cardiac nervous system is the sympathetic middle and inferior cardiac nerves and all parasympathetic vagal cardiac branches. (3) The morphology of the ACNS in the New World monkeys is almost consistent regardless of the number of vertebrae, the cardiac position and deviation (axis), and the great arterial branching pattern of the aortic arch, and it is very similar to that in the Old World monkeys, with only one difference: the superior cervical ganglion in the New World monkeys tends to be relatively smaller, higher, and provides a narrower contribution to the spinal nerves than in the Old World monkeys. The ACNS morphology exhibits significant evolutionary changes within the primate lineage from New and Old World monkeys to humans. The comparative morphology within the lineage is concordant with the phylogeny, suggesting that the primate ACNS preserves its evolutionary history in close alignment with phylogeny.
Lizards of the family Gekkonidae display a variety of reproductive patterns, as evidenced by the presence of viviparous and oviparous species. The species Hemidactylus mabouia is oviparous. We examined, in vitellogenic females, oviductal structure by light microscopy after routine histological and histochemical techniques, as well as by scanning and transmission electron microscopy. The oviduct is composed of four different regions: the infundibulum, which opens into the coelomic cavity and receives the oocyte released at the time of ovulation; the uterine tube, where sperm storage takes place; the uterus, which is responsible for the eggshell production; and the vagina, the final portion of the oviduct that leads to the cloaca. The oviductal structure of H. mabouia is similar to that of other oviparous lizard species and can be useful for morphological comparative analysis among reptile species.
The aim of the present study was to investigate the sequence of shell bone formation in the embryos of the Pleurodira, Podocnemis unifilis. Their bones and cartilage were collected and cleared before staining. The shell was also examined by obtaining a series of histological slices. All the bony elements of the plastron have independent ossification centers, which subsequently join together and retain two fontanelles until the period of hatching. This turtle has a mesoplastra, which is characteristic of the Podocnemididae. The carapace begins to form concurrently with the ossification of the ribs at the beginning of stage 20. All the plates, except the suprapygal, initiate ossification during the embryonic period. The main purpose of the histological investigation was to highlight the relationship between the formation of the carapace and ribs with that of the neural plates. The costal and neural plates were found not to independent ossification centers, but to be closely related to components of the endoskeleton, originating as expansions of the perichondral collar of the ribs and the neural arches, respectively. Considering the ribs as an endoskeletal element of the carapace, the carapace and plastron begin ossification at the same stage in P. unifilis. This pattern reveals similarities with other Pleurodira, as well as evident variations, such as the presence of the seven neural bones and the presence of only one ossification center in the nuchal plate.
The Amazonian manatee (Trichechus inunguis) is uniparous and has a slow reproduction cycle due to a long gestation period and long interval between births. Even though protected by law, hunting remains one of the main causes hindering the natural population growth of this species in the wild. The histology and reproductive anatomy provide information on the history and reproductive status of the female and offer a tool for the conservation of the species. The present study describes the anatomy of the female reproductive tract in T. inunguis. It is based on materials from three reproductive tracts fixed in 10% buffered formalin. The ovaries, uterine tubes, uterus, vagina, and external genitalia are described. The hymen presents two tiny openings separated by a segment that, upon rupturing during the first copulation, should make up a single vaginal opening. A still intact hymen and the absence of placental scars in the uterus were found in one specimen. Additionally, the presence of a hemorrhagic body and Graafian follicles on the right ovary were observed, as well as whitish scars and among them, possible corpora albicantia. These findings suggest that T. inunguis undergoes infertile estrus cycles before its first gestation. Macroscopically, counting of the whitish scars is hindered by the small diameter of these structures. It is not possible to differentiate between the scars resulting from ruptured (corpora albicantia) and nonruptured follicles (regressed corpora atretica). The presence of whitish scars on both ovaries of the same specimen suggests their bilateral function in T. inunguis.
Cytokines are soluble mediators that are thought to act as communication signals between astroglia and neighboring neural cells. They are both released by, and act on, astroglia. It is hypothesized that it is this effect on astroglia that may be important in widespread phenomena including traumatic brain injury, inflammation, and scar formation. In this article, we examine the effect of mouse recombinant interleukin-1β (IL-1β) on the morphology, organization, and expression of glial fibrillary acidic protein (GFAP) and actin isoforms in cultured mouse astroglia. This study shows that the majority of the astroglia treated with IL-1β acquire long processes. Immunofluorescence staining shows that there are no remarkable changes in the organization of GFAP, F-actin, α-smooth muscle (α-sm) actin, and β-actin isoforms. In fluorescent microplate assay, the short-term treated astroglia (range, 1-2 days) show an increase in the intensity of GFAP and β-actin isoform over the level observed in untreated control, whereas no remarkable changes are observed in the intensity of α-sm actin isoform. In the case of long-term treatment (range, 4-8 days), the intensity of GFAP and α-sm actin isoform progressively decreases below the level of untreated control. In addition, the intensity of β-actin isoform increases above the control level. These results have been confirmed by immunoblotting experiments. The upregulation of β-actin isoform may be important in limiting the noxious effects of an inflammatory reaction. This gives credence to the hypothesis that it might be possible to modulate astroglial effects on neuronal inflammation and scar formation with appropriate therapies.
Despite its abundance in Latin America, and its remarkable ability to use tools, there are only a few myological studies on the capuchin monkey, Cebus libidinosus. In the present study, we dissected the forearm extensor muscles of six adult males and two adult females of this species. We describe these muscles and compare them with those of other primates dissected by us and by other authors. The forearm extensor muscles of Cebus monkeys are, in general, more similar to those of other platyrrhines than to distantly related taxa that use tools, such as chimpanzees and modern humans, with three main exceptions: contrary to most other platyrrhines, (1) in Cebus, chimpanzees and modern humans the extensor pollicis longus usually inserts onto Digit I, and not onto Digits I and II; (2) in Cebus the abductor pollicis longus has two separate tendons, as is the case in chimpanzees, and in modern humans (where one of these tendons is associated with a distinct belly, forming the muscle extensor pollicis brevis); (3) in Cebus, and in modern humans and chimpanzees, the extensor pollicis longus is not deeply blended with the extensor indicis. Therefore, the Cebus monkeys provide an illustrative example of how phylogenetic constrains and ecological adaptations have been combined to develop a specific myological configuration that, associated with their sophisticated neurological organization, allow them to easily navigate in their arboreal habitats and, at the same time, to finely manipulate objects in order to search for food and to prepare this food for ingestion.
MicroRNAs are novel small noncoding RNA molecules that regulate gene expression at the post-transcriptional level. Compelling evidence reveals that there is a causative link between microRNAs deregulation and cancer development and progression. The present study aims to explore the function of miR-206 in the proliferation, apoptosis, motility, and invasion of nonsmall cell lung cancer. Using real-time PCR, we detected the miR-206 expression of normal lung tissues, tumor tissues, human normal bronchial epithelial cell line, and six lung cancer cell lines (LCCLs). Then, we evaluated the role of miR-206 in cell proliferation, apoptosis, and invasion using Cell Counting Kit-8 assay, Annexin-V/FITC assay, wound healing, and Transwell assay in LCCLs. As a result, miR-206 expression level was lower in high metastasis tumors and 95D than low metastasis tumors and normal lung tissues as well as other LCCLs. After miR-206 was upregulated in LCCLs, cell proliferation was notably attenuated and apoptosis was significantly increased. Furthermore, overexpression of miR-206 inhibited migration and invasion of lung cancer cells. In conclusion, our data suggest that expression level of miR-206 was inversely correlated with metastatic potential of lung cancer.
A yeast artificial chromosome (YAC) transgenic murine model of partial trisomy 21 overexpressing five human genes -- including DYRK1A, which encodes a serine threonine kinase involved in cell cycle control -- has been shown to present an increase in brain weight. We analyzed this new phenotype by measuring total and regional brain volumes at different ages, using a 7 Tesla magnetic resonance imaging volumetric approach. Volumetric measurements showed a total volume increase of 13.6% in adult mice. Changes in brain morphogenesis were already visible at a very early postnatal stage (postnatal days 2-7). Region-specific changes were characterized from postnatal day 15 to 5 months. These results, made it possible to define region-specific effects of DYRK1A overexpression, with the strongest increase seen in the thalamus-hypothalamus area (24%).
Fibroblast growth factor-23 (FGF23) is a hormone that modulates circulating phosphate (P(i)) levels by controlling P(i) reabsorption from the kidneys. When FGF23 levels are deficient, as in tumoral calcinosis patients, hyperphosphatemia ensues. We show here in a murine model that Fgf23 ablation disrupted morphology and protein expression within the dentoalveolar complex. Ectopic matrix formation in pulp chambers, odontoblast layer disruption, narrowing of periodontal ligament space, and alteration of cementum structure were observed in histological and electron microscopy sections. Because serum P(i) levels are dramatically elevated in Fgf23(-/-), we assayed for apoptosis and expression of members from the small integrin-binding ligand, N-linked glycoprotein (SIBLING) family, both of which are sensitive to elevated P(i) in vitro. Unlike X-linked hypophosphatemic (Hyp) and wild-type (WT) specimens, numerous apoptotic osteocytes and osteoblasts were detected in Fgf23(-/-) specimens. Further, in comparison to Hyp and WT samples, decreased bone sialoprotein and elevated dentin matrix protein-1 protein levels were observed in cementum of Fgf23(-/-) mice. Additional dentin-associated proteins, such as dentin sialoprotein and dentin phosphoprotein, exhibited altered localization in both Fgf23(-/-) and Hyp samples. Based on these results, we propose that FGF23 and (P(i)) homeostasis play a significant role in maintenance of the dentoalveolar complex.
To identify when during fetal development connexins (Cxs) 26 (Cx26) 32 (Cx32), and 36 (Cx36) begin to be expressed, as well as to characterize their spatial distribution, real time polymerase chain reaction and immunolabeling studies were performed. Total RNA from mouse pancreases at 13 and 18 days postcoitum (dpc) and 3 days postpartum (dpp) was analyzed. In addition, pancreatic sections of mouse at 13, 14, 15, 16, 18 dpc and 3 dpp and of rat at term were double labeled with either anti-insulin or anti-α-amylase and anti-Cx26 or -Cx32 or -Cx36 antibodies and studied with confocal microscopy. From day 13 dpc, Cxs 26, 32, and 36 transcripts were identified and their levels increased with age. At 13-14 dpc, Cxs 26 and 32 were localized in few acinar cells, whereas Cx36 was distributed in small beta cell clumps. From day 14 dpc onwards, the number of labeled cells and relative immunofluorescent reactivity of all three Cxs at junctional membranes of the respective cell types increased. Cxs 26 and 32 colocalized in fetal acinar cells. In rat pancreas at term, a similar connexin distribution was found. Relative Cxs levels evaluated by immunoblotting also increased (two-fold) in pancreas homogenates from day 18 dpc to 3 dpp. The early cell specific, wide distribution, and age dependent expression of Cxs 26, 32, and 36 during fetal pancreas ontogeny suggests their possible involvement in pancreas differentiation and prenatal maturation.
The presence of a live cell cohabiting within another cell has fascinated scientists for many decades. Far from being a spurious event, many have attempted to uncover the molecular mechanism underlying this phenomenon. In this study, we observed anchorage-dependent MCF-7 cells internalizing neighboring epithelial cells (entosis) after siRNA-mediated silencing of the Metallothionein-2A (MT-2A) gene. MTs belong to a family of low-molecular weight proteins, which bind metal ions endogenously and its over-expression has been reported in a variety of cancers that include breast, prostate, and colon. We provide microscopic evidence at light and ultrastructural levels of the occurrence of entosis after altering MT expression in a subpopulation of MCF-7 breast cancer cells by silencing the MT-2A gene. Our results demonstrate that adheren junctions may play important roles in the formation of cell-in-cell cytostructure after MT-2A gene downregulation and the entotic process does not appear to involve genes associated with autophagy. Interiorized cells often underwent lysosomal degradation within the cytoplasmic body of the engulfing cell. It would appear that a subset of breast cancer cells could die via entosis after MT-2A gene silencing.
Quantification of microvascular remodeling as a meaningful discovery tool requires mapping and measurement of site-specific changes within vascular trees and networks. Vessel density and other critical vascular parameters are often modulated by molecular regulators as determined by local vascular architecture. For example, enlargement of vessel diameter by vascular endothelial growth factor (VEGF) is restricted to specific generations of vessel branching (Parsons-Wingerter et al., Microvascular Research72: 91, 2006). The averaging of vessel diameter over many successively smaller generations is therefore not particularly useful. The newly automated, user-interactive software VESsel GENeration Analysis (VESGEN) quantifies major vessel parameters within two-dimensional (2D) vascular trees, networks, and tree-network composites. This report reviews application of VESGEN 2D to angiogenic and lymphangiogenic tissues that includes the human and murine retina, embryonic coronary vessels, and avian chorioallantoic membrane. Software output includes colorized image maps with quantification of local vessel diameter, fractal dimension, tortuosity, and avascular spacing. The density of parameters such as vessel area, length, number, and branch point are quantified according to site-specific generational branching within vascular trees. The sole user input requirement is a binary (black/white) vascular image. Future applications of VESGEN will include analysis of 3D vascular architecture and bioinformatic dimensions such as blood flow and receptor localization. Branching analysis by VESGEN has demonstrated that numerous regulators including VEGF165, basic fibroblast growth factor, transforming growth factor β-1, angiostatin and the clinical steroid triamcinolone acetonide induce 'fingerprint' or 'signature' changes in vascular patterning that provide unique readouts of dominant molecular signaling.
It is now well documented that androgen and estrogen signaling during early development cause a sexual dimorphism in second-to-fourth digit length ratio (2D:4D). It is also well documented that males of mammalian species have a smaller 2D:4D than females. Although there are discrepancies among 2D:4D studies in birds, the consensus is that birds exhibit the opposite pattern with males having a larger 2D:4D than females. The literature currently lacks substantial information regarding the phylogenetic pattern of this trait in amphibians and reptiles. In this study, we examined 2D:4D in two species of frogs (Oophaga pumilio and Craugastor bransfordii) and two species of lizards (Anolis humilis and Anolis limifrons) to determine the existence and the pattern of the sexual dimorphism. Male O. pumilio and C. bransfordii displayed larger 2D:4D than females in at least one of their two forelimbs. Male A. humilis had larger 2D:4D than females in both hindlimbs, but smaller 2D:4D than females in both forelimbs. Male A. limifrons may also have smaller 2D:4D than females in the right forelimb. Finally, digit ratios were sometimes positively related to body length, suggesting allometric growth. Overall, our results support the existence of the 2D:4D sexual dimorphism in amphibians and lizards and add to the knowledge of 2D:4D trait patterning among tetrapods.
Type X collagen (Col-X) deposition is a marker of terminal differentiation during chondrogenesis, in addition to appositional growth and apoptosis. The parathyroid hormone/parathyroid hormone related peptide (PTH/PTHrP) receptor, or PPR, is a G-Protein coupled receptor (GPCR), which activates several downstream pathways, moderating chondrocyte differentiation, including suppression of Col-X deposition. An Avian sterna model was used to analyze the PPR GPCR downstream kinase role in growth rate and extracellular matrix (ECM) including Col-II, IX, and X. Phosphatidylinositol kinase (PI3K), mitogen activating protein kinase (MAPK) and protein kinase A (PKA) were inhibited with specific established inhibitors LY294002, PD98059, and H89, respectively to test the hypothesis that they could reverse/inhibit the PTH/PTHrP pathway. Excised E14 chick sterna were PTH treated with or without an inhibitor and compared to controls. Sternal length was measured every 24 hr. Cultured sterna were immuno-stained using specific antibodies for Col-II, IX, or X and examined via confocal microscopy. Increased growth in PTH-treated sterna was MAPK, PI3K, and PKA dose dependent, suggesting growth was regulated through multiple pathways. Col-X deposition was rescued in PTH-treated sterna in the presence of PI3K or MAPK inhibitors, but not with the PKA inhibitor. All three inhibitors moderately disrupted Col-II and Col-IX deposition. These results suggest that PTH can activate multiple pathways during chondrocyte differentiation.
Some studies have recently described a magnetic resonance (MR) method for detection of iron-labeled islets transplanted into the liver. The aim of this work was to assess the survival of islet graft using a clinical 3.0-T scanner. Islets from Lewis rats were cultured in the presence of iron oxide nanoparticles. One thousand iron-labeled islets were transplanted into the portal vein of diabetic rats. Blood glucose levels were measured daily through day 14 post-transplantation. MR imaging of the same section of the liver was performed on 1, 3, 7, 10, and 14 days post-transplantation. The labeled islets were visualized by MR as distinct hypointensive spots distributed in the liver. There was a linear correlation between the relative value of delta R2* relaxometry multiplied by the cubic diameter (relative value of the iron volume, Ir) and blood glucose level on 14 days post-transplantation in allograft and isograft (P<0.05). The relative value of delta R2* relaxometry, diameter, and number of hypointensive spots could be calculated to assess the survival of the iron-labeled islet grafts. Assessment of iron-labeled islet grafts using a clinical 3.0-T magnetic resonance scanner represents a useful method that has potential for clinical use.
The fossil record demonstrates that mammals re-entered the marine realm on at least seven separate occasions. Five of these clades are still extant, whereas two are extinct. This review presents a brief introduction to the phylogeny of each group of marine mammals, based on the latest studies using both morphological and molecular data. Evolutionary highlights are presented, focusing on changes affecting the sensory systems, locomotion, breathing, feeding, and reproduction in Cetacea, Sirenia, Desmostylia, and Pinnipedia. Aquatic adaptations are specifically cited, supported by data from morphological and geochemical studies. For example, analysis of oxygen isotopes incorporated into fossil tooth enamel indicates whether these mammals foraged in (and, therefore, ingested) fresh water or sea water. Comparisons between groups are made to see if there are any common patterns, particularly relating to adaptations to aquatic life. Results show that aquatic characteristics evolved in mosaic patterns and that different morphological solutions to aquatic conditions were achieved separately in each of these groups. Changes in the axial and appendicular skeleton assist with locomotion for aquatic foraging. Nostril and eye placement modifications accommodate wading versus underwater foraging needs. All groups exhibit aquatic adaptations directly related to feeding, particularly changes in the dentition and rostrum. The earliest representatives of these clades all show morphological features that indicate they were feeding while in the water, suggesting that feeding ecology is a key factor in the evolution of marine mammals.
Hepatocellular carcinoma (HCC) is one of the most frequent malignant neoplasms worldwide and is the second leading cause of cancer death in China. We have previously demonstrated that LAPTM4B-35, encoded by lysosomal protein transmembrane 4 beta gene, is overexpressed in over 80% of HCCs and is a novel-independent prognostic factor for metastasis, recurrence, and postoperative survival in HCC. In this study, we investigated the role of LAPTM4B-35 in malignant transformation and tumorigenesis using L02 cells, a cell line originated from human normal liver cells. Our data show that replication-deficient adenovirus vector-mediated upregulation of LAPTM4B-35 promotes anchorage-independent proliferation and resistance to adriamycin-induced apoptosis. Study of the underlying mechanisms demonstrated alterations of molecular events involved in these processes, which included the activation of phosphoinositide 3-kinases (PI3K)/serine/threonine protein kinase B (PKB/AKT)/bcl-xL/bcl-2-associated death promoter homolog (Bad) signaling pathway, inhibition of caspase-3 activation, upregulation of Bcl-2, and downregulation of Bax. In addition, upregulation of LAPTM4B-35 in L02 cells resulted in tumorigenesis in 100% (6/6) of inoculated nude mice and accelerated the death of mice with xenografts in vivo. In conclusion, LAPTM4B-35 promotes malignant transformation and tumorigenesis in human liver L02 cell line through promotion of deregulated proliferation and inhibition of apoptosis. These findings suggest that overexpression of LAPTM4B-35 may play a critical role in hepatocarcinogenesis and therefore, may be a therapeutic target for HCC.
Nuclear speckles, which are sites of pre-mRNA splicing and/or assembly components, are diffusely distributed throughout the nucleoplasm. They are composed of splicing factors (SFs), including SC-35, which are nuclear proteins that remove introns (noncoding sequences in the genes) from precursor mRNA molecules, to form mature RNA, which will be transported to the cytoplasm, site of protein synthesis and activation. In light of such evidences, here we report that hypoxia modulates in vivo SC-35 SF phosphorylation via protein kinase C (PKC) delta in young rat heart. Trichrome Mallory staining and TUNEL analysis along with immunohistochemistry and Western blotting have been performed on left ventricles excised from young and old rats exposed to intermittent hypoxia. Although young hypoxic myocardial cells appear smaller than normoxic cells, connective and endothelial components increase, SC-35 phosphorylation is particularly evident in the endothelium and paralleled by an increased expression of vascular endothelial growth factor (VEGF). In addition, SC-35 and PKC delta coimmunoprecipitation occurs, suggesting that SC-35 phosphorylation could be PKC delta-mediated and that hypoxic young heart needs to counteract the damage through a process of neoangiogenesis involving such SF. Even though the levels of SC-35 and PKC delta are high, the similar response disclosed by normoxic and hypoxic old rat hearts (both showing a fibrotic organization, similar endothelial components and VEGF levels) could be due to the existence of an impaired oxygen sensing mechanism and thus to a low rate of angiogenesis.
We developed the Case Cryo-imaging system that provides information rich, very high-resolution, color brightfield, and molecular fluorescence images of a whole mouse using a section-and-image block-face imaging technology. The system consists of a mouse-sized, motorized cryo-microtome with special features for imaging, a modified, brightfield/fluorescence microscope, and a robotic xyz imaging system positioner, all of which is fully automated by a control system. Using the robotic system, we acquired microscopic tiled images at a pixel size of 15.6 microm over the block face of a whole mouse sectioned at 40 microm, with a total data volume of 55 GB. Viewing 2D images at multiple resolutions, we identified small structures such as cardiac vessels, muscle layers, villi of the small intestine, the optic nerve, and layers of the eye. Cryo-imaging was also suitable for imaging embryo mutants in 3D. A mouse, in which enhanced green fluorescent protein was expressed under gamma actin promoter in smooth muscle cells, gave clear 3D views of smooth muscle in the urogenital and gastrointestinal tracts. With cryo-imaging, we could obtain 3D vasculature down to 10 microm, over very large regions of mouse brain. Software is fully automated with fully programmable imaging/sectioning protocols, email notifications, and automatic volume visualization. With a unique combination of field-of-view, depth of field, contrast, and resolution, the Case Cryo-imaging system fills the gap between whole animal in vivo imaging and histology.
Pronosupination is a component of the hominoid orthograde corporal plane that enables primates to execute efficient and sure locomotion in their habitat and is an essential movement for the development of manipulative capacities. We analyze human variability in the rotational efficiency of the pronator teres muscle by applying the biomechanical model created by Galtés et al. (Am J Phys Anthropol 2008; 135:293-300; Am J Phys Anthropol 2009a; 140:589-594) to skeletal remains of a human sample (N = 29) and three nonhuman hominoid specimens (chimpanzee, gorilla, and orangutan) by means of 3D technology. We aim to examine whether there is a distinctive human pattern of rotational efficiency and determine which structural features of the upper-limb bones have the greatest influence on the determination of rotational efficiency. Our results show that the human pattern differs from efficiencies observed in nonhuman hominoids, which may be interpreted in the light of morphofunctional adaptations. We identify medial epicondylar form as the key structure of the upper-limb bones for the determination of the rotational efficiency of the forearm. Results indicate that the more medially projected epicondyle of nonhuman hominoids relative to humans leads to higher values of maximum rotational efficiency. Moreover, the orientation of the medial epicondyle determines the pronounced differences in the position of the maximum efficiencies in the pronosupination range between humans and the studied nonhuman hominoids. Proximodistal orientation of the medial epicondyle is suggested to be a more appropriate feature for distinguishing between humans and nonhuman hominoids than anteroposterior orientation and, therefore, for inferring behavioral aspects from skeletal remains and fossils of primate upper-limb bones.
Reconstruction of fractured, distorted, or missing parts in human skeleton presents an equal challenge in the fields of paleoanthropology, bioarcheology, forensics, and medicine. This is particularly important within the disciplines such as orthodontics and surgery, when dealing with mandibular defects due to tumors, developmental abnormalities, or trauma. In such cases, proper restorations of both form (for esthetic purposes) and function (restoration of articulation, occlusion, and mastication) are required. Several digital approaches based on three-dimensional (3D) digital modeling, computer-aided design (CAD)/computer-aided manufacturing techniques, and more recently geometric morphometric methods have been used to solve this problem. Nevertheless, comparisons among their outcomes are rarely provided. In this contribution, three methods for hemimandibular body reconstruction have been tested. Two bone defects were virtually simulated in a 3D digital model of a human hemimandible. Accordingly, 3D digital scaffolds were obtained using the mirror copy of the unaffected hemimandible (Method 1), the thin plate spline (TPS) interpolation (Method 2), and the combination between TPS and CAD techniques (Method 3). The mirror copy of the unaffected hemimandible does not provide a suitable solution for bone restoration. The combination between TPS interpolation and CAD techniques (Method 3) produces an almost perfect-fitting 3D digital model that can be used for biocompatible custom-made scaffolds generated by rapid prototyping technologies.
Many vertebrate motor and sensory systems "decussate" or cross the midline to the opposite side of the body. The successful crossing of millions of axons during development requires a complex of tightly controlled regulatory processes. Because these processes have evolved in many distinct systems and organisms, it seems reasonable to presume that decussation confers a significant functional advantage--yet if this is so, the nature of this advantage is not understood. In this article, we examine constraints imposed by topology on the ways that a three-dimensional processor and environment can be wired together in a continuous, somatotopic, way. We show that as the number of wiring connections grows, decussated arrangements become overwhelmingly more robust against wiring errors than seemingly simpler same-sided wiring schemes. These results provide a predictive approach for understanding how 3D networks must be wired if they are to be robust, and therefore have implications both for future large-scale computational networks and for complex biomedical devices.