Studies in Mycology

Online ISSN: 1872-9797
The international acronym PREM denotes the South African National Collection of Fungi, which houses approximately 60 000 specimens. The collection includes material from outside South Africa and contains representatives of all the major groups of fungi excluding the yeasts and pathogens of larger animals and man. The name PREM was derived from the city in which the collection is situated, Pretoria (PRE), and the M defines the collection as being mycological. The background information and historical facts presented in this paper are based on an unpublished manuscript, prepared by the co-author and then head of the collection A.P. Baxter, for the 90th celebration of PREM.
Demographic data of 22 patients with tinea nigra.
Culture of Hortaea werneckii on SGA. Two phases: yeast-like phase with moist colonies, and filamentous colony (case 11, CBS 122344; Table 1).
A. Extensive tinea nigra palmaris (case 1; Table 1); B. Localized tinea nigra (case 9, CBS 122348; Table 1); C. Close-up of a pigmented macula (case 20, CBS 122342; Table 1); D. Tinea nigra plantaris, panoramic; E. Tinea nigra interdigital (case 13, CBS 123045; Table 1); F. Tinea nigra under dermatoscopy, multiple pigmented lesions; G. Direct examination of pigmented and septate hyphae (KOH, 40×); H. Direct examination of short filaments and multiple blastoconidia (KOH, 40×) (case 20, CBS 122342, Table 1).
Map showing the distribution of cases analysed.
Multiple blastoconidia with central septa (KOH, 40×). (case 20, CBS 122342; Table 1).
Tinea nigra is a superficial mycosis caused by Hortaea werneckii. It is an infrequent asymptomatic infection that affects human palms and soles, and is mostly observed in tropical countries. We evaluate retrospectively twenty-two confirmed cases of tinea nigra from a total of eleven yr (1997-2007) and discuss the epidemiology, clinical features and treatment of this disease. In twelve cases, adults were involved, in 10, children. In nineteen cases the disorder was located on palms of hands and in three on soles of feet. In all cases, the obtained isolates were morphologically identified as Hortaea werneckii and the identification of ten isolates was retrospectively confirmed with the help of sequences of the internal transcribed spacer regions of the ribosomal DNA. The patients received topical treatment with Whitfield ointment, ketoconazole, bifonazole, or terbinafine. Treatment with keratolytic agents and topical antifungals was effective.
Neonectria is a cosmopolitan genus and it is, in part, defined by its link to the anamorph genus Cylindrocarpon. Neonectria has been divided into informal groups on the basis of combined morphology of anamorph and teleomorph. Previously, Cylindrocarpon was divided into four groups defined by presence or absence of microconidia and chlamydospores. Molecular phylogenetic analyses have indicated that Neonectriasensu stricto and Cylindrocarponsensu stricto are phylogenetically congeneric. In addition, morphological and molecular data accumulated over several years have indicated that Neonectria sensu lato and Cylindrocarponsensu lato do not form a monophyletic group and that the respective informal groups may represent distinct genera. In the present work, a multilocus analysis (act, ITS, LSU, rpb1, tef1, tub) was applied to representatives of the informal groups to determine their level of phylogenetic support as a first step towards taxonomic revision of Neonectriasensu lato. Results show five distinct highly supported clades that correspond to some extent with the informal Neonectria and Cylindrocarpon groups that are here recognised as genera: (1) N. coccinea-group and Cylindrocarpon groups 1 & 4 (Neonectria/Cylindrocarponsensu stricto); (2) N.rugulosa-group (Rugonectria gen. nov.); (3) N. mammoidea/N. veuillotiana-groups and Cylindrocarpon group 2 (Thelonectria gen. nov.); (4) N. radicicola-group and Cylindrocarpon group 3 (Ilyonectria gen. nov.); and (5) anamorph genus Campylocarpon. Characteristics of the anamorphs and teleomorphs correlate with the five genera, three of which are newly described. New combinations are made for species where their classification is confirmed by phylogenetic data.
Strains used in phylogenetic analysis of Talaromyces.
. Common exometabolite families in Talaromyces/Biverticillium, Penicillium, Aspergillus and other genera.
. Best-scoring Maximum Likelihood tree calculated using RAxML, based on partial RPB1 sequences showing the relationships among members of Talaromyces and Penicillium subgenus Biverticillium and related genera. The bootstrap support percentages of the maximum likelihood (ML) analysis are presented at the nodes. Bootstrap support values less than 70 % are not shown and branches with bootstrap support values > 70 % are thickened. The bar indicates the number of substitutions per site. The tree is rooted with Coccidioides immitis (strain RS).
. Best-scoring Maximum Likelihood tree calculated using MEGA 5.0 based on ITS sequences showing the relationship among members of the Talaromyces and members of Penicillium subgenus Biverticillium. The bootstrap support percentages of the maximum likelihood (ML) analysis are presented at the nodes. Bootstrap support values less than 70 % are not shown and branches with bootstrap support values > 75 % are thickened. The bar indicates the number of substitutions per site. The tree is rooted with Trichocoma paradoxa (CBS 788.83). T. = Talaromyces; P. = Penicillium. Strains indicated with * are ITS sequencing obtained from GenBank.
The taxonomic history of anamorphic species attributed to Penicillium subgenus Biverticillium is reviewed, along with evidence supporting their relationship with teleomorphic species classified in Talaromyces. To supplement previous conclusions based on ITS, SSU and/or LSU sequencing that Talaromyces and subgenus Biverticillium comprise a monophyletic group that is distinct from Penicillium at the generic level, the phylogenetic relationships of these two groups with other genera of Trichocomaceae was further studied by sequencing a part of the RPB1 (RNA polymerase II largest subunit) gene. Talaromyces species and most species of Penicillium subgenus Biverticillium sensu Pitt reside in a monophyletic clade distant from species of other subgenera of Penicillium. For detailed phylogenetic analysis of species relationships, the ITS region (incl. 5.8S nrDNA) was sequenced for the available type strains and/or representative isolates of Talaromyces and related biverticillate anamorphic species. Extrolite profiles were compiled for all type strains and many supplementary cultures. All evidence supports our conclusions that Penicillium subgenus Biverticillium is distinct from other subgenera in Penicillium and should be taxonomically unified with the Talaromyces species that reside in the same clade. Following the concepts of nomenclatural priority and single name nomenclature, we transfer all accepted species of Penicillium subgenus Biverticillium to Talaromyces. A holomorphic generic diagnosis for the expanded concept of Talaromyces, including teleomorph and anamorph characters, is provided. A list of accepted Talaromyces names and newly combined Penicillium names is given. Species of biotechnological and medical importance, such as P. funiculosum and P. marneffei, are now combined in Talaromyces. Excluded species and taxa that need further taxonomic study are discussed. An appendix lists other generic names, usually considered synonyms of Penicillium sensu lato that were considered prior to our adoption of the name Talaromyces. Taxonomic novelties: Taxonomic novelties: New species – Talaromyces apiculatus Samson, Yilmaz & Frisvad, sp. nov. New combinations and names – Talaromyces aculeatus (Raper & Fennell) Samson, Yilmaz, Frisvad & Seifert, T. albobiverticillius (H.-M. Hsieh, Y.-M. Ju & S.-Y. Hsieh) Samson, Yilmaz, Frisvad & Seifert, T. allahabadensis (B.S. Mehrotra & D. Kumar) Samson, Yilmaz & Frisvad, T. aurantiacus (J.H. Mill., Giddens & A.A. Foster) Samson, Yilmaz, & Frisvad, T. boninensis (Yaguchi & Udagawa) Samson, Yilmaz, & Frisvad, T. brunneus (Udagawa) Samson, Yilmaz & Frisvad, T. calidicanius (J.L. Chen) Samson, Yilmaz & Frisvad, T. cecidicola (Seifert, Hoekstra & Frisvad) Samson, Yilmaz, Frisvad & Seifert, T. coalescens (Quintan.) Samson, Yilmaz & Frisvad, T. dendriticus (Pitt) Samson, Yilmaz, Frisvad & Seifert, T. diversus (Raper & Fennell) Samson, Yilmaz & Frisvad, T. duclauxii (Delacr.) Samson, Yilmaz, Frisvad & Seifert, T. echinosporus (Nehira) Samson, Yilmaz & Frisvad, comb. nov. T. erythromellis (A.D. Hocking) Samson, Yilmaz, Frisvad & Seifert, T. funiculosus (Thom) Samson, Yilmaz, Frisvad & Seifert, T. islandicus (Sopp) Samson, Yilmaz, Frisvad & Seifert, T. loliensis (Pitt) Samson, Yilmaz & Frisvad, T. marneffei (Segretain, Capponi & Sureau) Samson, Yilmaz, Frisvad & Seifert, T. minioluteus (Dierckx) Samson, Yilmaz, Frisvad & Seifert, T. palmae (Samson, Stolk & Frisvad) Samson, Yilmaz, Frisvad & Seifert, T. panamensis (Samson, Stolk & Frisvad) Samson, Yilmaz, Frisvad & Seifert, T. paucisporus (Yaguchi, Someya & Udagawa) Samson & Houbraken T. phialosporus (Udagawa) Samson, Yilmaz & Frisvad, T. piceus (Raper & Fennell) Samson, Yilmaz, Frisvad & Seifert, T. pinophilus (Hedgcock) Samson, Yilmaz, Frisvad & Seifert, T. pittii (Quintan.) Samson, Yilmaz, Frisvad & Seifert, T. primulinus (Pitt) Samson, Yilmaz & Frisvad, T. proteolyticus (Kamyschko) Samson, Yilmaz & Frisvad, T. pseudostromaticus (Hodges, G.M. Warner, Rogerson) Samson, Yilmaz, Frisvad & Seifert, T. purpurogenus (Stoll) Samson, Yilmaz, Frisvad & Seifert, T. rademirici (Quintan.) Samson, Yilmaz & Frisvad, T. radicus (A.D. Hocking & Whitelaw) Samson, Yilmaz, Frisvad & Seifert, T. ramulosus (Visagie & K. Jacobs) Samson, Yilmaz, Frisvad & Seifert, T. rubicundus (J.H. Mill., Giddens & A.A. Foster) Samson, Yilmaz, Frisvad & Seifert, T. rugulosus (Thom) Samson, Yilmaz, Frisvad & Seifert, T. sabulosus (Pitt & A.D. Hocking) Samson, Yilmaz & Frisvad, T. siamensis (Manoch & C. Ramírez) Samson, Yilmaz & Frisvad, T. sublevisporus (Yaguchi & Udagawa) Samson, Yilmaz & Frisvad, T. variabilis (Sopp) Samson, Yilmaz, Frisvad & Seifert, T. varians (G. Sm.) Samson, Yilmaz & Frisvad, T. verruculosus (Peyronel) Samson, Yilmaz, Frisvad & Seifert, T. viridulus Samson, Yilmaz & Frisvad.
The transcriptome of conidia of was analysed during the first 8 h of germination. Dormant conidia started to grow isotropically two h after inoculation in liquid medium. Isotropic growth changed to polarised growth after 6 h, which coincided with one round of mitosis. Dormant conidia contained transcripts from 4 626 genes. The number of genes with transcripts decreased to 3 557 after 2 h of germination, after which an increase was observed with 4 780 expressed genes 8 h after inoculation. The RNA composition of dormant conidia was substantially different than all the subsequent stages of germination. The correlation coefficient between the RNA profiles of 0 h and 8 h was 0.46. They were between 0.76-0.93 when profiles of 2, 4 and 6 h were compared with that of 8 h. Dormant conidia were characterised by high levels of transcripts of genes involved in the formation of protecting components such as trehalose, mannitol, protective proteins ( heat shock proteins and catalase). Transcripts belonging to the Functional Gene Categories (FunCat) protein synthesis, cell cycle and DNA processing and respiration were over-represented in the up-regulated genes at 2 h, whereas metabolism and cell cycle and DNA processing were over-represented in the up-regulated genes at 4 h. At 6 h and 8 h no functional gene classes were over- or under-represented in the differentially expressed genes. Taken together, it is concluded that the transcriptome of conidia changes dramatically during the first two h and that initiation of protein synthesis and respiration are important during early stages of germination.
Members of the genus Plagiostoma inhabit leaves, stems, twigs, and branches of woody and herbaceous plants predominantly in the temperate Northern Hemisphere. An account of all known species of Plagiostoma including Cryptodiaporthe is presented based on analyses of morphological, cultural, and DNA sequence data. Multigene phylogenetic analyses of DNA sequences from four genes (β-tubulin, ITS, rpb2, and tef1-α) revealed eight previously undescribed phylogenetic species and an association between a clade composed of 11 species of Plagiostoma and the host family Salicaceae. In this paper these eight new species of Plagiostoma are described, four species are redescribed, and four new combinations are proposed. A key to the 25 accepted species of Plagiostoma based on host, shape, and size of perithecia, perithecial arrangement in the host, and microscopic characteristics of the asci and ascospores is provided. Disposition of additional names in Cryptodiaporthe and Plagiostoma is also discussed.
The ;black yeast' Exophiala oligosperma R1 can utilise various organic nitriles under acidic conditions as nitrogen sources. The induction of a phenylacetonitrile converting activity was optimised by growing the strain in the presence of different nitriles and /or complex or inorganic nitrogen sources. The highest nitrile hydrolysing activity was observed with cells grown with 2-cyanopyridine and NaNO(3). The cells metabolised the inducer and grew with 2-cyanopyridine as sole source of nitrogen. Cell extracts converted various (substituted) benzonitriles and phenylacetonitriles. They usually converted the isomers carrying a substituent in the meta-position with higher relative activities than the corresponding para- or ortho-substituted isomers. Aliphatic substrates such as acrylonitrile and 2-hydroxy-3-butenenitrile were also hydrolysed. The highest specific activity was detected with 4-cyanopyridine. Most nitriles were almost exclusively converted to the corresponding acids and no or only low amounts of the corresponding amides were formed. The cells hydrolysed amides only with extremely low activities. It was therefore concluded that the cells harboured a nitrilase activity. The specific activities of whole cells and cell extracts were compared for different nitriles and evidence obtained for limitation in the substrate-uptake by whole cells. The conversion of 2-hydroxy-3-butenenitrile to 2-hydroxy-3-butenoic acid at pH 4 demonstrated the unique ability of cells of E. oligosperma R1 to hydrolyse aliphatic alpha-hydroxynitriles under acidic conditions. The organism could grow with phenylacetonitrile as sole source of carbon, energy and nitrogen. The degradation of phenylacetonitrile presumably proceeds via phenylacetic acid, 2-hydroxyphenylacetic acid, 2,5-dihydroxyphenylacetic acid (homogentisate), maleylacetoacetate and fumarylacetoacetate.
A comprehensive phylogenetic reassessment of the ascomycete genus Cosmospora (Hypocreales, Nectriaceae) is undertaken using fresh isolates and historical strains, sequences of two protein encoding genes, the second largest subunit of RNA polymerase II (rpb2), and a new phylogenetic marker, the larger subunit of ATP citrate lyase (acl1). The result is an extensive revision of taxonomic concepts, typification, and nomenclatural details of many anamorph- and teleomorph-typified genera of the Nectriaceae, most notably Cosmospora and Fusarium. The combined phylogenetic analysis shows that the present concept of Fusarium is not monophyletic and that the genus divides into two large groups, one basal in the family, the other terminal, separated by a large group of species classified in genera such as Calonectria, Neonectria, and Volutella. All accepted genera received high statistical support in the phylogenetic analyses. Preliminary polythetic morphological descriptions are presented for each genus, providing details of perithecia, micro- and/or macro-conidial synanamorphs, cultural characters, and ecological traits. Eight species are included in our restricted concept of Cosmospora, two of which have previously documented teleomorphs and all of which have Acremonium-like microconidial anamorphs. A key is provided to the three anamorphic species recognised in Atractium, which is removed from synonymy with Fusarium and epitypified for two macroconidial synnematous species and one sporodochial species associated with waterlogged wood. Dialonectria is recognised as distinct from Cosmospora and two species with teleomorph, macroconidia and microconidia are accepted, including the new species D. ullevolea. Seven species, one with a known teleomorph, are classified in Fusicolla, formerly considered a synonym of Fusarium including members of the F. aquaeductuum and F. merismoides species complex, with several former varieties raised to species rank. Originally a section of Nectria, Macroconia is raised to generic rank for five species, all producing a teleomorph and macroconidial anamorph. A new species of the Verticillium-like anamorphic genus Mariannaea is described as M. samuelsii. Microcera is recognised as distinct from Fusarium and a key is included for four macroconidial species, that are usually parasites of scale insects, two of them with teleomorphs. The four accepted species of Stylonectria each produce a teleomorph and micro- and macroconidial synanamorphs. The Volutella species sampled fall into three clades. Pseudonectria is accepted for a perithecial and sporodochial species that occurs on Buxus. Volutella s. str. also includes perithecial and/or sporodochial species and is revised to include a synnematous species formerly included in Stilbella. The third Volutella-like clade remains unnamed. All fungi in this paper are named using a single name system that gives priority to the oldest generic names and species epithets, irrespective of whether they are originally based on anamorph or teleomorph structures. The rationale behind this is discussed.
A. Trichothecium roseum CBS 113334 showing retrogressive conidiation. B-D. conidiogenesis in "Trichothecium indicum"/ Leucosphaerina indica CBS 123.78 showing retrogressive development (B), phialidic development (B) and sympodial development (D).
A–E. The phylogenetic position of Acremonium and related fungi within the Hypocreales, as seen in nucLSU analysed by maximum likelihood via RAxML VI-HPC following a GTRMIX model applied to a single partition. 100 % bootstrap values are indicated by a black dot on the relevant internode.
A–C. The phylogenetic position of Acremonium and related fungi within the Sordariomycetes, as seen in combined analysis of the large and small subunits of the nuclear ribosomal RNA gene (LSU + SSU) analysed by maximum likelihood via RAxML VI-HPC following a GTRMIX model applied to two partitions. 100 % bootstrap values are indicated by a black dot on the relevant internode.
A. Trichothecium roseumCBS 113334 showing retrogressive conidiation. B-D. conidiogenesis in “Trichothecium indicum”/Leucosphaerina indicaCBS 123.78 showing retrogressive development (B), phialidic development (B) and sympodial development (D).
Over 200 new sequences are generated for members of the genus Acremonium and related taxa including ribosomal small subunit sequences (SSU) for phylogenetic analysis and large subunit (LSU) sequences for phylogeny and DNA-based identification. Phylogenetic analysis reveals that within the Hypocreales, there are two major clusters containing multiple Acremonium species. One clade contains Acremonium sclerotigenum, the genus Emericellopsis, and the genus Geosmithia as prominent elements. The second clade contains the genera Gliomastixsensu stricto and Bionectria. In addition, there are numerous smaller clades plus two multi-species clades, one containing Acremonium strictum and the type species of the genus Sarocladium, and, as seen in the combined SSU/LSU analysis, one associated subclade containing Acremonium breve and related species plus Acremonium curvulum and related species. This sequence information allows the revision of three genera. Gliomastix is revived for five species, G. murorum, G. polychroma, G. tumulicola, G. roseogrisea, and G. masseei. Sarocladium is extended to include all members of the phylogenetically distinct A. strictum clade including the medically important A. kiliense and the protective maize endophyte A. zeae. Also included in Sarocladium are members of the phylogenetically delimited Acremonium bacillisporum clade, closely linked to the A. strictum clade. The genus Trichothecium is revised following the principles of unitary nomenclature based on the oldest valid anamorph or teleomorph name, and new combinations are made in Trichothecium for the tightly interrelated Acremonium crotocinigenum, Spicellum roseum, and teleomorph Leucosphaerinaindica. Outside the Hypocreales, numerous Acremonium-like species fall into the Plectosphaerellaceae, and A. atrogriseum falls into the Cephalothecaceae.
Unlabelled: Colletotrichum acutatum is known as an important anthracnose pathogen of a wide range of host plants worldwide. Numerous studies have reported subgroups within the C. acutatum species complex. Multilocus molecular phylogenetic analysis (ITS, ACT, TUB2, CHS-1, GAPDH, HIS3) of 331 strains previously identified as C. acutatum and other related taxa, including strains from numerous hosts with wide geographic distributions, confirmed the molecular groups previously recognised and identified a series of novel taxa. Thirty-one species are accepted, of which 21 have not previously been recognised. Colletotrichum orchidophilum clusters basal to the C. acutatum species complex. There is a high phenotypic diversity within this complex, and some of the species appear to have preferences to specific hosts or geographical regions. Others appear to be plurivorous and are present in multiple regions. In this study, only C. salicis and C. rhombiforme formed sexual morphs in culture, although sexual morphs have been described from other taxa (especially as laboratory crosses), and there is evidence of hybridisation between different species. One species with similar morphology to C. acutatum but not belonging to this species complex was also described here as new, namely C. pseudoacutatum. Taxonomic novelties: New combinations - Colletotrichum limetticola (R.E. Clausen) Damm, P.F. Cannon & Crous, C. lupini (Bondar) Damm, P.F. Cannon & Crous, C. salicis (Fuckel) Damm, P.F. Cannon & Crous. New species - C. acerbum Damm, P.F. Cannon & Crous, C. australe Damm, P.F. Cannon & Crous, C. brisbanense Damm, P.F. Cannon & Crous, C. cosmi Damm, P.F. Cannon & Crous, C. costaricense Damm, P.F. Cannon & Crous, C. cuscutae Damm, P.F. Cannon & Crous, C. guajavae Damm, P.F. Cannon & Crous, C. indonesiense Damm, P.F. Cannon & Crous, C. johnstonii Damm, P.F. Cannon & Crous, C. kinghornii Damm, P.F. Cannon & Crous, C. laticiphilum Damm, P.F. Cannon & Crous, C. melonis Damm, P.F. Cannon & Crous, C. orchidophilum Damm, P.F. Cannon & Crous, C. paxtonii Damm, P.F. Cannon & Crous, C. pseudoacutatum Damm, P.F. Cannon & Crous C. pyricola Damm, P.F. Cannon & Crous, C. rhombiforme Damm, P.F. Cannon & Crous, C. scovillei Damm, P.F. Cannon & Crous, C. sloanei Damm, P.F. Cannon & Crous, C. tamarilloi Damm, P.F. Cannon & Crous, C. walleri Damm, P.F. Cannon & Crous. Typifications: Epitypifications - C. acutatum J.H. Simmonds, C. limetticola (R.E. Clausen) Damm, P.F. Cannon & Crous, C. nymphaeae (Pass.) Aa, C. phormii (Henn.) D.F. Farr & Rossman, C. salicis (Fuckel) Damm, P.F. Cannon & Crous. Lectotypifications - C. nymphaeae (Pass.) Aa, C. orchidearum Allesch.
The model of HOG signaling pathway response during the long-term hypersaline adaptation in the extremely halophilic H. werneckii. Hyperosmotic conditions (4.5 M NaCl) activate the plasma membrane localised osmosensor of the pathway. However, unlike in S. cerevisiae, HwSho1 is most likely localised on an inner cell membrane. The Sln1-Ypd1-Ssk1 phosphorelay is much more complex, with an input from at least one more histidine kinase (HwHhk7) and with a questionable role of Sln1 homologue. The signals from both pathways converge at the level of Pbs2 MAPKK homologues (HwPbs2A, HwPbs2B1, and HwPbs2B2). HwPbs2 isoforms putatively activate the HwHog1, a key MAP kinase of the pathway. Upon phosphorylation and translocation into the nucleus, the phosphorylated HwHog1 associates with the chromatin of osmoresponsive genes and thereby promotes (or represses; underlined genes) the transcription, either by recruitment and/or activation of transcriptional factors or by direct association with the RNA polymerase II (RNAPol II), or both. The protein products of HwHog1-interracting osmoresponsive genes belonging to indicated functional groups contribute to the crucial metabolic changes required for successful adaptation to the severe osmotic environment. Although H. werneckii has roughly retained the structure of the HOG pathway, it has also developed many distinctive features. The identified components of the H. werneckii HOG pathway are shown in dark grey, the evolutionary highly conserved components are shown in light grey, the known components of the S. cerevisiae HOG pathway are colorless. HwHog1 responsive genes are: HwAGP1, amino acid permease; HwATP1, ATPase alpha-subunit; HwATP2, ATPase beta-subunit; HwATP3, ATPase gamma-subunit; HwBMH1, 14-3-3 protein; HwCIT1, citrate synthase; HwCYT1, cytochrome c1; HwDBP2, RNA helicase; HwECM33, extracellular matrix protein 33; HwEFT2, translation elongation factor 2 (eEF-2); HwELF1, transcription elongation factor; HwERV25, p24 component of the COPII-coated vesicles; HwFAS1, fatty-acid synthase acyl-carrier protein; HwFRE7, ferric-chelate reductase 7; HwGDH1, glutamate dehydrogenase; HwGPD1A, glycerol-3-phosphate dehydrogenase A; HwGUT2, FAD-dependent glycerol-3-phosphate dehydrogenase; HwIRE1, protein kinase/endoribonuclease; HwKAR2, endoplasmic reticulum luminal chaperone; HwKGD2, dihydrolipoamide succinyltransferase; HwMET17, cystein synthase, HwMET6, methionine synthase; HwNUC1, mitochondrial nuclease; HwOPI3, unsaturated phospholipid methyltransferase; HwPDI1, protein disulphide isomerase; HwPGK1, 3-phosphoglycerate kinase; HwPMA2, plasma membrane proton-exporting ATPase; HwPUF1, pumilio-family RNA-binding domain protein; HwRPL6A, 60S ribosomal protein 6A; HwRPN2, 26S proteasome regulatory subunit; HwSHY1, mitochondrial inner membrane protein chaperone; HwSTT3, oligosaccharyltransferase catalytic subunit; SOL11, mannose-P-dolichol utilization defect 1 protein; SOL13, opsin 1; SOL16, senescence-associated protein; SOL23, hyperosmolarity-induced mRNA 23; SOL28, hyperosmolarity-induced mRNA 28.
Halophilic adaptations have been studied almost exclusively on prokaryotic microorganisms. Discovery of the black yeast Hortaea werneckii as the dominant fungal species in hypersaline waters enabled the introduction of a new model organism to study the mechanisms of salt tolerance in eukaryotes. Its strategies of cellular osmotic adaptations on the physiological and molecular level revealed novel, intricate mechanisms to combat fluctuating salinity. H. werneckii is an extremely halotolerant eukaryotic microorganism and thus a promising source of transgenes for osmotolerance improvement of industrially important yeasts, as well as in crops.
Growth of the reference strain (Ref., UU-A049.1), and the ΔaraR (UU-A033.21), ΔxlnR (UU-A062.10) and ΔaraR/ΔxlnR (UU-A063.22) strains on a selection of mono- and polysaccharides. Concentrations of the substrates were 25 mM for D-glucose, D-xylose, L-arabinose, L-arabitol, xylitol and glycerol, and 1 % for birchwood xylan, Arabic gum, guar gum, arabinan, arabinogalactan and apple pectin.
Bootstrapped (1000 bs) Maximum Parsimony tree of of putative homologues of XlnR and AraR in fungi. Homologues of the A. nidulans acetate regulatory protein (FacB) were used as an outgroup.
Regulatory model for release and utilisation of D-xylose and L-arabinose in A. niger. ArdA = L-arabinose reductase; LadA = L-arabitol dehydrogenase; LxrA = L-xylulose reductase; XdhA = xylitol dehydrogenase; XyrA = D-xylose reductase; XkiA = D-xylulose kinase; AbfA, AbfB = α-L-arabinofuranosidase A and B; AbnA= endo-1,5-alpha-L-arabinanase; AxhA = arabinoxylan arabinofuranohydrolase; XlnB, XlnC = endoxylanases B and C; XlnD = β-xylosidase. The square depicts the fungal cell wall. AraR regulated genes are in blue. XlnR regulated genes are in yellow. Genes regulated by AraR and XlnR are in green. Inclusion of axhA, abnA, xlnB, xlnC, xlnD was based on co-regulation with the other genes as reported previously (Gielkens et al. 1997, van Peij et al. 1998a, de Groot et al. 2003).
Comparison of intracellular and extracellular enzyme activities in reference and disruption strains. The reference strains (UU-A049.1), ΔaraR (UU-A033.21), ΔxlnR (UU-A062.10) and ΔaraR/ΔxlnR (UU-A063.22) were transferred for 2 and 4 h on 25 mM L-arabinose or 25 mM D-xylose. Extracellular α-L-arabinofuranosidase (Abf), the ratio of intracellular L-arabinose reductase (ArdA) and D-xylose reductase (XyrA) activity, and the intracellular activities of xylitol dehydrogenase (Xdh) and L-arabitol dehydrogenase (Lad). Black bars: L-arabinose, 2 h; grey bars: L-arabinose, 4 h; dashed bars: D-xylose, 2 h; white bars: D-xylose, 4 h.
A. Expression analysis of the three XlnR homologues (An04g08600 (araR), An11g00140 and An11g06290) on D-fructose (1), L-arabinose (2), L-arabitol (3), D-xylose (4) and xylitol (5). B. Growth of the reference (UU-A049.1), ΔaraR (UU-A033.21) and ΔaraR::araR (UU-A054.4) on D-glucose and L-arabitol.
Aspergilli are commonly found in soil and on decaying plant material. D-xylose and L-arabinose are highly abundant components of plant biomass. They are released from polysaccharides by fungi using a set of extracellular enzymes and subsequently converted intracellularly through the pentose catabolic pathway (PCP). In this study, the L-arabinose responsive transcriptional activator (AraR) is identified in Aspergillus niger and was shown to control the L-arabinose catabolic pathway as well as expression of genes encoding extracellular L-arabinose releasing enzymes. AraR interacts with the D-xylose-responsive transcriptional activator XlnR in the regulation of the pentose catabolic pathway, but not with respect to release of L-arabinose and D-xylose. AraR was only identified in the Eurotiales, more specifically in the family Trichocomaceae and appears to have originated from a gene duplication event (from XlnR) after this order or family split from the other filamentous ascomycetes. XlnR is present in all filamentous ascomycetes with the exception of members of the Onygenales. Since the Onygenales and Eurotiales are both part of the subclass Eurotiomycetidae, this indicates that strong adaptation of the regulation of pentose utilisation has occurred at this evolutionary node. In Eurotiales a unique two-component regulatory system for pentose release and metabolism has evolved, while the regulatory system was lost in the Onygenales. The observed evolutionary changes (in Eurotiomycetidae) mainly affect the regulatory system as in contrast, homologues for most genes of the L-arabinose/D-xylose catabolic pathway are present in all the filamentous fungi, irrespective of the presence of XlnR and/or AraR.
forms aerial hyphae and conidiophores after a period of vegetative growth. The hyphae within the mycelium of are divided by septa. The central pore in these septa allows for cytoplasmic streaming. Here, we studied inter- and intra-compartmental streaming of the reporter protein GFP in Expression of the gene encoding nuclear targeted GFP from the or promoter resulted in strong fluorescence of nuclei within the vegetative hyphae and weak fluorescence in nuclei within the aerial structures. These data and nuclear run on experiments showed that and are higher expressed in the vegetative mycelium when compared to aerial hyphae, conidiophores and conidia. Notably, or driven expression of the gene encoding cytosolic GFP resulted in strongly fluorescent vegetative hyphae and aerial structures. Apparently, GFP streams from vegetative hyphae into aerial structures. This was confirmed by monitoring fluorescence of photo-activatable GFP (PA-GFP). In contrast, PA-GFP did not stream from aerial structures to vegetative hyphae. Streaming of PA-GFP within vegetative hyphae or within aerial structures of occurred at a rate of 10-15 μm s. Taken together, these results not only show that GFP streams from the vegetative mycelium to aerial structures but it also indicates that its encoding RNA is not streaming. Absence of RNA streaming would explain why distinct RNA profiles were found in aerial structures and the vegetative mycelium by nuclear run on analysis and micro-array analysis.
Aspergillus subgenus Circumdati section Flavi includes species with usually biseriate conidial heads, in shades of yellow-green to brown, and dark sclerotia. Several species assigned to this section are either important mycotoxin producers including aflatoxins, cyclopiazonic acid, ochratoxins and kojic acid, or are used in oriental food fermentation processes and as hosts for heterologous gene expression. A polyphasic approach was applied using morphological characters, extrolite data and partial calmodulin, β-tubulin and ITS sequences to examine the evolutionary relationships within this section. The data indicate that Aspergillus section Flavi involves 22 species, which can be grouped into seven clades. Two new species, A. pseudocaelatus sp. nov. and A. pseudonomius sp. nov. have been discovered, and can be distinguished from other species in this section based on sequence data and extrolite profiles. Aspergillus pseudocaelatus is represented by a single isolate collected from Arachis burkartii leaf in Argentina, is closely related to the non-aflatoxin producing A. caelatus, and produces aflatoxins B & G, cyclopiazonic acid and kojic acid, while A. pseudonomius was isolated from insects and soil in the USA. This species is related to A. nomius, and produces aflatoxin B(1) (but not G-type aflatoxins), chrysogine and kojic acid. In order to prove the aflatoxin producing abilities of the isolates, phylogenetic analysis of three genes taking part in aflatoxin biosynthesis, including the transcriptional regulator aflR, norsolonic acid reductase and O-methyltransferase were also carried out. A detailed overview of the species accepted in Aspergillus section Flavi is presented.
Several recent studies have reviewed the extent of fungal biodiversity, and have used these data as basis for revised estimates of species numbers based on known numbers of plants and insects. None of these studies, however, have focused on fungal biodiversity in South Africa. Coinciding with the 100th anniversary of the National Collection of Fungi (PREM) in South Africa in 2005, it is thus timely to reflect on the taxonomic research that has been conducted in South Africa over the past Century. Information is presented on the extent of fungal collections preserved at PREM, and the associated research publications that have largely resulted from this resource. These data are placed in context of the known plant and insect biodiversity, and used as basis to estimate the potential number of fungi that could be expected in South Africa. The conservative estimate is of approximately 200 000 species without taking into account those associated with a substantial insect biodiversity.
In a survey for Cryphonectria and Chrysoporthe species on Myrtales in South Africa, a fungus resembling the stem canker pathogen Chrysoporthe austroafricana was collected from native Syzygium cordatum near Tzaneen (Limpopo Province), Heteropyxis canescens near Lydenburg (Mpumalanga Province) and exotic Tibouchina granulosa in Durban (KwaZulu-Natal Province). The fungus was associated with dying branches and stems on S. cordatum, H.canescens and T.granulosa. However, morphological differences were detected between the unknown fungus from these three hosts and known species of Chrysoporthe. The aim of this study was to characterise the fungus using DNA sequence comparisons and morphological features. Pathogenicity tests were also conducted to assess its virulence on Eucalyptus (ZG 14 clones), H.natalensis and T. granulosa. Plants of H. canescens were not available for inoculation. Results showed distinct morphological differences between the unknown fungus and Chrysoporthe spp. Phylogenetic analysis showed that isolates reside in a clade separate from Chrysoporthe and other related genera. Celoporthe dispersa gen. et sp. nov. is, therefore, described to accommodate this fungus. Pathogenicity tests showed that C.dispersa is not pathogenic to H. natalensis, but that it is a potential pathogen of Eucalyptus and Tibouchina spp.
Cylindrocarpon and Neonectria isolates included in this study.
One of 61 most parsimonious trees obtained from a heuristic search with 100 random taxon additions of the ITS sequence alignment. The scale bar shows 10 changes and bootstrap support values from 1000 replicates are shown at the nodes. Thickened lines indicate the strict consensus branches and ex-type strains are shown in bold print. The host genus or source is indicated next to the GenBank accession numbers for the taxa in the “C. destructans” complex. The tree was rooted to Campylocarpon pseudofasciculare AY677306.
Neonectria liriodendri and its Cylindrocarpon liriodendri anamorph (CBS H-17776). Scale bar = 10 μm.
One of 180 most parsimonious trees obtained from a heuristic search with 100 random taxon additions of the β-tubulin sequence alignment. The scale bar shows a single change and bootstrap support values from 1000 replicates are shown at the nodes. Thickened lines indicate the strict consensus branches and type strains are shown in bold print. The host genus or source is indicated next to the GenBank accession numbers for the taxa in the“ C. destructans” complex. The tree was rooted to Campylocarpon pseudofasciculare AY677214.
Neonectria liriodendri and its Cylindrocarpon liriodendri anamorph. A–C. Perithecia on beach toothpicks. D. Perithecium mounted in lactic acid. E–H. Sections though perithecia, showing wall anatomy and ostiolar area. I–K. Asci. L–N. Ascospores. O–P. Conidiophores. Q–S. Macroconidia. T–U. Subcylindrical, ellipsoid and ovoid microconidia. V. Chlamydospores in chains. Scare bars: A = 90 μm, B–C = 70 μm, D = 30 μm, E = 80 μm, F = 26 μm, G–H = 20μ m, I–K = 5 μm, L–N = 3 μm, O–S = 5 μm, T–U = 4 μm, V = 15 μm.
Black foot disease is a serious disease of grapevine crops in most areas where vines are grown. Mainly two species of Cylindrocarpon, C. destructans and C. macrodidymum, are associated with this disease. Recent studies have revealed a tremendous molecular variation within the former but only slight molecular variation within the latter, indicating that C. destructans presents a complex of several species The present study elucidates the taxonomic status of C. destructans-like isolates associated with black foot disease of grapevines. Grapevine isolates were studied morphologically, subjected to DNA analyses of their ITS and partial beta-tubulin genes, and were mated in all combinations in vitro. Cylindrocarpon destructans strains isolated from grapevines in Europe and South Africa appeared morphologically and genetically identical, and had identical ITS and partial beta-tubulin gene sequences. Phylogenetic analyses placed these strains in a clade closely related but clearly distinct from other clades with C. destructans-like anamorphs obtained from various herbaceous or woody hosts. Only the ex-type strain of Cylindrocarpon liriodendri had identical sequences to strains isolated from grapevines, and could also not be distinguished by morphological characters. The grapevine isolates are therefore reidentified here as Cylindrocarpon liriodendri. Cylindrocarpn liriodendri formed perithecia in heterothallic conditions and the holomorph of this species is described as Neonectria liriodendri sp. nov. Neonectria liriodendri is genetically distinct from the ex-type strain of Neonectria radicicola, which originated from Cyclamen in Sweden. Both ex-type strains also differ from at least two other clades comprising additional C. destructans-like strains. Many of these strains originated from Panax sp., which is the host of the type of C. destructans. Our phylogenetic analyses indicate that C. destructans is not the anamorph of N. radicicola and that N. liriodendri, N. radicicola and several C. destructans-like taxa may have evolved independently within the same phylogenetic species complex.
Pseudocercospora griseola. A–C. Leaf disease symptoms. D. Lesions on bean pod. E–G. Fasciculate conidiophores. H–J. Conidiogenous cells giving rise to conidia. K–O. Conidia. Scale bars: F = 8 μm, G = 200 μm, H = 10 μm.
One of 15 most parsimonious trees obtained from a heuristic search with 10 random taxon additions of the 18S rRNA gene sequence alignment. The scale bar shows a single change and bootstrap support values from 1000 replicates are shown at the nodes. Thickened lines indicate the strict consensus branches and the tree was rooted to two Cladosporium species.
One of 13 most parsimonious trees obtained from a heuristic search with 10 random taxon additions of the ITS sequence alignment. The scale bar shows 10 changes and bootstrap support values from 1000 replicates are shown at the nodes. Thickened lines indicate the strict consensus branches and the tree was rooted to Cladosporium herbarum and Davidiella tassiana.
One of three most parsimonious trees obtained from a heuristic search with 10 random taxon additions of a combined ITS, actin and calmodulin sequence alignment. The scale bar shows 10 changes and bootstrap support values from 1000 replicates are shown at the nodes (values from parsimony before the slash and neighbour-joining with the HKY85 substitution model after the slash). Thickened lines indicate branches found in the strict consensus parsimony tree and the tree was rooted to Cladosporium herbarum and Davidiella tassiana.
Angular leaf spot of Phaseolus vulgaris is a serious disease caused by Phaeoisariopsis griseola, in which two major gene pools occur, namely Andean and Middle-American. Sequence analysis of the SSU region of nrDNA revealed the genus Phaeoisariopsis to be indistinguishable from other hyphomycete anamorph genera associated with Mycosphaerella, namely Pseudocercospora and Stigmina. A new combination is therefore proposed in the genus Pseudocercospora, a name to be conserved over Phaeoisariopsis and Stigmina. Further comparisons by means of morphology, cultural characteristics, and DNA sequence analysis of the ITS, calmodulin, and actin gene regions delineated two groups within P. griseola, which are recognised as two formae, namely f. griseola and f. mesoamericana.
The genus Aspergillus is one of the most important filamentous fungal genera. Aspergillus species are used in the fermentation industry, but they are also responsible of various plant and food secondary rot, with the consequence of possible accumulation of mycotoxins. The aflatoxin producing A. flavus and A. parasiticus, and ochratoxinogenic A. niger, A. ochraceus and A. carbonarius species are frequently encountered in agricultural products. Studies on the biodiversity of toxigenic Aspergillus species is useful to clarify molecular, ecological and biochemical characteristics of the different species in relation to their different adaptation to environmental and geographical conditions, and to their potential toxigenicity. Here we analyzed the biodiversity of ochratoxin producing species occurring on two important crops: grapes and coffee, and the genetic diversity of A. flavus populations occurring in agricultural fields. Altogether nine different black Aspergillus species can be found on grapes which are often difficult to identify with classical methods. The polyphasic approach used in our studies led to the identification of three new species occurring on grapes: A. brasiliensis, A. ibericus, and A. uvarum. Similar studies on the Aspergillus species occurring on coffee beans have evidenced in the last five years that A. carbonarius is an important source of ochratoxin A in coffee. Four new species within the black aspergilli were also identified in coffee beans: A. sclerotioniger, A. lacticoffeatus, A. sclerotiicarbonarius, and A. aculeatinus. The genetic diversity within A. flavus populations has been widely studied in relation to their potential aflatoxigenicity and morphological variants L- and S-strains. Within A. flavus and other Aspergillus species capable of aflatoxin production, considerable diversity is found. We summarise the main recent achievements in the diversity of the aflatoxin gene cluster in A. flavus populations, A. parasiticus and the non-toxigenic A. oryzae. Studies are needed in order to characterise the aflatoxin biosynthetic genes in the new related taxa A. minisclerotigenes and A. arachidicola.
Although Nectria is the type genus of Nectriaceae (Hypocreales, Sordariomycetes, Pezizomycotina, Ascomycota), the systematics of the teleomorphic and anamorphic state of Nectria sensu Rossman has not been studied in detail. The objectives of this study are to 1) provide a phylogenetic overview to determine if species of Nectria with Gyrostroma, Tubercularia, and Zythiostroma anamorphs form a monophyletic group; 2) define Nectria, segregate genera, and their species using morphologically informative characters of teleomorphic and anamorphic states; and 3) provide descriptions and illustrations of these genera and species. To accomplish these objectives, results of phylogenetic analyses of DNA sequence data from six loci (act, ITS, LSU, rpb1, tef1 and tub), were integrated with morphological characterisations of anamorphs and teleomorphs. Results from the phylogenetic analyses demonstrate that species previously regarded as the genus Nectria having Gyrostroma, Tubercularia, and Zythiostroma anamorphs belong in two major paraphyletic clades. The first major clade regarded as the genus Pleonectria contains 26 species with ascoconidia produced by ascospores in asci, perithecial walls having bright yellow scurf, and immersed or superficial pycnidial anamorphs (Zythiostroma = Gyrostroma). A lineage basal to the Pleonectria clade includes Nectria miltina having very small, aseptate ascospores, and trichoderma-like conidiophores and occurring on monocotyledonous plants. These characteristics are unusual in Pleonectria, thus we recognise the monotypic genus Allantonectria with Allantonectria miltina. The second major clade comprises the genus Nectria sensu stricto including the type species, N. cinnabarina, and 28 additional species. Within the genus Nectria, four subclades exist. One subclade includes species with sporodochial anamorphs and another with synnematous anamorphs. The other two paraphyletic subclades include species that produce abundant stromata in which the large perithecia are immersed, large ascospores, and peculiar anamorphs that form pycnidia or sporodochia either on their natural substrate or in culture. In this study the evolution of species, morphology, and ecology of the three genera, Allantonectria, Nectria, and Pleonectria, are discussed based on the phylogenetic analyses. In addition, descriptions, illustrations, and keys for identification are presented for the 56 species in Allantonectria, Nectria, and Pleonectria. Taxonomic novelties: New species: Nectria argentinensis Hirooka, Rossman & P. Chaverri, Nectria berberidicola Hirooka, Lechat, Rossman, & P. Chaverri, Nectria himalayensis Hirooka, Rossman, & P. Chaverri, Nectria magnispora Hirooka, Rossman, & P. Chaverri, Nectria mariae Hirooka, Fournier, Lechat, Rossman, & P. Chaverri, Nectria pyriformis Hirooka, Rossman & P. Chaverri, Pleonectria boothii Hirooka, Rossman & Chaverri, Pleonectria clavatispora Hirooka, Rossman & P. Chaverri, Pleonectria ilicicola Hirooka, Rossman & P. Chaverri, Pleonectria okinawensis Hirooka, Rossman & P. Chaverri, Pleonectria pseudomissouriensis Hirooka, Rossman & P. Chaverri, Pleonectria quercicola Hirooka, Checa, Areual, Rossman & P. Chaverri, Pleonectria strobi Hirooka, Rossman & P. Chaverri. New combinations: Cosmospora proteae (Marinc., M.J. Wingf. & Crous) Hirooka, Rossman & P. Chaverri, Nectricladiella viticola (Berk. & M.A. Curtis) Hirooka, Rossman & P. Chaverri, Neocosmospora guarapiensis (Speg.) Hirooka, Samuels, Rossman & P. Chaverri, Neocosmospora rehmiana (Kirschstein) Hirooka, Samuels, Rossman & P. Chaverri, Pleonectria aquifolii (Fr.) Hirooka, Rossman & P. Chaverri, Pleonectria aurigera (Berk. & Rav.) Hirooka, Rossman & P. Chaverri, Pleonectria chlorinella (Cooke) Hirooka, Rossman & P. Chaverri, Pleonectria coryli (Fuckel) Hirooka, Rossman & P. Chaverri, Pleonectria cucurbitula (Tode: Fr.) Hirooka, Rossman & P. Chaverri, Pleonectria lonicerae (Seeler) Hirooka, Rossman & P. Chaverri, Pleonectria rosellinii (Carestia) Hirooka, Rossman & P. Chaverri, Pleonectria rubicarpa (Cooke) Hirooka, Rossman & P. Chaverri, Pleonectria sinopica (Fr.: Fr.) Hirooka, Rossman & P. Chaverri, Pleonectria sphaerospora (Ellis & Everh) Hirooka, Rossman & P. Chaverri, Pleonectria virens (Harkn.) Hirooka, Rossman & P. Chaverri, Pleonectria zanthoxyli (Peck) Hirooka, Rossman & P. Chaverri.
We examined the phylogenetic relationships of two species that mimic Chaetosphaeria in teleomorph and anamorph morphologies, Chaetosphaeriatulasneorum with a Cylindrotrichum anamorph and Australiasca queenslandica with a Dischloridium anamorph. Four data sets were analysed: a) the internal transcribed spacer region including ITS1, 5.8S rDNA and ITS2 (ITS), b) nc28S (ncLSU) rDNA, c) nc18S (ncSSU) rDNA, and d) a combined data set of ncLSU-ncSSU-RPB2 (ribosomal polymerase B2). The traditional placement of Ch. tulasneorum in the Microascales based on ncLSU sequences is unsupported and Australiasca does not belong to the Chaetosphaeriaceae. Both holomorph species are nested within the Glomerellales. A new genus, Reticulascus, is introduced for Ch. tulasneorum with associated Cylindrotrichum anamorph; another species of Reticulascus and its anamorph in Cylindrotrichum are described as new. The taxonomic structure of the Glomerellales is clarified and the name is validly published. As delimited here, it includes three families, the Glomerellaceae and the newly described Australiascaceae and Reticulascaceae. Based on ITS and ncLSU rDNA sequence analyses, we confirm the synonymy of the anamorph genera Dischloridium with Monilochaetes. Consequently Dischloridium laeënse, type species of the genus, and three related species are transferred to the older genus Monilochaetes. The teleomorph of D. laeënse is described in Australiasca as a new species. The Plectosphaerellaceae, to which the anamorph genus Stachylidium is added, is basal to the Glomerellales in the three-gene phylogeny. Stilbella annulata also belongs to this family and is newly combined in Acrostalagmus. Phylogenetic analyses based on ncLSU, ncSSU, and combined ncLSU-ncSSU-RPB2 sequences clarify family relationships within the Microascales. The family Ceratocystidaceae is validated as a strongly supported monophyletic group consisting of Ceratocystis, Cornuvesica, Thielaviopsis, and the type species of Ambrosiella. The new family Gondwanamycetaceae, a strongly supported sister clade to the Ceratocystidaceae, is introduced for the teleomorph genus Gondwanamyces and its Custingophora anamorphs. Four families are accepted in the Microascales, namely the Ceratocystidaceae, Gondwanamycetaceae, Halosphaeriaceae, and Microascaceae. Because of a suggested affinity of a Faurelina indica isolate to the Microascales, the phylogenetic position of the Chadefaudiellaceae is reevaluated. Based on the results from a separate ncLSU analysis of the Dothideomycetes, Faurelina is excluded from the Microascales and placed in the Pleosporales.
The phylogeny of the genera Periconiella, Ramichloridium, Rhinocladiella and Veronaea was explored by means of partial sequences of the 28S (LSU) rRNA gene and the ITS region (ITS1, 5.8S rDNA and ITS2). Based on the LSU sequence data, ramichloridium-like species segregate into eight distinct clusters. These include the Capnodiales (Mycosphaerellaceae and Teratosphaeriaceae), the Chaetothyriales (Herpotrichiellaceae), the Pleosporales, and five ascomycete clades with uncertain affinities. The type species of Ramichloridium, R. apiculatum, together with R. musae, R. biverticillatum, R. cerophilum, R. verrucosum, R. pini, and three new species isolated from Strelitzia, Musa and forest soil, respectively, reside in the Capnodiales clade. The human-pathogenic species R. mackenziei and R. basitonum, together with R. fasciculatum and R. anceps, cluster with Rhinocladiella (type species: Rh. atrovirens, Herpotrichiellaceae, Chaetothyriales), and are allocated to this genus. Veronaea botryosa, the type species of the genus Veronaea, also resides in the Chaetothyriales clade, whereas Veronaea simplex clusters as a sister taxon to the Venturiaceae (Pleosporales), and is placed in a new genus, Veronaeopsis. Ramichloridium obovoideum clusters with Carpoligna pleurothecii (anamorph: Pleurothecium sp., Chaetosphaeriales), and a new combination is proposed in Pleurothecium. Other ramichloridium-like clades include R. subulatum and R. epichloës (incertae sedis, Sordariomycetes), for which a new genus, Radulidium is erected. Ramichloridium schulzeri and its varieties are placed in a new genus, Myrmecridium (incertae sedis, Sordariomycetes). The genus Pseudovirgaria (incertae sedis) is introduced to accommodate ramichloridium-like isolates occurring on various species of rust fungi. A veronaea-like isolate from Bertia moriformis with phylogenetic affinity to the Annulatascaceae (Sordariomycetidae) is placed in a new genus, Rhodoveronaea. Besides Ramichloridium, Periconiella is also polyphyletic. Thysanorea is introduced to accommodate Periconiella papuana (Herpotrichiellaceae), which is unrelated to the type species, P. velutina (Mycosphaerellaceae).
Morphological studies and phylogenetic analyses of DNA sequences from three genomic regions - the internal transcribed spacer (ITS) regions of the nuclear ribosomal gene repeat, a partial sequence of RNA polymerase II subunit (rpb2), and a partial sequence of translation elongation factor (tef1) - were used to investigate the systematics of Hypocrea citrina and related species. A neotype specimen is designated for H. citrina that conforms to Persoon's description of a yellow effuse fungus occurring on leaf litter. Historical information and results obtained in this study provide the foundation for selection of a lectotype specimen from Fries's herbarium for H. lactea. The results indicate that (1) Hypocrea citrina and H. pulvinata are distinct species; (2) H. lactea sensu Fries is a synonym of the older name H. citrina; (3) H. pulvinata, H. protopulvinata, and H. americana are phylogenetically distinct species that form a well-supported polyporicolous clade; (4) H. citrina is situated in a clade closely related to H. pulvinata; and (5) H. microcitrina and H. pseudostraminea reside in a highly supported clade phylogenetically distinct from H. citrina. Hypocrea protopulvinata, H. microcitrina, H. megalocitrina, H. pseudostraminea, and a new species, H. aurantiistroma, are reported and described from North America. Variation in rpb2 and tef1 gene sequences suggests geographical subgroupings between European and North American isolates of H. pulvinata. The phylogenies inferred from ITS, rpb2, and tef1 gene sequences are concordant. Hypocrea citrina var. americana is elevated to species status, Hypocrea americana.
Unlabelled: Alternaria is a ubiquitous fungal genus that includes saprobic, endophytic and pathogenic species associated with a wide variety of substrates. In recent years, DNA-based studies revealed multiple non-monophyletic genera within the Alternaria complex, and Alternaria species clades that do not always correlate to species-groups based on morphological characteristics. The Alternaria complex currently comprises nine genera and eight Alternaria sections. The aim of this study was to delineate phylogenetic lineages within Alternaria and allied genera based on nucleotide sequence data of parts of the 18S nrDNA, 28S nrDNA, ITS, GAPDH, RPB2 and TEF1-alpha gene regions. Our data reveal a Pleospora/Stemphylium clade sister to Embellisia annulata, and a well-supported Alternaria clade. The Alternaria clade contains 24 internal clades and six monotypic lineages, the assemblage of which we recognise as Alternaria. This puts the genera Allewia, Brachycladium, Chalastospora, Chmelia, Crivellia, Embellisia, Lewia, Nimbya, Sinomyces, Teretispora, Ulocladium, Undifilum and Ybotromyces in synonymy with Alternaria. In this study, we treat the 24 internal clades in the Alternaria complex as sections, which is a continuation of a recent proposal for the taxonomic treatment of lineages in Alternaria. Embellisia annulata is synonymised with Dendryphiella salina, and together with Dendryphiella arenariae, are placed in the new genus Paradendryphiella. The sexual genera Clathrospora and Comoclathris, which were previously associated with Alternaria, cluster within the Pleosporaceae, outside Alternaria s. str., whereas Alternariaster, a genus formerly seen as part of Alternaria, clusters within the Leptosphaeriaceae. Paradendryphiella is newly described, the generic circumscription of Alternaria is emended, and 32 new combinations and 10 new names are proposed. A further 10 names are resurrected, while descriptions are provided for 16 new Alternaria sections. Taxonomic novelties: New combinations - Alternaria abundans (E.G. Simmons) Woudenb. & Crous, Alternaria alternariae (Cooke) Woudenb. & Crous, Alternaria atra (Preuss) Woudenb. & Crous, Alternaria bornmuelleri (Magnus) Woudenb. & Crous, Alternaria botrytis (Preuss) Woudenb. & Crous, Alternaria caespitosa (de Hoog & C. Rubio) Woudenb. & Crous, Alternaria cantlous (Yong Wang bis & X.G. Zhang) Woudenb. & Crous, Alternaria caricis (E.G. Simmons) Woudenb. & Crous, Alternaria cinerea (Baucom & Creamer) Woudenb. & Crous, Alternaria didymospora (Munt.-Cvetk.) Woudenb. & Crous, Alternaria fulva (Baucom & Creamer) Woudenb. & Crous, Alternaria hyacinthi (de Hoog & P.J. Mull. bis) Woudenb. & Crous, Alternaria indefessa (E.G. Simmons) Woudenberg & Crous, Alternaria leptinellae (E.G. Simmons & C.F. Hill) Woudenb. & Crous, Alternaria lolii (E.G. Simmons & C.F. Hill) Woudenb. & Crous, Alternaria multiformis (E.G. Simmons) Woudenb. & Crous, Alternaria obclavata (Crous & U. Braun) Woudenb. & Crous, Alternaria obovoidea (E.G. Simmons) Woudenb. & Crous, Alternaria oudemansii (E.G. Simmons) Woudenb. & Crous, Alternaria oxytropis (Q. Wang, Nagao & Kakish.) Woudenb. & Crous, Alternaria penicillata (Corda) Woudenb. & Crous, Alternaria planifunda (E.G. Simmons) Woudenb. & Crous, Alternaria proteae (E.G. Simmons) Woudenb. & Crous, Alternaria scirpinfestans (E.G. Simmons & D.A. Johnson) Woudenb. & Crous, Alternaria scirpivora (E.G. Simmons & D.A. Johnson) Woudenb. & Crous, Alternaria septospora (Preuss) Woudenb. & Crous, Alternaria slovaca (Svob.-Pol., L. Chmel & Bojan.) Woudenb. & Crous, Alternaria subcucurbitae (Yong Wang bis & X.G. Zhang) Woudenb. & Crous, Alternaria tellustris (E.G. Simmons) Woudenb. & Crous, Alternaria tumida (E.G. Simmons) Woudenb. & Crous, Paradendryphiella salina (G.K. Sutherl.) Woudenb. & Crous, Paradendryphiella arenariae (Nicot) Woudenb. & Crous. New names - Alternaria aspera Woudenb. & Crous, Alternaria botryospora Woudenb. & Crous, Alternaria brassicae-pekinensis Woudenb. & Crous, Alternaria breviramosa Woudenb. & Crous, Alternaria chlamydosporigena Woudenb. & Crous, Alternaria concatenata Woudenb. & Crous, Alternaria embellisia Woudenb. & Crous, Alternaria heterospora Woudenb. & Crous, Alternaria papavericola Woudenb. & Crous, Alternaria terricola Woudenb. & Crous. Resurrected names - Alternaria cetera E.G. Simmons, Alternaria chartarum Preuss, Alternaria consortialis (Thüm.) J.W. Groves & S. Hughes, Alternaria cucurbitae Letendre & Roum., Alternaria dennisii M.B. Ellis, Alternaria eureka E.G. Simmons, Alternaria gomphrenae Togashi, Alternaria malorum (Ruehle) U. Braun, Crous & Dugan, Alternaria phragmospora Emden, Alternaria scirpicola (Fuckel) Sivan. New sections, all in Alternaria - sect. Chalastospora Woudenb. & Crous, sect. Cheiranthus Woudenb. & Crous, sect. Crivellia Woudenb. & Crous, sect. Dianthicola Woudenb. & Crous, sect. Embellisia Woudenb. & Crous, sect. Embellisioides Woudenb. & Crous, sect. Eureka Woudenb. & Crous, sect. Infectoriae Woudenb. & Crous, sect. Japonicae Woudenb. & Crous, sect. Nimbya Woudenb. & Crous, sect. Phragmosporae Woudenb. & Crous, sect. Pseudoulocladium Woudenb. & Crous, sect. Teretispora Woudenb. & Crous, sect. Ulocladioides Woudenb. & Crous, sect. Ulocladium Woudenb. & Crous, sect. Undifilum Woudenb. & Crous. New genus - Paradendryphiella Woudenb. & Crous.
Using morphological characters, cultural characters, large subunit and internal transcribed spacer rDNA (ITS) sequences, and provisions of the International Code of Botanical Nomenclature, this paper attempts to resolve the taxonomic and nomenclatural confusion surrounding three species of cladosporium-like hyphomycetes. The type specimen of Hormodendrum resinae, the basis for the use of the epithet resinae for the creosote fungus {either as Hormoconis resinae or Cladosporium resinae) represents the mononematous synanamorph of the synnematous, resinicolous fungus Sorocybe resinae. The phylogenetic relationships of the creosote fungus, which is the anamorph of Amorphotheca resinae, are with the family Myxotrichaceae, whereas S. resinae is related to Capronia (Chaetothyriales, Herpotrichiellaceae). Our data support the segregation of Pycnostysanus azaleae, the cause of bud blast of rhododendrons, in the recently described anamorph genus Seifertia, distinct from Sorocybe; this species is related to the Dothideomycetes but its exact phylogenetic placement is uncertain. To formally stabilize the name of the anamorph of the creosote fungus, conservation of Hormodendrum resinae with a new holotype should be considered. The paraphyly of the family Myxotrichaceae with the Amorphothecaceae suggested by ITS sequences should be confirmed with additional genes.
The present study compares all known species of Cylindrocladium that have clavate vesicles. Several isolates were obtained from baited soils collected in various parts of the world, while others were associated with leaf litter or symptomatic plant hosts. Isolates were compared based on morphology, as well as DNA sequence data from their beta-tubulin and histone gene H3 regions. Cylindrocladium australiense and Cy. ecuadoriae, are described as new species, a decision based on morphology and molecular data. A group of isolates associated with toppling disease of banana in the West Indies is identified as Cy. flexuosum. An epitype is designated for Cy. ilicicola, and a new name, Curvicladiella, proposed to replace the anamorphic genus Curvicladium, which is a homonym.
Unlabelled: The anamorphic genus Phoma was subdivided into nine sections based on morphological characters, and included teleomorphs in Didymella, Leptosphaeria, Pleospora and Mycosphaerella, suggesting the polyphyly of the genus. Recent molecular, phylogenetic studies led to the conclusion that Phoma should be restricted to Didymellaceae. The present study focuses on the taxonomy of excluded Phoma species, currently classified in Phoma sections Plenodomus, Heterospora and Pilosa. Species of Leptosphaeria and Phoma section Plenodomus are reclassified in Plenodomus, Subplenodomus gen. nov., Leptosphaeria and Paraleptosphaeria gen. nov., based on the phylogeny determined by analysis of sequence data of the large subunit 28S nrDNA (LSU) and Internal Transcribed Spacer regions 1 & 2 and 5.8S nrDNA (ITS). Phoma heteromorphospora, type species of Phoma section Heterospora, and its allied species Phoma dimorphospora, are transferred to the genus Heterospora stat. nov. The Phoma acuta complex (teleomorph Leptosphaeria doliolum), is revised based on a multilocus sequence analysis of the LSU, ITS, small subunit 18S nrDNA (SSU), β-tubulin (TUB), and chitin synthase 1 (CHS-1) regions. Species of Phoma section Pilosa and allied Ascochyta species were determined to belong to Pleosporaceae based on analysis of actin (ACT) sequence data. Anamorphs that are similar morphologically to Phoma and described in Ascochyta, Asteromella, Coniothyrium, Plectophomella, Pleurophoma and Pyrenochaeta are included in this study. Phoma-like species, which grouped outside the Pleosporineae based on a LSU sequence analysis, are transferred to the genera Aposphaeria, Paraconiothyrium and Westerdykella. The genera Medicopsis gen. nov. and Nigrograna gen. nov. are introduced to accommodate the medically important species formerly known as Pyrenochaeta romeroi and Pyrenochaeta mackinnonii, respectively. Taxonomic novelties: New genera: Medicopsis Gruyter, Verkley & Crous, Nigrograna Gruyter, Verkley & Crous, Paraleptosphaeria Gruyter, Verkley & Crous, Subplenodomus Gruyter, Verkley & Crous. New species: Aposphaeria corallinolutea Gruyter, Aveskamp & Verkley, Paraconiothyrium maculicutis Verkley & Gruyter. New combinations: Coniothyrium carteri (Gruyter & Boerema) Verkley & Gruyter, C. dolichi (Mohanty) Verkley & Gruyter, C. glycines (R.B. Stewart) Verkley & Gruyter, C. multiporum (V.H. Pawar, P.N. Mathur & Thirum.) Verkley & Gruyter, C. telephii (Allesch.) Verkley & Gruyter, Heterospora (Boerema, Gruyter & Noordel.) Gruyter, Verkley & Crous, H. chenopodii (Westend.) Gruyter, Aveskamp & Verkley, H. dimorphospora (Speg.) Gruyter, Aveskamp & Verkley, Leptosphaeria errabunda (Desm.) Gruyter, Aveskamp & Verkley, L. etheridgei (L.J. Hutchison & Y. Hirats.) Gruyter, Aveskamp & Verkley, L. macrocapsa (Trail) Gruyter, Aveskamp & Verkley, L. pedicularis (Fuckel) Gruyter, Aveskamp & Verkley, L. rubefaciens (Togliani) Gruyter, Aveskamp & Verkley, L. sclerotioides (Sacc.) Gruyter, Aveskamp & Verkley, L. sydowii (Boerema, Kesteren & Loer.) Gruyter, Aveskamp & Verkley, L. veronicae (Hollós) Gruyter, Aveskamp & Verkley, Medicopsis romeroi (Borelli) Gruyter, Verkley & Crous, Nigrograna mackinnonii (Borelli) Gruyter, Verkley & Crous, Paraconiothyrium flavescens (Gruyter, Noordel. & Boerema) Verkley & Gruyter, Paracon. fuckelii (Sacc.) Verkley & Gruyter, Paracon. fusco-maculans (Sacc.) Verkley & Gruyter, Paracon. lini (Pass.) Verkley & Gruyter, Paracon. tiliae (F. Rudolphi) Verkley & Gruyter, Paraleptosphaeria dryadis (Johanson) Gruyter, Aveskamp & Verkley, Paralept. macrospora (Thüm.) Gruyter, Aveskamp & Verkley, Paralept. nitschkei (Rehm ex G. Winter) Gruyter, Aveskamp & Verkley, Paralept. orobanches (Schweinitz: Fr.) Gruyter, Aveskamp & Verkley, Paralept. praetermissa (P. Karst.) Gruyter, Aveskamp & Verkley, Plenodomus agnitus (Desm.) Gruyter, Aveskamp & Verkley, Plen. biglobosus (Shoemaker & H. Brun) Gruyter, Aveskamp & Verkley, Plen. chrysanthemi (Zachos, Constantinou & Panag.) Gruyter, Aveskamp & Verkley, Plen. collinsoniae (Dearn. & House) Gruyter, Aveskamp & Verkley, Plen. confertus (Niessl ex Sacc.) Gruyter, Aveskamp & Verkley, Plen. congestus (M.T. Lucas) Gruyter, Aveskamp & Verkley, Plen. enteroleucus (Sacc.) Gruyter, Aveskamp & Verkley, Plen. fallaciosus (Berl.) Gruyter, Aveskamp & Verkley, Plen. hendersoniae (Fuckel) Gruyter, Aveskamp & Verkley, Plen. influorescens (Boerema & Loer.) Gruyter, Aveskamp & Verkley, Plen. libanotidis (Fuckel) Gruyter, Aveskamp & Verkley, Plen. lindquistii (Frezzi) Gruyter, Aveskamp & Verkley, Plen. lupini (Ellis & Everh.) Gruyter, Aveskamp & Verkley, Plen. pimpinellae (Lowen & Sivan.) Gruyter, Aveskamp & Verkley, Plen. tracheiphilus (Petri) Gruyter, Aveskamp & Verkley, Plen. visci (Moesz) Gruyter, Aveskamp & Verkley, Pleospora fallens (Sacc.) Gruyter & Verkley, Pleo. flavigena (Constantinou & Aa) Gruyter & Verkley, Pleo. incompta (Sacc. & Martelli) Gruyter & Verkley, Pyrenochaetopsis pratorum (P.R. Johnst. & Boerema) Gruyter, Aveskamp & Verkley, Subplenodomus apiicola (Kleb.) Gruyter, Aveskamp & Verkley, Subplen. drobnjacensis (Bubák) Gruyter, Aveskamp & Verkley, Subplen. valerianae (Henn.) Gruyter, Aveskamp & Verkley, Subplen. violicola (P. Syd.) Gruyter, Aveskamp & Verkley, Westerdykella capitulum (V.H. Pawar, P.N. Mathur & Thirum.) de Gruyter, Aveskamp & Verkley, W. minutispora (P.N. Mathur ex Gruyter & Noordel.) Gruyter, Aveskamp & Verkley. New names: Pleospora angustis Gruyter & Verkley, Pleospora halimiones Gruyter & Verkley.
A new pleosporalean family Tetraplosphaeriaceae is established to accommodate five new genera; 1) Tetraplosphaeria with small ascomata and anamorphs belonging to Tetraploa s. str., 2) Triplosphaeria characterised by hemispherical ascomata with rim-like side walls and anamorphs similar to Tetraploa but with three conidial setose appendages, 3) Polyplosphaeria with large ascomata surrounded by brown hyphae and anamorphs producing globose conidia with several setose appendages, 4) Pseudotetraploa, an anamorphic genus, having obpyriform conidia with pseudosepta and four to eight setose appendages, and 5) Quadricrura, an anamorphic genus, having globose conidia with one or two long setose appendages at the apex and four to five short setose appendages at the base. Fifteen new taxa in these genera mostly collected from bamboo are described and illustrated. They are linked by their Tetraploa s. l. anamorphs. To infer phylogenetic placement in the Pleosporales, analyses based on a combined dataset of small- and large-subunit nuclear ribosomal DNA (SSU+LSU nrDNA) was carried out. Tetraplosphaeriaceae, however, is basal to the main pleosporalean clade and therefore its relationship with other existing families was not completely resolved. To evaluate the validity of each taxon and to clarify the phylogenetic relationships within this family, further analyses using sequences from ITS-5.8S nrDNA (ITS), transcription elongation factor 1-α (TEF), and β-tubulin (BT), were also conducted. Monophyly of the family and that of each genus were strongly supported by analyses based on a combined dataset of the three regions (ITS+TEF+BT). Our results also suggest that Tetraplosphaeria (anamorph: Tetraploa s. str.) is an ancestral lineage within this family. Taxonomic placement of the bambusicolous fungi in Astrosphaeriella, Kalmusia, Katumotoa, Massarina, Ophiosphaerella, Phaeosphaeria, Roussoella, Roussoellopsis, and Versicolorisporium, are also discussed based on the SSU+LSU phylogeny.
Morphological studies and phylogenetic analyses of DNA sequences from the internal transcribed spacer (ITS) regions of the nuclear ribosomal gene repeat, a partial sequence of RNA polymerase II subunit (rpb2), and a partial sequence of the large exon of tef1 (LEtef1) were used to investigate the taxonomy and systematics of nine Hypocrea species with anamorphs assignable to Trichoderma sect. Hypocreanum. Hypocrea corticioides and H. sulphurea are reevaluated. Their Trichoderma anamorphs are described and the phylogenetic positions of these species are determined. Hypocrea sulphurea and H. subcitrina are distinct species based on studies of the type specimens. Hypocrea egmontensis is a facultative synonym of the older name H. subcitrina. Hypocrea with anamorphs assignable to Trichoderma sect. Hypocreanum formed a well-supported clade. Five species with anamorphs morphologically similar to sect. Hypocreanum, H. avellanea, H. parmastoi, H. megalocitrina, H. alcalifuscescens, and H. pezizoides, are not located in this clade. Protocrea farinosa belongs to Hypocrea s.s.
Species of Eucalyptus are widely planted as exotics in the tropics and Southern Hemisphere and to some extent in southern Europe, for timber and fibre production. Species of Mycosphaerella are commonly associated with leaves and twigs of Eucalyptus and can result in defoliation, dieback, and even tree death. In the present study, numerous isolates of Mycosphaerella species were collected from leaf litter, living leaves exhibiting leaf spot symptoms or severe Mycosphaerella leaf blotch symptoms. Isolates were compared based on DNA sequence data for the internal transcribed spacer region (ITS1 & ITS2) and the 5.8S gene. These data, together with characteristics of the fungal growth on three different media, morphology of the anamorph and teleomorph structures as well as ascospore germination patterns were used to describe 21 new species.
A revision of Fusarium-like species associated with the plant genus Buxus led to a reconsideration of generic concepts in the Fusarium clade of the Nectriaceae. Phylogenetic analyses of the partial second largest subunit of the RNA polymerase II (rpb2) and the larger subunit of the ATP citrate lyase (acl1) gene exons confirm the existence of a clade, here called the terminal Fusarium clade, that includes genera such as Fusariumsensu stricto (including its Gibberella teleomorphs), Albonectria, Cyanonectria, "Haematonectria", the newly described genus Geejayessia, and "Nectria" albida. Geejayessia accommodates five species. Four were previously classified in Nectria sensu lato, namely the black perithecial, KOH-species G. atrofusca and the orange or reddish, KOH+ G. cicatricum, G. desmazieri and G. zealandica.Geejayessia celtidicola is newly described. Following our phylogenetic analyses showing its close relationship with Cyanonectria cyanostoma, the former Gibbera buxi is recombined as the second species of Cyanonectria. A three gene phylogenetic analysis of multiple strains of each morphological species using translation elongation factor 1 α (tef-1), rpb2 and acl1 gene exons and introns confirms their status as distinct phylogenetic species. Internal transcribed spacer of the ribosomal RNA gene cluster and nuclear large ribosomal subunit sequences were generated as additional DNA barcodes for selected strains. The connection of Fusarium buxicola, often erroneously reported as the anamorph of G. desmazieri, with the bluish black and KOH+ perithecial species C. buxi is reinstated. Most Cyanonectria and Geejayessia species exhibit restricted host ranges on branches or twigs of Buxus species, Celtisoccidentalis, or Staphyleatrifolia. Their perithecia form caespitose clusters on well-developed, mostly erumpent stromata on the bark or outer cortex of the host and are relatively thin-walled, mostly smooth, and therefore reminiscent of the more or less astromatous, singly occurring perithecia of Cosmospora, Dialonectria, and Microcera. The cell walls in outer- and inner layers of the perithecial walls of Cyanonectria and Geejayessia have inconspicuous pore-like structures, as do representative species of Albonectria, Fusarium sensu stricto, "Haematonectria", and "Nectria" albida. The taxonomic significance of these structures, which we call Samuels' pores, is discussed.
Three-locus phylogeny of the Pezizomycotina obtained from a
 Bayesian MCMC analysis depicting ancestral state reconstruction of
 lichenisation. Thick branches represent nodes supported by PP ≥ 95 % and ML
 bootstrap ≥ 70 % (see Table
 1 for numerical values). Boxes after each name indicate the state
 for each extant taxon (white box = non-lichenised, green box = lichenised).
 Posterior probabilities for each of the two states are represented in pie
 charts at each reconstructed node (numbered from 1 to 23). Additional
 information for these 23 nodes is provided in
 Table 1.
Four-locus phylogeny of the Eurotiomycetes obtained from a
 Bayesian MCMC analysis depicting ancestral state reconstruction of the
 rock-dwelling habit. Thick branches represent nodes supported by PP ≥ 95 %
 and ML bootstrap ≥ 70 % (see Table
 2 for numerical values). Boxes after each name indicate the state
 for each extant taxon (white box = non rock substrate, blue box = rock
 substrate). Posterior probabilities for each of the two states are represented
 in pie charts at each reconstructed node (numbered from 1 to 28). Additional
 information for these 28 nodes is provided in
 Table 2.
Rock surfaces are unique terrestrial habitats in which rapid changes in the intensity of radiation, temperature, water supply and nutrient availability challenge the survival of microbes. A specialised, but diverse group of free-living, melanised fungi are amongst the persistent settlers of bare rocks. Multigene phylogenetic analyses were used to study relationships of ascomycetes from a variety of substrates, with a dataset including a broad sampling of rock dwellers from different geographical locations. Rock-inhabiting fungi appear particularly diverse in the early diverging lineages of the orders Chaetothyriales and Verrucariales. Although these orders share a most recent common ancestor, their lifestyles are strikingly different. Verrucariales are mostly lichen-forming fungi, while Chaetothyriales, by contrast, are best known as opportunistic pathogens of vertebrates (e.g. Cladophialophora bantiana and Exophiala dermatitidis, both agents of fatal brain infections) and saprophytes. The rock-dwelling habit is shown here to be key to the evolution of these two ecologically disparate orders. The most recent common ancestor of Verrucariales and Chaetothyriales is reconstructed as a non-lichenised rock-inhabitant. Ancestral state reconstructions suggest Verrucariales as one of the independent ascomycetes group where lichenisation has evolved on a hostile rock surface that might have favored this shift to a symbiotic lifestyle. Rock-inhabiting fungi are also ancestral to opportunistic pathogens, as they are found in the early diverging lineages of Chaetothyriales. In Chaetothyriales and Verrucariales, specific morphological and physiological traits (here referred to as extremotolerance) evolved in response to stresses in extreme conditions prevailing on rock surfaces. These factors facilitated colonisation of various substrates including the brains of vertebrates by opportunistic fungal pathogens, as well as helped establishment of a stable lichen symbiosis.
Several taxa that share similar ascomatal and ascospore characters occur in monotypic or small genera throughout the Sordariomycetidae with uncertain relationships based on their morphology. Taxa in the genera Duradens, Leptosporella, Linocarpon, and Rimaconus share similar morphologies of conical ascomata, carbonised peridia and elongate ascospores, while taxa in the genera Caudatispora, Erythromada and Lasiosphaeriella possess clusters of superficial, obovoid ascomata with variable ascospores. Phylogenetic analyses of 28S large-subunit nrDNA sequences were used to test the monophyly of these genera and provide estimates of their relationships within the Sordariomycetidae. Rimaconus coronatus is described as a new species from New Zealand; it clusters with the type species, R. jamaicensis. Leptosporella gregaria is illustrated and a description is provided for this previously published taxon that is the type species and only sequenced representative of the genus. Both of these genera occur in separate, well-supported clades among taxa that form unsupported groups near the Chaetosphaeriales and Helminthosphaeriaceae. Lasiosphaeriella and Linocarpon appear to be polyphyletic with species occurring in several clades throughout the subclass. Caudatispora and Erythromada represented by single specimens and two putative Duradens spp. have unclear affinities in the Sordariomycetidae.
A. Co-culture on LB medium of Rhinocladiella sp. and Trebouxia sp. both isolated from Lecanora muralis, Bar = 1 mm; B. Thallus of Lecanora muralis showing symptoms of black fungal infection, Bar = 1 mm.
MP phylogenetic hypotheses based on ITS sequences of the black fungal genera Capnobotryella (a), Cladophialophora (b), Coniosporium (c), Mycosphaerella (d), and Rhinocladiella (e). Sequences obtained in this study are shown in bold, the isolation sources are written in parentheses, and yellow ellipses highlight the clades they form. Trees are unrooted, bootstrap cut-offs higher then 75% are reported.
We present a phylogenetic study of black fungi in lichens, primarily focusing on saxicolous samples from seasonally arid habitats in Armenia, but also with examples from other sites. Culturable strains of lichen-associated black fungi were obtained by isolation from surface-washed lichen material. Determination is based on ITS rDNA sequence data and comparison with published sequences from other sources. The genera Capnobotryella, Cladophialophora, Coniosporium, Mycosphaerella, and Rhinocladiella were found in different lichen species, which showed no pathogenic symptoms. A clade of predominantly lichen-associated strains is present only in Rhinocladiella, whereas samples of the remaining genera were grouped more clearly in clades with species from other sources. The ecology of most-closely related strains indicates that Capnobotryella and Coniosporium, and perhaps also Rhinocladiella strains opportunistically colonise lichens. In contrast, high sequence divergence in strains assigned to Mycosphaerella could indicate the presence of several lichen-specific species with unknown range of hosts or habitats, which are distantly related to plant-inhabitants. Similar applies to Cladophialophora strains, where the closest relatives of the strains from lichens are serious human pathogens.
Multiple tolerance to stressful environmental conditions of the black, yeast-like fungus Aureobasidium pullulans is achieved through different adaptations, among which there is the restructuring of the lipid composition of their membranes. Here, we describe three novel genes encoding fatty-acid-modifying enzymes in A. pullulans, along with the levels of their mRNAs under different salinity conditions. High levels of Delta(9)-desaturase and Delta(12)-desaturase mRNAs were seen at high salinities, which were consistent with an increased desaturation of the fatty acids in the cell membranes. Elevated levels of elongase mRNA were also detected. Surprisingly, increases in the levels of these mRNAs were also seen following hypo-osmotic shock, while hyperosmotic shock had exactly the opposite effect, demonstrating that data that are obtained from up-shift and down-shift salinity studies should be interpreted with caution.
Two new pathogens, Guignardia korthalsellae and Rosenscheldiella korthalsellae, are described from New Zealand's pygmy mistletoes (Korthalsella, Viscaceae). Both form ascomata on living phylloclades with minimal disruption of the tissue. Fungal hyphae within the phylloclade are primarily intercellular. Guignardia korthalsellae disrupts a limited number of epidermal cells immediately around the erumpent ascoma, while the ascomata of Rosenscheldiellakorthalsellae develop externally on small patches of stromatic tissue that form above stomatal cavities. Rosenscheldiella is applied in a purely morphological sense. LSU sequences show that R. korthalsellae as well as another New Zealand species, Rosenscheldiella brachyglottidis, are members of the Mycosphaerellaceaesensu stricto. Genetically, Rosenscheldiella, in the sense we are using it, is polyphyletic; LSU and ITS sequences place the two New Zealand species in different clades within the Mycosphaerellaceae. Rosenscheldiella is retained for these fungi until generic relationships within the family are resolved. Whether or not the type species of Rosenscheldiella, R. styracis, is also a member of the Mycosphaerellaceae is not known, but it has a similar morphology and relationship to its host as the two New Zealand species.
The classification of Pleosporales has posed major challenges due to the lack of clear understanding of the importance of the morphological characters used to distinguish between different groups in the order. This has resulted in varied taxonomic treatments of many families in the group including Melanommataceae and Lophiostomataceae. In this study we employ two nuclear DNA gene markers, nuclear ribosomal large subunit DNA and translation elongation factor 1-alpha in order to examine the molecular phylogenetics of Pleosporales with strong emphasis on the families Melanommataceae and Lophiostomataceae. Phylogenetic analyses recovered Melanommataceae, Lophiostomataceae, Hypsostromataceae, and a few others as strongly supported clades within the Pleosporales. Melanommataceae as currently circumscribed was found to be polyphyletic. The genera Byssosphaeria, Melanomma, and Pseudotrichia were recovered within the family, while others such as Ostropella and Xenolophium nested outside in a weakly supported group along with Platystomum compressum and Pseudotrichia guatopoensis that may correspond to the family Platystomaceae. The genus Byssosphaeria was recovered as a strongly supported group within the Melanommataceae while Melanomma was weakly supported with unclear relationships among the species. The genera Herpotrichia and Bertiella were also found to belong in the Melanommataceae. Lophiostomataceae occurs as a strongly supported group but its concept is here expanded to include a new genus Misturatosphaeria that bears morphology traditionally not known to occur in the family. The strongly supported clade of Misturatosphaeria contains nine species that have gregarious, papillate ascomata with lighter coloured apices and plugged ostioles and that vary in ascospore morphology from 1- to 3-septate to muriform. Along with a strongly supported Lophiostoma clade, also within the family are Thyridaria macrostomoides based on new sequences from Kenyan collections and Massariosphaeria triseptata, M. grandispora, Westerdykella cylindrica and Preussia terricola based on GenBank sequences. The family Hypsostromataceae was recovered as a strongly supported monophyletic group nested within the Pleosporales.
Wild type Aspergillus niger isolates from different biotopes from all over the world were compared to each other and to the type strains of other black Aspergillus species with respect to growth and extracellular enzyme profiles. The origin of the A. niger isolate did not result in differences in growth profile with respect to monomeric or polymeric carbon sources. Differences were observed in the growth rate of the A. niger isolates, but these were observed on all carbon sources and not specific for a particular carbon source. In contrast, carbon source specific differences were observed between the different species. Aspergillus brasiliensis is the only species able to grow on D-galactose, and A. aculeatus had significantly better growth on Locus Bean gum than the other species. Only small differences were found in the extracellular enzyme profile of the A. niger isolates during growth on wheat bran, while large differences were observed in the profiles of the different black aspergilli. In addition, differences were observed in temperature profiles between the black Aspergillus species, but not between the A. niger isolates, demonstrating no isolate-specific adaptations to the environment. These data indicate that the local environment does not result in stable adaptations of A. niger with respect to growth profile or enzyme production, but that the potential is maintained irrespective of the environmental parameters. It also demonstrates that growth, extracellular protein and temperature profiles can be used for species identification within the group of black aspergilli.
The present taxonomy of the black aspergilli reveals that there are 19 accepted taxa. However the identification of species of Aspergillus section Nigri is often problematic in spite of the existence of numerous methods proposed. An overview is provided of phenotypic and molecular methods to identify the accepted species of the black aspergilli. Colony morphology, conidial size and ornamentation of the ex type cultures is presented in a pictorial overview. The temperature range of all species is given and their growth characteristics on creatine agar and boscalid agar, a medium which was developed as a selective medium for the isolation of A. carbonarius are also shown. The extrolites produced by each species are listed while the response of the Ehrlich reaction is described. The literature on the various molecular methods to be used for species identification is reviewed and a critical evaluation of the usefulness of various techniques and genomic loci for species identification of black aspergilli is presented.
Major characteristics and genetic diversity of the Aspergillus genomes.
Percent identity of the Aspergillus genomes at the genome, gene and protein level.
Gene expression analysis and of chromosome 6 of A. oryzae. Expression levels (A) and induction ratios (B) of all the genes in chromosome 6 are shown. The A. oryzae mycelia used in the oligonucleotide microarray analysis were incubated at 42 °C, using as a reference a mycelium incubated at 30 °C. Light blue bars indicate genomic regions (blocks) of A. oryzae that are absent in A. fumigatus and A. nidulans. The scale of the vertical axis is logarithmic.
Functional characterisation of strain- and species-specific A. fumigatus genes. (A) Functional characterisation of 88 A. fumigatus strain Af293-specific genes absent in strain A1163; (B) Functional characterisation of 70 A. fumigatus strain A1163-specific genes absent in strain Af293; (C) Functional characterisation of 322 A. fumigatus strain Af293-specific genes absent in N. fischeri. Only the ten largest functional categories are shown and genes of unknown function are excluded.
Understanding the nature of species" boundaries is a fundamental question in evolutionary biology. The availability of genomes from several species of the genus Aspergillus allows us for the first time to examine the demarcation of fungal species at the whole-genome level. Here, we examine four case studies, two of which involve intraspecific comparisons, whereas the other two deal with interspecific genomic comparisons between closely related species. These four comparisons reveal significant variation in the nature of species boundaries across Aspergillus. For example, comparisons between A. fumigatus and Neosartorya fischeri (the teleomorph of A. fischerianus) and between A. oryzae and A. flavus suggest that measures of sequence similarity and species-specific genes are significantly higher for the A. fumigatus - N. fischeri pair. Importantly, the values obtained from the comparison between A. oryzae and A. flavus are remarkably similar to those obtained from an intra-specific comparison of A. fumigatus strains, giving support to the proposal that A. oryzae represents a distinct ecotype of A. flavus and not a distinct species. We argue that genomic data can aid Aspergillus taxonomy by serving as a source of novel and unprecedented amounts of comparative data, as a resource for the development of additional diagnostic tools, and finally as a knowledge database about the biological differences between strains and species.
Aspergillus section Clavati has been revised using morphology, secondary metabolites, physiological characters and DNA sequences. Phylogenetic analysis of beta-tubulin, ITS and calmodulin sequence data indicated that Aspergillus section Clavati includes 6 species, A. clavatus (synonyms: A. apicalis, A. pallidus), A. giganteus, A. rhizopodus, A. longivesica, Neocarpenteles acanthosporus and A. clavatonanicus. Neocarpenteles acanthosporus is the only known teleomorph of this section. The sister genera to Neocarpenteles are Neosartorya and Dichotomomyces based on sequence data. Species in Neosartorya and Neocarpenteles have anamorphs with green conidia and share the production of tryptoquivalins, while Dichotomomyces was found to be able to produce gliotoxin, which is also produced by some Neosartorya species, and tryptoquivalines and tryptoquivalones produced by members of both section Clavati and Fumigati. All species in section Clavati are alkalitolerant and acidotolerant and they all have clavate conidial heads. Many species are coprophilic and produce the effective antibiotic patulin. Members of section Clavati also produce antafumicin, tryptoquivalines, cytochalasins, sarcins, dehydrocarolic acid and kotanins (orlandin, desmethylkotanin and kotanin) in species specific combinations. Another species previously assigned to section Clavati, A. ingratus is considered a synonym of Hemicarpenteles paradoxus, which is phylogenetically very distantly related to Neocarpenteles and section Clavati.
Section Terrei of Aspergillus was studied using a polyphasic approach including sequence analysis of parts of the β-tubulin and calmodulin genes and the ITS region, macro- and micromorphological analyses and examination of extrolite profiles to describe three new species in this section. Based on phylogenetic analysis of calmodulin and β-tubulin sequences seven lineages were observed among isolates that have previously been treated as A. terreus and its subspecies by Raper & Fennell (1965) and others. Aspergillus alabamensis, A. terreus var. floccosus, A. terreus var. africanus, A. terreus var. aureus, A. hortai and A. terreus NRRL 4017 all represent distinct lineages from the A. terreus clade. Among them, A. terreus var. floccosus, A. terreus NRRL 4017 and A. terreus var. aureus could also be distinguished from A. terreus by using ITS sequence data. New names are proposed for A. terreus var. floccosus, A. terreus var. africanus, A. terreus var. aureus, while Aspergillus hortai is recognised at species level. Aspergillus terreus NRRL 4017 is described as the new species A. pseudoterreus. Also included in section Terrei are some species formerly placed in sections Flavipedes and Versicolores. A. clade including the type isolate of A. niveus (CBS 115.27) constitutes a lineage closely related to A. carneus. Fennellia nivea, the hypothesized teleomorph is not related to this clade. Aspergillus allahabadii, A. niveus var. indicus, and two species originally placed in section Versicolores, A. ambiguus and A. microcysticus, also form well-defined lineages on all trees. Species in Aspergillus section Terrei are producers of a diverse array of secondary metabolites. However, many of the species in the section produce different combinations of the following metabolites: acetylaranotin, asperphenamate, aspochalamins, aspulvinones, asteltoxin, asterric acid, asterriquinones, aszonalenins, atrovenetins, butyrolactones, citreoisocoumarins, citreoviridins, citrinins, decaturins, fulvic acid, geodins, gregatins, mevinolins, serantrypinone, terreic acid (only the precursor 3,6-dihydroxytoluquinone found), terreins, terrequinones, terretonins and territrems. The cholesterol-lowering agent mevinolin was found in A. terreus and A. neoafricanus only. The hepatotoxic extrolite citrinin was found in eight species: A. alabamensis, A. allahabadii, A. carneus, A. floccosus, A. hortai, A. neoindicus, A. niveus and A. pseudoterreus. The neurotoxic extrolite citreoviridin was found in five species: A. neoafricanus, A. aureoterreus, A. pseudoterreus, A. terreus and A. neoniveus. Territrems, tremorgenic extrolites, were found in some strains of A. alabamensis and A. terreus.
The taxonomy of Aspergillus section Fumigati with its teleomorph genus Neosartorya is revised. The species concept is based on phenotypic (morphology and extrolite profiles) and molecular (β-tubulin and calmodulin gene sequences) characters in a polyphasic approach. Four new taxa are proposed: N. australensis N. ferenczii, N. papuaensis and N. warcupii. All newly described and accepted species are illustrated. The section consists of 33 taxa: 10 strictly anamorphic Aspergillus species and 23 Neosartorya species. Four other Neosartorya species described previously were not available for this monograph, and consequently are relegated to the category of doubtful species.
Black pigmented conidia of give rise to micro-colonies when incubated in liquid shaken medium. These micro-colonies are heterogeneous with respect to gene expression and size. We here studied the biophysical properties of the conidia of a control strain and of strains in which the or gene is inactivated. These strains form fawn-, olive-, and brown-coloured conidia, respectively. The Δ strain produced larger conidia (3.8 μm) when compared to the other strains (3.2-3.3 μm). Moreover, the conidia of the Δ strain were highly hydrophilic, whereas those of the other strains were hydrophobic. The zeta potential of the Δ conidia in medium was also more negative when compared to the control strain. This was accompanied by the near absence of a rodlet layer of hydrophobins. Using the Complex Object Parametric Analyzer and Sorter it was shown that the ratio of individual hyphae and micro-colonies in liquid shaken cultures of the deletion strains was lower when compared to the control strain. The average size of the micro-colonies of the control strain was also smaller (628 μm) than that of the deletion strains (790-858 μm). The size distribution of the micro-colonies of the Δ strain was normally distributed, while that of the other strains could be explained by assuming a population of small and a population of large micro-colonies. In the last set of experiments it was shown that relative expression levels of and AmyR and XlnR regulated genes correlate in individual hyphae at the periphery of micro-colonies. This indicates the existence of transcriptionally and translationally highly active and lowly active hyphae as was previously shown in macro-colonies. However, the existence of distinct populations of hyphae with high and low transcriptional and translational activity seems to be less robust when compared to macro-colonies grown on solid medium.
The nomenclature of Aspergillus is important in many fields of research and therefore the strategies for stable and efficient naming are important. The conservation of species names as accepted by the Aspergillus community is described. Published lists of accepted names provide that people who use Aspergillus and Penicillium taxonomies need no longer fear the overturning of names currently used. Aspergillus is a good example of a genus where the naming of both anamorph and teleomorph has been applied and arguments are given for maintaining the system of dual nomenclature. A protocol for describing new taxa in Aspergillus and their teleomorphs is proposed, including the availability of living ex type cultures, deposit of type cultures in at least two recognised culture collections, deposits of sequence data in specialised data bases and registration of the new names in MycoBank.
Four new species, Aspergillus eucalypticola, A. neoniger, A. fijiensis and A. indologenus are described and illustrated. Aspergillus eucalypticola was isolated from Eucalyptus leaf from Australia, and is related to A. tubingensis and A. costaricaensis, but could clearly be distinguished from them based on either β-tubulin or calmodulin sequence data. Aspergillus eucalypticola produced pyranonigrin A, funalenone, aurasperone B and other naphtho-γ-pyrones. Aspergillus neoniger is also a biseriate species isolated from desert sand in Namibia, and mangrove water in Venezuela, which produces aurasperone B and pyranonigrin A. Aspergillus fijiensis is a uniseriate species related to A. aculeatinus, and was isolated from soil in Fiji, and from Lactuca sativa in Indonesia. This species is able to grow at 37 °C, and produces asperparalines and okaramins. Aspergillus indologenus was isolated from soil, India. This species also belongs to the uniseriate group of black aspergilli, and was found to be related to, but clearly distinguishable from A. uvarum based on β-tubulin, calmodulin and ITS sequence data. Aspergillus indologenus produced the insecticidal compounds okaramins A, B, H, and two types of indol-alkaloids which have not been structure elucidated. Two other species, A. violaceofuscus and A. acidus, are revalidated based on molecular and extrolite data. Aspergillus violaceofuscus was found to be related to A. japonicus, and produced some of the same interesting indol-alkaloids as A. indologenus, and also produced several families of partially characterised extrolites that were also found in A. heteromorphus. Aspergillus acidus (previously known as A. foetidus var. pallidus and A. foetidus var. acidus) is also a valid species, while A. foetidus is a synonym of A. niger based on molecular and physiological data. Two other species described previously, A. coreanus and A. lacticoffeatus, were found to be colour mutants of A. acidus and A. niger, respectively. Methods which could be used to distinguish the two closely related and economically important species A. niger and A. awamori are also detailed. Although these species differ in their occurrence and several physiological means (elastase activities, abilities to utilise 2-deoxy-D-glucose as sole carbon source), our data indicate that only molecular approaches including sequence analysis of calmodulin or β-tubulin genes, AFLP analysis, UP-PCR analysis or mtDNA RFLP analysis can be used reliably to distinguish these sibling species. Aspergillus section Nigri now includes 26 taxa.
Phylogenetic tree of Aspergillus section Fumigati species
 inferred from Neighbour-Joining analysis of partial β-tubulin gene
 sequence. The shaded species have been reported from clinical environment.
Correlation among phylogeny, detailed morphology and maximal growth
 temperatures on Aspergillus section Fumigati. The letters L
 and M refer to the conidial ornamentation as observed by scanning electron
Scanning electronmicroscopy of ascospores of Emericella species.
 A. E. nidulans. B. E. echinulata. C. E.
 quadrilineata. D. E. rugulosa. Scale bars = 5 μm.
Multiple recent studies have demonstrated the limited utility of morphological methods used singly for species identification of clinically relevant aspergilli. It is being increasingly recognised that comparative sequence based methods used in conjunction with traditional phenotype based methods can offer better resolution of species within this genus. Recognising the growing role of molecular methods in species recognition, the recently convened international working group meeting entitled "Aspergillus Systematics in the Genomic Era" has proposed several recommendations that will be useful in such endeavors. Specific recommendations of this working group include the use of the ITS regions for inter section level identification and the beta-tubulin locus for identification of individual species within the various Aspergillus sections.
Aspergillus section Candidi historically included a single white-spored species, A. candidus. Later studies clarified that other species may also belong to this section. In this study, we examined isolates of species tentatively assigned to section Candidi using a polyphasic approach. The characters examined include sequence analysis of partial beta-tubulin, calmodulin and ITS sequences of the isolates, morphological and physiological tests, and examination of the extrolite profiles. Our data indicate that the revised section Candidi includes 4 species: A. candidus, A. campestris, A. taichungensis and A. tritici. This is strongly supported by all the morphological characteristics that are characteristic of section Candidi: slow growing colonies with globose conidial heads having white to yellowish conidia, conidiophores smooth, small conidiophores common, metulae present and covering the entire vesicle, some large Aspergillus heads with large metulae, presence of diminutive heads in all species, conidia smooth or nearly so with a subglobose to ovoid shape, and the presence of sclerotia in three species (A. candidus, A. taichungensis and A. tritici). Aspergillus tritici has been suggested to be the synonym of A. candidus previously, however, sequence data indicate that this is a valid species and includes isolates came from soil, wheat grain, flour and drums from India, Ghana, Sweden, The Netherlands and Hungary, making it a relatively widespread species. All species produce terphenyllins and candidusins and three species (A. candidus, A. campestris and A. tritici) produce chlorflavonins. Xanthoascins have only been found in A. candidus. Each of the species in section Candidi produce several other species specific extrolites, and none of these have been found in any other Aspergillus species. A. candidus has often been listed as a human pathogenic species, but this is unlikely as this species cannot grow at 37 degrees C. The pathogenic species may be A. tritici or white mutants of Aspergillus flavus.
Based on phylogenetic analysis of sequence data, Aspergillus section Usti includes 21 species, inclucing two teleomorphic species Aspergillus heterothallicus (= Emericella heterothallica) and Fennellia monodii. Aspergillus germanicus sp. nov. was isolated from indoor air in Germany. This species has identical ITS sequences with A. insuetusCBS 119.27, but is clearly distinct from that species based on β-tubulin and calmodulin sequence data. This species is unable to grow at 37 °C, similarly to A. keveii and A. insuetus. Aspergillus carlsbadensis sp. nov. was isolated from the Carlsbad Caverns National Park in New Mexico. This taxon is related to, but distinct from a clade including A. calidoustus, A. pseudodeflectus, A. insuetus and A. keveii on all trees. This species is also unable to grow at 37 °C, and acid production was not observed on CREA. Aspergillus californicus sp. nov. is proposed for an isolate from chamise chaparral (Adenostoma fasciculatum) in California. It is related to a clade including A. subsessilis and A. kassunensis on all trees. This species grew well at 37 °C, and acid production was not observed on CREA. The strain CBS 504.65 from soil in Turkey showed to be clearly distinct from the A. deflectus ex-type strain, indicating that this isolate represents a distinct species in this section. We propose the name A. turkensis sp. nov. for this taxon. This species grew, although rather restrictedly at 37 °C, and acid production was not observed on CREA. Isolates from stored maize, South Africa, as a culture contaminant of Bipolaris sorokiniana from indoor air in Finland proved to be related to, but different from A. ustus and A. puniceus. The taxon is proposed as the new species A. pseudoustus. Although supported only by low bootstrap values, F. monodii was found to belong to section Usti based on phylogenetic analysis of either loci BLAST searches to the GenBank database also resulted in closest hits from section Usti. This species obviously does not belong to the Fennellia genus, instead it is a member of the Emericella genus. However, in accordance with the guidelines of the Amsterdam Declaration on fungal nomenclature (Hawksworth et al. 2011), and based on phylogenetic and physiological evidence, we propose the new combination Aspergillus monodii comb. nov. for this taxon. Species assigned to section Usti can be assigned to three chemical groups based on the extrolites. Aspergillus ustus, A. granulosus and A. puniceus produced ustic acid, while A. ustus and A. puniceus also produced austocystins and versicolorins. In the second chemical group, A. pseudodeflectus produced drimans in common with the other species in this group, and also several unique unknown compounds. Aspergillus calidoustus isolates produced drimans and ophiobolins in common with A. insuetus and A. keveii, but also produced austins. Aspergillus insuetus isolates also produced pergillin while A. keveii isolates produced nidulol. In the third chemical group, E. heterothallica has been reported to produce emethallicins, 5'-hydroxyaveranthin, emeheterone, emesterones, 5'-hydroxyaveranthin.
Neighbour-joining tree based on cox1 sequences of the A. niger
 aggregate. Aspergillus ellipticus
 CBS 482.65 was used
 as outgroup. Bootstrap values above 50 % are shown on the branches.
 Partial cox1 sequences of the examined isolates have been deposited
 in the GenBank database under accession numbers EU021012-EU021046.
The species recognition and identification of aspergilli and their teleomorphs is discussed. A historical overview of the taxonomic concepts starting with the monograph of Raper & Fennell (1965) is given. A list of taxa described since 2000 is provided. Physiological characters, particularly growth rates and the production of extrolites, often show differences that reflect phylogenetic species boundaries and greater emphasis should be placed on extrolite profiles and growth characteristics in species descriptions. Multilocus sequence-based phylogenetic analyses have emerged as the primary tool for inferring phylogenetic species boundaries and relationships within subgenera and sections. A four locus DNA sequence study covering all major lineages in Aspergillus using genealogical concordance theory resulted in a species recognition system that agrees in part with phenotypic studies and reveals the presence of many undescribed species not resolved by phenotype. The use of as much data from as many sources as possible in making taxonomic decisions is advocated. For species identification, DNA barcoding uses a short genetic marker in an organism"s DNA to quickly and easily identify it to a particular species. Partial cytochrome oxidase subunit 1 sequences, which are used for barcoding animal species, were found to have limited value for species identification among black aspergilli. The various possibilities are discussed and at present partial beta-tubulin or calmodulin are the most promising loci for Aspergillus identification. For characterising Aspergillus species one application would be to produce a multilocus phylogeny, with the goal of having a firm understanding of the evolutionary relationships among species across the entire genus. DNA chip technologies are discussed as possibilities for an accurate multilocus barcoding tool for the genus Aspergillus.
Top-cited authors
Pedro W Crous
  • Westerdijk Fungal Biodiversity Institute
Robert A Samson
  • Westerdijk Institute - Royal Netherlands Academy of Arts and Sciences
Jens Frisvad
  • Technical University of Denmark
Jos Houbraken
  • Westerdijk Fungal Biodiversity Institute
J.Z. Groenewald
  • Westerdijk Fungal Biodiversity Institute