Progress in Retinal and Eye Research

Published by Elsevier
Online ISSN: 1350-9462
Publications
Article
Proliferative vitreoretinopathy (PVR) is still a major cause of failure of retinal detachment surgery. Despite a dramatic increase in our pathobiologic knowledge of PVR during the last 10 years, little of this information has been used to modify the surgical management of the disease, and, thus, the anatomic and functional results are still unsatisfactory. Collaborative research involving clinicians and basic researchers must be encouraged. PVR must be considered a multifactorial disease caused by interaction of several cells and intra- and extraocular factors. Therefore, therapeutic options based on the inhibition of one factor or phenomenon may be regarded with scepticism. To prevent PVR, it is necessary to determine the factors involved in its development, and because of its relatively small prevalence, large, prospective, multicenter studies seem necessary. In addition, clinical research must not be underestimated. PVR affects both sides of the retina and the retina itself, a point to which little attention has been paid and that is critical for surgical results. Therefore, a new classification that provides information about clinical relevance, such as the evolutionary stages of the disease (biologic activity) and the degree of surgical difficulty (location of the fibrotic process), seems necessary.
 
Article
The human visual system can discriminate increment and decrement light stimuli over a wide range of ambient illumination; from moonlight to bright sunlight. Several mechanisms contribute to this property but the major ones reside in the retina and more specifically within the photoreceptors themselves. Numerous studies in retinae from cold- and warm-blooded vertebrates have demonstrated the ability of the photoreceptors to respond in a graded manner to light increments and decrements even if these are applied during a background illumination that is expected to saturate the cells. In all photoreceptors regardless of type and species, three cellular mechanisms have been identified that contribute to background desensitization and light adaptation. These gain controlling mechanisms include; response-compression due to the non-linearity of the intensity-response function, biochemical modulation of the phototransduction process and pigment bleaching. The overall ability of a photoreceptor to adapt to background lights reflects the relative contribution of each of these mechanisms and the light intensity range over which they operate. In rods of most species, response-compression tends to dominate these mechanisms at light levels too weak to cause significant pigment bleaching and therefore, rods exhibit saturation. In contrast, cones are characterized by powerful background-induced modulation of the phototransduction process at moderate to bright background intensities where pigment bleaching becomes significant.Therefore, cones do not exhibit saturation even when the level of ambient illumination is raised by 6-7 log units.
 
Article
Three different aspects of the morphological organisation of deep-sea fish retinae are reviewed: First, questions of general cell biological relevance are addressed with respect to the development and proliferation patterns of photoreceptors, and problems associated with the growth of multibank retinae, and with outer segment renewal are discussed in situations where there is no direct contact between the retinal pigment epithelium and the tips of rod outer segments. The second part deals with the neural portion of the deep-sea fish retina. Cell densities are greatly reduced, yet neurohistochemistry demonstrates that all major neurotransmitters and neuropeptides found in other vertebrate retinae are also present in deep-sea fish. Quantitatively, convergence rates in unspecialised parts of the retina are similar to those in nocturnal mammals. The differentiation of horizontal cells makes it unlikely that species with more than a single visual pigment are capable of colour vision. In the third part, the diversity of deep-sea fish retinae is highlighted. Based on the topography of ganglion cells, species are identified with areae or foveae located in various parts of the retina, giving them a greatly improved spatial resolving power in specific parts of their visual fields. The highest degree of specialisation is found in tubular eyes. This is demonstrated in a case study of the scopelarchid retina, where as many as seven regions with different degrees of differentiation can be distinguished, ranging from an area giganto cellularis, regions with grouped rods to retinal diverticulum.
 
Article
The link between morphology and physiology for some of the cell types of the macaque monkey retina is reviewed with emphasis on understanding the neural mechanism for spectral opponency in the light response of ganglion cells. An in vitro preparation of the retina is used in which morphologically identified cell types are selectively targeted for intracellular recording and staining under microscopic control. The goal is to trace the physiological signals from the long (L), middle (M) and short-wavelength sensitive (S) cones to identified cell types that participate in opponent and non-opponent signal pathways. Heterochromatic modulation photometry and silent substitution are used to characterize L-, M- or S-cone inputs to the receptive fields of distinct horizontal cell, bipolar cell, ganglion cell and amacrine cell types. The majority of the retinal cell types await detailed analysis, and knowledge of the mechanisms of opponency remains incomplete. However results thus far have established: (1) Horizontal cell interneurons make preferential connections with the three cone types, but cannot provide a basis for spectral opponency in the circuitry of the outer retina. (2) A morphologically distinctive bistratified ganglion cell type transmits a blue-ON yellow-OFF spectral opponent signal to the parvocellular division of lateral geniculate nucleus. The morphology of this ganglion cell type suggests a simple synaptic mechanism for blue yellow opponency via converging input from an S-cone connecting ON-bipolar cell and an L - M cone connecting OFF-bipolar cell. (3) Midget ganglion cells, whose axons project to the parvocellular layers of the lateral geniculate nucleus and are assumed to be the origin of red/green opponent signals, show a non-opponent, achromatic physiology when recorded in the retinal periphery the underlying circuitry for red green opponency thus remains controversial, and (4) recent recordings from identified bipolar and amacrine cells in macaque suggest that a more complete accounting of opponent circuitry is a realistic goal.
 
Article
Unlike in birds and cold-blooded vertebrates' retinas, the photoreceptors of mammalian retinas were long supposed to be morphologically uniform and difficult to distinguish into subtypes. A number of new techniques have now begun to overcome the previous limitations. A hitherto unexpected variability of spectral and morphological subtypes and topographic patterns of distribution in the various retinas are being revealed. We begin to understand the design of the photoreceptor mosaics, the constraints of evolutionary history and the ecological specialization of these mosaics in all the mammalian subgroups. The review discusses current cytological identification of mammalian photoreceptor types and speculates on the likely "bottleneck-scenario" for the origin of the basic design of the mammalian retina. It then provides a brief synopsis of current data on the photoreceptors in the various mammalian orders and derives some trends for phenomena such as rod/cone dualism, spectral range, preservation or loss of double cones and oil droplets, photopigment co-expression and mono- and tri-chromacy. Finally, we attempt to demonstrate that, building on the limits of an ancient rod dominant (probably dichromatic) model, mammalian retinas have developed considerable radiation. Comparing the nonprimate models with the intensively studied primate model should provide us with a deeper understanding of the basic design of the mammalian retina.
 
Article
Successful restoration of vision in human patients with gene therapy affirmed its promise to cure ocular diseases and disorders. The efficacy of gene therapy is contingent upon vector and mode of therapeutic DNA introduction into targeted cells/tissues. The cornea is an ideal tissue for gene therapy due to its ease of access and relative immune-privilege. Considerable progress has been made in the field of corneal gene therapy in last 5 years. Several new gene transfer vectors, techniques and approaches have evolved. Although corneal gene therapy is still in its early stages of development, the potential of gene-based interventions to treat corneal abnormalities has begun to surface. Identification of next generation viral and nanoparticle vectors, characterization of delivered gene levels, localization, and duration in the cornea, and significant success in controlling corneal disorders, particularly fibrosis and angiogenesis, in experimental animal disease models, with no major side effects have propelled gene therapy a step closer toward establishing gene-based therapies for corneal blindness. Recently, researchers have assessed the delivery of therapeutic genes for corneal diseases and disorders due to trauma, infections, chemical, mechanical, and surgical injury, and/or abnormal wound healing. This review provides an update on the developments in gene therapy for corneal diseases and discusses the barriers that hinder its utilization for delivering genes in the cornea.
 
Article
Retinal angiogenesis and choroidal angiogenesis are major causes of vision loss, and the pathogenesis of this angiogenesis process is still uncertain. However, several key steps of the angiogenic cascade have been elucidated. In retinal angiogenesis, hypoxia is the initial stimulus that causes up regulation of growth factors, integrins and proteinases, which result in endothelial cell proliferation and migration that are critical steps in this process. Once the endothelial tube is formed from the existing blood vessels, maturation starts with recruitment of mural cell precursors and formation of the basement membrane. Normally, there is a tight balance between angiogenic factors and endogenous angiogenesis inhibitors that help to keep the angiogenic process under control. Although the steps of choroidal angiogenesis seem to be similar to those of retinal angiogenesis, there are some major differences between these two processes. Several anti-angiogenic approaches are being developed in animal models to prevent ocular angiogenesis by blocking the key steps of the angiogenic cascade. Based on these pre-clinical studies, several anti-angiogenic clinical trials are ongoing in patients with diabetic retinopathy and age-related macular degeneration. This review discusses the pathogenesis of retinal and choroidal angiogenesis, and alternative pharmacological approaches to inhibit angiogenesis in ocular diseases.
 
Article
Mutations in the genes necessary for the metabolism of vitamin A (all-trans retinol) and cycling of retinoids between the photoreceptors and retinal pigment epithelium (RPE) (the visual cycle) have recently emerged as an important class of genetic defects responsible for retinal dystrophies and dysfunctions. Research into the causes and treatment of diseases resulting from defects in retinal vitamin A metabolism is currently the subject of intense interest, since disorders affecting the RPE are, in principle, more accessible to therapeutic intervention than those affecting the proteins of photoreceptor cells. This chapter presents an overview of the visual cycle, as well as the function of the RPE genes involved in the conversion of vitamin A to 11-cis retinal, the chromophore of the visual pigments. The identification of disease-causing mutations in this group of genes is described as well as the associated phenotypes that range from stationary night blindness to childhood-onset severe visual handicap. Consideration is also given to alternative genetic paradigms potentially relevant to defects in vitamin A metabolism, including a discussion of the relationship of this pathway to age-related macular degeneration, a non-Mendelian disease of late onset. Finally, progress and prospects for targeted therapeutic intervention in vitamin A metabolism are presented, including retinoid and gene replacement therapy. On the basis of early successes in animal models, and plans underway for Phase I/II clinical trials, it is hoped that the near future will bring effective therapies for many retinal dystrophy patients with defects in vitamin A metabolism.
 
Article
Human retinal dystrophies and degenerations and light-induced retinal degenerations in animal models are sharing an important feature: visual cell death by apoptosis. Studying apoptosis may thus provide an important handle to understand mechanisms of cell death and to develop potential rescue strategies for blinding retinal diseases. Apoptosis is the regulated elimination of individual cells and constitutes an almost universal principle in developmental histogenesis and organogenesis and in the maintenance of tissue homeostasis in mature organs.
 
Article
Recent studies demonstrated a number of links between chromatin structure, gene expression, extracellular signaling and cellular differentiation during lens development. Lens progenitor cells originate from a pool of common progenitor cells, the pre-placodal region (PPR) which is formed from a combination of extracellular signaling between the neural plate, naïve ectoderm and mesendoderm. A specific commitment to the lens program over alternate choices such as the formation of olfactory epithelium or the anterior pituitary is manifested by the formation of a thickened surface ectoderm, the lens placode. Mouse lens progenitor cells are characterized by the expression of a complement of lens lineage-specific transcription factors including Pax6, Six3 and Sox2, controlled by FGF and BMP signaling, followed later by c-Maf, Mab21like1, Prox1 and FoxE3. Proliferation of lens progenitors together with their morphogenetic movements results in the formation of the lens vesicle. This transient structure, comprised of lens precursor cells, is polarized with its anterior cells retaining their epithelial morphology and proliferative capacity, whereas the posterior lens precursor cells initiate terminal differentiation forming the primary lens fibers. Lens differentiation is marked by expression and accumulation of crystallins and other structural proteins. The transcriptional control of crystallin genes is characterized by the reiterative use of transcription factors required for the establishment of lens precursors in combination with more ubiquitously expressed factors (e.g. AP-1, AP-2alpha, CREB and USF) and recruitment of histone acetyltransferases (HATs) CBP and p300, and chromatin remodeling complexes SWI/SNF and ISWI. These studies have poised the study of lens development at the forefront of efforts to understand the connections between development, cell signaling, gene transcription and chromatin remodeling.
 
Article
Vision scientists long ago pointed to black and white as separate sensations and saw confirmation in the fact that in the absence of light, one perceives the visual field as gray against which the negative after-image of a bright light appeared blacker. The first recordings from optic nerve fibers in vertebrates revealed ON and OFF signals, later associated with separate streams, arising already at the synapse between receptors and bipolar cells. These can be identified anatomically and physiologically and remain distinct all the way to the lateral geniculate nucleus, whose fibers form the input to the primary visual cortex. The dichotomy has been probed by electroretinography and analyzed by means of pharmacological agents and dysfunction due to genetic causes. The bi- rather than a unidirectional nature of the retinal output has advantages in allowing small signals to remain prominent over a greater dynamic range. The two streams innervate cortical neurons in a push-pull manner, generating receptive fields with spatial sensitivity profiles featuring ON and OFF subregions. Manifestations of the dichotomy appear in a variety of simple visual discriminations where there are often profound threshold differences in patterns with same polarity as compared with mixed contrast-polarity components. But even at levels in which the spatial, contrast and color attributes have already been securely established and black and white elements participate equally, a categorical difference between blackness and whiteness of a percept persists. It is an opponency, akin to the ones in the color domain, derived from the original ON and OFF signals and subsequently bound with the other attributes to yield a feature's unitary percept.
 
Article
The appropriate guidance and patterning of vessels during vascular development is critical for proper tissue function. The loss of these guidance mechanisms can lead to abnormal vascularization and a number of pathological conditions. The molecular basis of endothelial cell guidance and subsequent tissue specific vascular patterning remains largely unknown in spite of its clinical relevance and biological importance. In this regard, retinal vascular development offers many advantages for studying endothelial cell guidance and the mechanisms by which characteristic vascular patterns are formed. In this review, we will provide an overview of the known mechanisms that mediate vascular patterning during mouse retinal development, synthesizing these data to formulate a model of how growth factors, cellular adhesion molecules, and vascular-associated cells mediate directed endothelial cell migration and appropriate vascular remodeling. Finally, we will discuss the many aspects of retinal vascular development that remain unknown and cite evidence that many of these gaps may be addressed by further studying the guidance cues shared by vascular and neuronal elements in the retina and other parts of the central nervous system.
 
Article
Retinal diseases such as age-related macular degeneration (ARMD) and retinitis pigmentosa (RP) affect millions of people. Replacing lost cells with new cells that connect with the still functional part of the host retina might repair a degenerating retina and restore eyesight to an unknown extent. A unique model, subretinal transplantation of freshly dissected sheets of fetal-derived retinal progenitor cells, combined with its retinal pigment epithelium (RPE), has demonstrated successful results in both animals and humans. Most other approaches are restricted to rescue endogenous retinal cells of the recipient in earlier disease stages by a 'nursing' role of the implanted cells and are not aimed at neural retinal cell replacement. Sheet transplants restore lost visual responses in several retinal degeneration models in the superior colliculus (SC) corresponding to the location of the transplant in the retina. They do not simply preserve visual performance - they increase visual responsiveness to light. Restoration of visual responses in the SC can be directly traced to neural cells in the transplant, demonstrating that synaptic connections between transplant and host contribute to the visual improvement. Transplant processes invade the inner plexiform layer of the host retina and form synapses with presumable host cells. In a Phase II trial of RP and ARMD patients, transplants of retina together with its RPE improved visual acuity. In summary, retinal progenitor sheet transplantation provides an excellent model to answer questions about how to repair and restore function of a degenerating retina. Supply of fetal donor tissue will always be limited but the model can set a standard and provide an informative base for optimal cell replacement therapies such as embryonic stem cell (ESC)-derived therapy.
 
Article
Glaucomatous optic neuropathy is classified by morphologic changes in the intrapapillary and parapapillary region of the optic nerve head and the retinal nerve fibre layer. These changes can be evaluated using descriptive optic nerve head variables which are the size and shape of the optic disc; size, shape and pallor of the neuroretinal rim; size of the optic cup in relation to the area of the disc; configuration and depth of the optic cup; cup-to-disc diameter ratio and cup-to-disc area ratio; position of the exit of the central retinal vessel trunk on the lamina cribrosa surface; presence and location of splinter-shaped haemorrhages; occurrence, size, configuration and location of parapapillary chorioretinal atrophy; diffuse and/or focal decrease of the diameter of the retinal arterioles; and visibility of the retinal nerve fibre layer. Assessment of these variables is useful for the early detection of glaucomatous optic nerve damage, to follow-up patients with glaucoma, to differentiate various types of the chronic open-angle glaucomas, and to get hints for the pathogenesis of glaucomatous optic nerve fibre loss.
 
Article
Crystallins, the highly abundant proteins of the ocular lens, are essential determinants of the transparency and refractivity required for lens function. Initially thought to be lens-specific and to have evolved as lens proteins, it is now clear that crystallins were recruited to the lens from proteins that existed before lenses evolved. Crystallins are expressed outside of the lens and most have been shown to have cellular functions distinct from their roles as structural elements in the lens. For one major crystallin group, the β/γ-crystallin superfamily, no such functions have yet been established. We have explored possible functions for the polypeptides (βA3-and βA1-crystallins) encoded by Cryba1, one of the 6 β-crystallin genes, using a spontaneous rat mutant and genetically engineered mouse models. βA3-and βA1-crystallins are expressed in retinal astrocytes and retinal pigment epithelial (RPE) cells. In both cell types, these proteins appear to be required for the proper acidification of the lysosomes. In RPE cells, elevated pH in the lysosomes is shown to impair the critical processes of phagocytosis and autophagy, leading to accumulation of undigested cargo in (auto) phagolysosomes. We postulate that this accumulation may cause pathological changes in the cells resembling some of those characteristic of age-related macular degeneration (AMD). Our studies suggest an important regulatory function of βA3/A1-crystallin in astrocytes. We provide evidence that the cellular function of βA3/A1-crystallin involves its interaction with V-ATPase, the proton pump responsible for acidification of the endolysosomal system. Copyright © 2014. Published by Elsevier Ltd.
 
Threshold ERG data of six normal trichromatic subjects. The ellipses are best fits of the vector addition model to the data. Most subjects show threshold ellipses tilted towards the M-cone axis, indicating a high sensitivity to L-cone modulation. This was found for most normal trichromats. Redrawn from Scholl and Kremers (2000) with kind permission.
A visualization of theoretical elliptical threshold contours and the influence of the parameters on the resulting ellipses.
Measured thresholds and fitted ellipses in six RP patients. Please observe the different scale of the axes in comparison with the data of normals (Fig. 5). Further note the different orientation of the threshold ellipses. Redrawn from Scholl and Kremers (2000) with kind permission.
Threshold data for six patients with Stargardt's macular dystrophy. Observe that the fitted ellipses can have different orientations, indicating phase difference between the L-and the M-cone driven responses smaller than 90 (upper row), about 90 (middle row) or larger than 90 (bottom row). Redrawn from Scholl et al. (2001a) with kind permission.
Threshold data plus ellipses of a normal subject (closed circles) and a RP patient (open squares) also with the best fitting threshold ellipses. The sensitivity losses in the patient relative to the normal subject were about a factor of 2.6 and 3.9 for the L-and the Mcone driven ERGs, respectively. The standard flicker ERG is a luminance flicker which stimulates the L-and the M-cones in phase with similar contrast and it is thus comparable with the stimuli depicted by the line in the first quadrant having a 45 angle with the axes. For these stimuli, the sensitivity ratio between the patient and the normal subject is about 10.8. The higher sensitivity loss in this condition, and thus in the standard 30 Hz flicker ERG, is only partially the result of a loss in sensitivity per s! e. The major cause of the amplitude loss in the standard 30 Hz flicker ERG is the increased phase difference between the L-and the M-cone driven responses, resulting in a cancellation of the responses. Redrawn from Scholl and Kremers (2000) with kind permission.
Article
Electroretinography (ERG) is a non-invasive method that can contribute to a description of the functional organization of the human retina under normal and pathological circumstances. The physiological and pathophysiological processes leading to an ERG signal can be better understood when the cellular origins of the ERG are identified. The ERG signal recorded at the cornea is initiated by light absorption in the photoreceptors which leads to activity in the photoreceptors and in their post-receptoral pathways. Light absorption in distinct photoreceptor types may lead to different ERG responses caused either by differences between the photoreceptors or between their post-receptoral pathways. The description of contributions of the different photoreceptor types to the ERG may therefore give more detailed insight in the origins of the ERG. Such a description can be obtained by isolating the responses of a single photoreceptor type. Nowadays, careful control of differently colored light sources together with the relatively well-known cone and rod fundamentals enables a precise description and control of photoreceptor excitation. Theoretically, any desired combination of photoreceptor excitation modulation can be achieved, including conditions in which the activity in only one photoreceptor type is modulated (silent substitution). In this manner the response of one photoreceptor type is isolated without changing the state of adaptation. This stimulus technique has been used to study the contribution of signals originating in the different photoreceptor types to the human ERG. Furthermore, by stimulating two or more photoreceptor types simultaneously, the interaction between the different signals can be studied.
 
Article
Glaucoma can be defined as an optic nerve disease with typical morphological and functional changes. There are many risk factors associated with this neuropathy. The best known factor is an increased intraocular pressure. There are, however, many other risk factors. Among them, vascular factors play a major role. Although such vascular factors have been postulated more than hundred years ago, it is only recently that the physiology and pathophysiology of the optic nerve head circulation is, to some extent, understood. New instruments have been developed to measure ocular blood flow including blood flow in the optic nerve head. Although most of the studies indicate that circulation is changed in glaucoma patients, there is little association between glaucoma and arteriosclerosis. The main cause for the circulation disturbance in glaucoma seems rather to be a vascular dysregulation leading to local vasospasm and to systemic hypotension.
 
Article
Connectomics is a strategy for mapping complex neural networks based on high-speed automated electron optical imaging, computational assembly of neural data volumes, web-based navigational tools to explore 10(12)-10(15) byte (terabyte to petabyte) image volumes, and annotation and markup tools to convert images into rich networks with cellular metadata. These collections of network data and associated metadata, analyzed using tools from graph theory and classification theory, can be merged with classical systems theory, giving a more completely parameterized view of how biologic information processing systems are implemented in retina and brain. Networks have two separable features: topology and connection attributes. The first findings from connectomics strongly validate the idea that the topologies complete retinal networks are far more complex than the simple schematics that emerged from classical anatomy. In particular, connectomics has permitted an aggressive refactoring of the retinal inner plexiform layer, demonstrating that network function cannot be simply inferred from stratification; exposing the complex geometric rules for inserting different cells into a shared network; revealing unexpected bidirectional signaling pathways between mammalian rod and cone systems; documenting selective feedforward systems, novel candidate signaling architectures, new coupling motifs, and the highly complex architecture of the mammalian AII amacrine cell. This is but the beginning, as the underlying principles of connectomics are readily transferrable to non-neural cell complexes and provide new contexts for assessing intercellular communication.
 
Article
Within the last three years, triamcinolone acetonide has increasingly been applied intravitreally as treatment option for various intraocular neovascular edematous and proliferative disorders. The best response in terms of gain in visual acuity after the intravitreal injection of triamcinolone acetonide was found in eyes with intraretinal edematous diseases such as diffuse diabetic macular edema, branch retinal vein occlusion, central retinal vein occlusion, and pseudophakic cystoid macular edema. Visual acuity increased and degree of intraocular inflammation decreased in eyes with various types of non-infectious uveitis including acute or chronic sympathetic ophthalmia and Adamantiadis-Behcet's disease. Intravitreal triamcinolone may be useful as angiostatic therapy in eyes with iris neovascularization and proliferative ischemic retinopathies. Possibly, intravitreal triamcinolone may be helpful as adjunct therapy for exudative age-related macular degeneration, possibly in combination with photodynamic therapy. In eyes with chronic, therapy resistant, ocular hypotony, intravitreal triamcinolone can induce an increase in intraocular pressure and may stabilize the eye. The complications of intravitreal triamcinolone therapy include secondary ocular hypertension in about 40% of the eyes injected, cataractogenesis, postoperative infectious and non-infectious endophthalmitis, and pseudo-endophthalmitis. Intravitreal triamcinolone injection can be combined with other intraocular surgeries including cataract surgery. Cataract surgery performed some months after the injection does not show a markedly elevated rate of complications. If vision increases and eventually decreases again after an intravitreal triamcinolone acetonide injection, the injection can be repeated. The duration of the effect of a single intravitreal injection of triamcinolone depended on the dosage given. Given in a dosage of about 20mg to non-vitrectomized eyes, the duration of the effect and of the side-effects was 6-9 months. Intravitreal triamcinolone acetonide may offer a possibility for adjunctive treatment of intraocular edematous and neovascular disorders. One has to take into account the side-effects and the lack of long-term follow-up observations.
 
Article
Circadian clocks are self-sustaining genetically based molecular machines that impose approximately 24h rhythmicity on physiology and behavior that synchronize these functions with the solar day-night cycle. Circadian clocks in the vertebrate retina optimize retinal function by driving rhythms in gene expression, photoreceptor outer segment membrane turnover, and visual sensitivity. This review focuses on recent progress in understanding how clocks and light control arylalkylamine N-acetyltransferase (AANAT), which is thought to drive the daily rhythm in melatonin production in those retinas that synthesize the neurohormone; AANAT is also thought to detoxify arylalkylamines through N-acetylation. The review will cover evidence that cAMP is a major output of the circadian clock in photoreceptor cells; and recent advances indicating that clocks and clock networks occur in multiple cell types of the retina.
 
Article
Glaucoma, the most common optic neuropathy (GON) is characterised by the loss of retinal ganglion cells and their axons, as well as tissue remodelling of both the retina and the optic nerve head with corresponding visual field defects. Elevated intraocular pressure (IOP) is generally regarded as the major risk factor for glaucoma and its reduction is the most common target for therapy of GON. There are indications that the greater the IOP reduction, the better is the visual field prognosis. This article investigates, on the basis of two beta-blockers, betaxolol and timolol, whether the amount of IOP reduction is truly a good surrogate for successful glaucoma therapy with respect to visual field outcome. Contrary to what is generally expected, our analysis of the literature exemplifies that despite a smaller IOP reduction, patients treated with betaxolol had a smaller rate of visual field deterioration than patients treated with timolol. Based on the dissociation of IOP reduction and visual field prognosis, we postulate that for successful treatment in glaucoma not only the amount of IOP reduction is relevant but also the drug by which the reduction is achieved. This seeming paradox phenomenon highlights that ocular hypotensive drugs have relevant effects on GON other than IOP-related. Some of these effects on retinal ganglion cells (neuroprotection) or on ocular blood flow are mediated by calcium- and sodium channels. Future studies on glaucoma treatment should focus on their effect on visual field function, and not just on IOP. This should particularly be considered when comparing drugs from different classes.
 
Article
In this work we advance the hypothesis that omega-3 (ω-3) long-chain polyunsaturated fatty acids (LCPUFAs) exhibit cytoprotective and cytotherapeutic actions contributing to a number of anti-angiogenic and neuroprotective mechanisms within the retina. ω-3 LCPUFAs may modulate metabolic processes and attenuate effects of environmental exposures that activate molecules implicated in pathogenesis of vasoproliferative and neurodegenerative retinal diseases. These processes and exposures include ischemia, chronic light exposure, oxidative stress, inflammation, cellular signaling mechanisms, and aging. A number of bioactive molecules within the retina affect, and are effected by such conditions. These molecules operate within complex systems and include compounds classified as eicosanoids, angiogenic factors, matrix metalloproteinases, reactive oxygen species, cyclic nucleotides, neurotransmitters and neuromodulators, pro-inflammatory and immunoregulatory cytokines, and inflammatory phospholipids. We discuss the relationship of LCPUFAs with these bioactivators and bioactive compounds in the context of three blinding retinal diseases of public health significance that exhibit both vascular and neural pathology.
 
Article
The patterns of eye movement that accompany static activities such as reading have been studied since the early 1900s, but it is only since head-mounted eye trackers became available in the 1980s that it has been possible to study active tasks such as walking, driving, playing ball games and ordinary everyday activities like food preparation. This review examines the ways that vision contributes to the organization of such activities, and in particular how eye movements are used to locate the information needed by the motor system in the execution of each act. Major conclusions are that the eyes are proactive, typically seeking out the information required in the second before each act commences, although occasional 'look ahead' fixations are made to establish the locations of objects for use further into the future. Gaze often moves on before the last act is complete, indicating the presence of an information buffer. Each task has a characteristic but flexible pattern of eye movements that accompanies it, and this pattern is similar between individuals. The eyes rarely visit objects that are irrelevant to the action, and the conspicuity of objects (in terms of low-level image statistics) is much less important than their role in the task. Gaze control may involve movements of eyes, head and trunk, and these are coordinated in a way that allows for both flexibility of movement and stability of gaze. During the learning of a new activity, the eyes first provide feedback on the motor performance, but as this is perfected they provide feed-forward direction, seeking out the next object to be acted upon.
 
Detection of PEDF expression in the mouse eye by indirect immunofluorescence. (A,B) PEDF is expressed in the RPE cells (a) and collects in the interphotoreceptor matrix surrounding photoreceptor outer segments (b). No fluorescence is detectable over the photoreceptor cell bodies of the outer nuclear layer (c). (C,D) PEDF is expressed by corneal epithelial cells (a) with more intense labeling in the limbal region (b). (E,F) In the inner retina, labeling can be found in cells of the ganglion cell layer (a) but very little in the inner nuclear layer (b). (G,H) In the ciliary epithelium, strong labeling is observed in the non-pigmented layer (a) but none in the pigmented layer (b). (A,C,E,G) Nomarski images; (B,D,F,H) Fluorescence images. Figure adapted from Tombran-Tink and Barnstable (2003a).
The intracellular transduction pathways activated by PEDF. Protection against glutamate excitotoxicity in cerebellar granule neurons by PEDF involves activation of the NFkB signaling cascade, and the subsequent expression of antiapoptotic and neuroprotective genes. Inhibition of endothelial cell growth and angiogenesis may involve the Fas/FasL pathway and possible cross talk between the NFkB cascade. Figure adapted from Tombran-Tink and Barnstable (2003a).
Multispecies genomic Southern blot. Each lane represents 8 mg of genomic DNA for each species digested with EcoRI. The blots were hybridized with a radiolabeled PEDF probe. A large fragment of approximately 23 kb is seen in all primates (right panel), many mammalian species (center panel) and in chicken (left panel). In addition, several variant patterns are seen in the different mammalian species examined (center panel).
(A) Space-filling model of human PEDF showing the cluster of positive charges on one face of the molecule. (B) Space-filling model of human PEDF showing the cluster of negative charges on the opposite face of the molecule. These charged groups are thought to interact with extracellular matrix molecules. (C-E) The 44-mer neuroprotective peptide of PEDF (78-121) shown within the whole PEDF molecule (C), its polypeptide backbone (D) and with the amino acid side chains (E). In (D) and (E) the charged amino acid side chains are shown in red and purple.
Article
Pigment epithelium-derived factor (PEDF) is a 50-kDa protein encoded by a single gene that shows strong conservation across phyla from fish to mammals. It is secreted by the retinal pigment epithelium (RPE) and a select number of other cell types in the eye, as well as by other tissues in the body. PEDF was originally defined by its ability to induce differentiation in retinoblastoma cells. It also promotes a non-proliferative, differentiated state in a number of other cell types. PEDF protects retinal neurons from light damage, oxidative stress and glutamate excitotoxicity. PEDF is also antiangiogenic and can inhibit the growth of blood vessels in the eye induced in a variety of ways. A balance in the levels of PEDF and the proangiogenic factor vascular endothelial growth factor-A is perturbed in a range of retinal neovascular diseases. Some of the pathways by which PEDF exerts its actions on cells have now been defined. Peptide fragments of PEDF carry biological activity and may be valuable therapeutic agents that readily penetrate the eye.
 
Article
LEDGF is a survival factor and it enhances survival of various cell types against stress. LEDGF is also a transcriptional activator and it binds to promoter elements of heat shock and stress-related genes to activate expression of these genes. The elevated levels of the stress-related family of proteins, such as heat shock proteins, antioxidant proteins, and detoxication enzymes might suppress apoptosis induced by stress. The protective mechanisms against stress in mammalian cells and in yeast are surprisingly similar.
 
Article
Platelet-activating factor (PAF) is a potent bioactive lipid that is generated in the cornea after injury and whose actions are mediated through specific receptors. Studies from our laboratory have shown that PAF interactions with its receptor activate several transmembrane signals involved in inflammation, wound healing, and apoptosis. The wide variety of responses to PAF implicate this lipid as a central player in many responses of the cornea after a pathologic stimulus. An exciting facet of PAF is that it induces the expression of specific genes involved in the remodeling of components of the extracellular matrix, such as some metalloproteinases, urokinase plasminogen activator, and selective inhibitors of metalloproteinases. These enzymes, when overexpressed, could lead to corneal ulceration. Continuous exposure to PAF during prolonged inflammation produces increase keratocyte apoptosis and inhibition of epithelial adhesion to the basement membrane. As a consequence, there is a marked delay in wound healing, which is not countered by the actions of growth factors. In this review, we present data mainly from our laboratory showing actions of PAF in corneal epithelium in vivo and in vitro in corneal models of injury as well as in cells in culture. We also discuss the signal-transduction mechanisms involved in the different actions of PAF. A therapeutic role for PAF antagonists in blocking the effects of PAF is guaranteed in the future.
 
Article
One of the functional roles of the corneal epithelial layer is to protect the cornea, lens and other underlying ocular structures from damages caused by environmental insults. It is important for corneal epithelial cells to maintain this function by undergoing continuous renewal through a dynamic process of wound healing. Previous studies in corneal epithelial cells have provided substantial evidence showing that environmental insults, such as ultraviolet (UV) irradiation and other biohazards, can induce stress-related cellular responses resulting in apoptosis and thus interrupt the dynamic process of wound healing. We found that UV irradiation-induced apoptotic effects in corneal epithelial cells are started by the hyperactivation of K+ channels in the cell membrane resulting in a fast loss of intracellular K+ ions. Recent studies provide further evidence indicating that these complex responses in corneal epithelial cells are resulted from the activation of stress-related signaling pathways mediated by K+ channel activity. The effect of UV irradiation on corneal epithelial cell fate shares common signaling mechanisms involving the activation of intracellular responses that are often activated by the stimulation of various cytokines. One piece of evidence for making this distinction is that at early times UV irradiation activates a Kv3.4 channel in corneal epithelial cells to elicit activation of c-Jun N-terminal kinase cascades and p53 activation leading to cell cycle arrest and apoptosis. The hypothetic model is that UV-induced potassium channel hyperactivity as an early event initiates fast cell shrinkages due to the loss of intracellular potassium, resulting in the activation of scaffolding protein kinases and cytoskeleton reorganizations. This review article presents important control mechanisms that determine Kv channel activity-mediated cellular responses in corneal epithelial cells, involving activation of stress-induced signaling pathways, arrests of cell cycle progression and/or induction of apoptosis.
 
Article
The traditional view of the resolving power of the eye as based on the Rayleigh Criterion needs extension in view of insight gained from information theory. As first pointed out by Toraldo di Francia, the image of a double line is subtly different from that of a single line even when there is no central dip. Given an image, the uncertainty concerning the generating object can be expressed numerically in bits. With the available data on the optical performance and anatomical structure of the normal human eye, details of the distribution of light and of receptor activation have been characterized for foveal two-line resolution. They allow a comparison with the actual performance of the human observer and some conclusions concerning the strategy employed in resolution decisions as well as a more comprehensive analysis of the processes involved in the measurement of visual acuity. The discussion is extended to the case of laser-illuminated targets where the difference between image formation in coherent and incoherent light becomes relevant.
 
Article
There is increasing evidence that the macular pigment (MP) carotenoids lutein (L) and zeaxanthin (Z) protect the retina and lens from age-related loss. As a result, the use of L and Z supplements has increased dramatically in recent years. An increasing number of reports have suggested that L and Z supplementation (and increased MP density) are related to improved visual performance in normal subjects and patients with retinal and lenticular disease. These improvements in vision could be due either to changes in the underlying biology and/or optical changes. The optical mechanisms, i.e., preferential absorption of short-wave light, underlying these putative improvements in vision, however, have not been properly evaluated. Two major hypotheses are discussed. The acuity hypothesis posits that MP could improve visual function by reducing the effects of chromatic aberration. The visibility hypothesis is based on the idea that MP may improve vision through the atmosphere by preferentially absorbing blue haze (short-wave dominant air light that produces a veiling luminance when viewing objects at a distance).
 
Article
The initial section deals with basic sciences; among the various topics briefly discussed are the anatomical features of ophthalmic, central retinal and cilioretinal arteries which may play a role in acute retinal arterial ischemic disorders. Crucial information required in the management of central retinal artery occlusion (CRAO) is the length of time the retina can survive following that. An experimental study shows that CRAO for 97 min produces no detectable permanent retinal damage but there is a progressive ischemic damage thereafter, and by 4 h the retina has suffered irreversible damage. In the clinical section, I discuss at length various controversies on acute retinal arterial ischemic disorders.
 
Article
Acute retinal vascular occlusive disorders collectively constitute one of the major causes of blindness or seriously impaired vision, and yet there is marked controversy on their pathogeneses, clinical features and particularly their management. This is because the subject is plagued by multiple misconceptions. These include that: (i) various acute retinal vascular occlusions represent a single disease; (ii) estimation of visual acuity alone provides all the information necessary to evaluate visual function; (iii) retinal venous occlusions are a single clinical entity; (iv) retinal vein occlusion is essentially a disease of the elderly and is not seen in the young; (v) central retinal vein occlusion (CRVO) is one disease; (vi) fluorescein fundus angiography is the best test to differentiate ischemic from nonischemic CRVO; (vii) the site of occlusion in CRVO is invariably at the lamina cribrosa; (viii) clinical picture of CRVO is often due to compression or strangulation of the central retinal vein (CRV) in the lamina cribrosa and not its occlusion; (ix) an eye can develop both CRVO and central retinal artery occlusion (CRAO) simultaneously; (x) every eye with CRVO is at risk of developing neovascular glaucoma; (xi) lowering intraocular pressure (IOP) helps to improve retinal circulation in an eye with CRVO; (xii) every patient with retinal vein occlusion should have complete hematologic and coagulation evaluation; (xiii) the natural history of CRVO does not usually involve spontaneous visual improvement; (xiv) management of CRVO is similar to that of venous thrombosis anywhere else in the body, i.e. with aspirin and/or anti-coagulants; (xv) fibrinolytic agents can dissolve an organized thrombus in the CRV; (xvi) it is beneficial to lower blood pressure in patients with CRVO; (xvii) panretinal photocoagulation used in ischemic retinal venous occlusive disorders has no deleterious side-effects; (xviii) glaucoma or ocular hypertension can cause branch retinal vein occlusion; (xix) branch retinal vein occlusion can cause neovascular glaucoma; (xx) in eyes with CRAO, the artery is usually not completely occluded; (xxi) CRAO is always either embolic or thrombotic in origin; (xxii) amaurosis fugax is always due to retinal ischemia secondary to transient retinal arterial embolism; (xxiii) asymptomatic plaque(s) in retinal arteries do not require a detailed evaluation; (xxiv) retinal function can improve even when acute retinal ischemia due to CRAO has lasted for 20h or more; (xxv) CRAO, like ischemic CRVO, can result in development of ocular neovascularization; (xxvi) panretinal photocoagulation is needed for "disc neovascularization" in CRAO; (xxvii) fibrinolytic agents are the treatment of choice in CRAO; (xxviii) there is no chance of an eye with retinal arterial occlusion having spontaneous visual improvement; (xxix) absence of any abnormality on Doppler evaluation of the carotid artery or echography of the heart always rules out those sites as the source of embolism; and (xxx) absence of an embolus in the retinal artery means the occlusion was not caused by an embolus. The major cause of all these misconceptions is the lack of a proper understanding of basic scientific facts related to the various diseases. The objective of this paper is to discuss these misconceptions, based on these scientific facts, to clarify the understanding of these blinding disorders, and to place their management on a rational, scientific basis.
 
Article
Following exposure of our eye to very intense illumination, we experience a greatly elevated visual threshold, that takes tens of minutes to return completely to normal. The slowness of this phenomenon of "dark adaptation" has been studied for many decades, yet is still not fully understood. Here we review the biochemical and physical processes involved in eliminating the products of light absorption from the photoreceptor outer segment, in recycling the released retinoid to its original isomeric form as 11-cis retinal, and in regenerating the visual pigment rhodopsin. Then we analyse the time-course of three aspects of human dark adaptation: the recovery of psychophysical threshold, the recovery of rod photoreceptor circulating current, and the regeneration of rhodopsin. We begin with normal human subjects, and then analyse the recovery in several retinal disorders, including Oguchi disease, vitamin A deficiency, fundus albipunctatus, Bothnia dystrophy and Stargardt disease. We review a large body of evidence showing that the time-course of human dark adaptation and pigment regeneration is determined by the local concentration of 11-cis retinal, and that after a large bleach the recovery is limited by the rate at which 11-cis retinal is delivered to opsin in the bleached rod outer segments. We present a mathematical model that successfully describes a wide range of results in human and other mammals. The theoretical analysis provides a simple means of estimating the relative concentration of free 11-cis retinal in the retina/RPE, in disorders exhibiting slowed dark adaptation, from analysis of psychophysical measurements of threshold recovery or from analysis of pigment regeneration kinetics.
 
Article
In vertebrates, the innate and adaptive immune systems have evolved seamlessly to protect the host by rapidly responding to danger signals, eliminating pathogens and creating immunological memory as well as immunological tolerance to self. The innate immune system harnesses receptors that recognize conserved pathogen patterns and alongside the more specific recognition systems and memory of adaptive immunity, their interplay is evidenced by respective roles during generation and regulation of immune responses. The hallmark of adaptive immunity which requires engagement of innate immunity is an ability to discriminate between self and non-self (and eventually between pathogen and symbiont) as well as peripheral control mechanisms maintaining immunological health and appropriate responses. Loss of control mechanisms and/or regulation of either the adaptive or the innate immune system lead to autoimmunity and autoinflammation respectively. Although autoimmune pathways have been largely studied to date in the context of development of non-infectious intraocular inflammation, the recruitment and activation of innate immunity is required for full expression of the varied phenotypes of non-infectious uveitis. Since autoimmunity and autoinflammation implicate different molecular pathways, even though some convergence occurs, increasing our understanding of their respective roles in the development of uveitis will highlight treatment targets and influence our understanding of immune mechanisms operative in other retinal diseases. Herein, we extrapolate from the basic mechanisms of activation and control of innate and adaptive immunity to how autoinflammatory and autoimmune pathways contribute to disease development in non-infectious uveitis patients.
 
Article
Colour vision greatly enhances the discriminatory and cognitive capabilities of visual systems and is found in a great majority of vertebrates and many invertebrates. However, colour coding visual systems are confronted with the fact that the external stimuli are ambiguous because they are subject to constant variations of luminance and spectral composition. Furthermore, the transmittance of the ocular media, the spectral sensitivity of visual pigments and the ratio of spectral cone types are also variable. This results in a situation where there is no fixed relationship between a stimulus and a colour percept. Colour constancy has been identified as a powerful mechanism to deal with this set of problems; however, it is active only in a short-term time range. Changes covering longer periods of time require additional tuning mechanisms at the photoreceptor level or at postreceptoral stages of chromatic processing.
 
Article
Vectors derived from adeno-associated viruses (AAV) represent a promising tool for retinal gene transfer in pre-clinical and clinical settings. AAV vectors efficiently transduce dividing and non-dividing cells, escape cellular immunity and result in long-non-term transduction. In addition, they may be targeted to specific retinal cell types by taking advantage of surface proteins from various AAV serotypes thus limiting transfer of therapeutic genes to those cells requiring correction. This review will provide an overview of the properties of AAV vectors followed by a detailed report of their use in retinal gene transfer for mendelian and non-mendelian disorders.
 
Article
Adenosine is a ubiquitous molecule that is produced predominantly by catabolism of adenosine triphosphate. Levels of this nucleoside increase dramatically with ischemia and elevated tissue activity. Adenosine levels are high in inner retina during retinal vascular development in postnatal dog. The source appears to be the ectoenzyme 5′ nucleotidase, which is prominent at this time in the innermost process of Muller cells. One of the adenosine receptors, A2A, is present on endothelial cell precursors, angioblasts, and endothelial cells in formed blood vessels in neonatal dog. These observations suggest that adenosine is important in retinal vascular development.
 
Article
Antisense oligonucleotides are short synthetic fragments of genes that are able to inhibit gene expression after being internalized by cells. They can therefore be used as antiviral compounds particularly, for the treatment of ocular viral infections (i.e. Herpes simplex virus or Cytomegalovirus, CMV). Antisense oligonucleotides are however poorly stable in biological fluids and their intracellular penetration is limited. Although oligonucleotides are now currently used in therapeutics for the treatment of CMV by intravitreal injection (Vitravene) their main drawbacks impose to repeat the number of administrations which can be very harmful and damaging. A system that is able to permit a protection of oligonucleotides against degradation and their slow delivery into the vitreous would be more favorable for improving patient compliance. The use of liposomes for intravitreal administration can be very promising since these lipid vesicles are able to protect oligonucleotides against degradation by nucleases and they allow to increase the retention time of many drugs in the vitreous. In this review, the potentialities of liposomes for the intravitreal delivery of oligonucleotides will be discussed.
 
Article
Axotomized retinal ganglion cells (RGCs) in adult cats offer a good experimental model to understand mechanisms of RGC deteriorations in ophthalmic diseases such as glaucoma and optic neuritis. Alpha ganglion cells in the cat retina have higher ability to survive axotomy and regenerate their axons than beta and non-alpha or beta (NAB) ganglion cells. By contrast, beta cells suffer from rapid cell death by apoptosis between 3 and 7 days after axotomy. We introduced several methods to rescue the axotomized cat RGCs from apoptosis and regenerate their axons; transplantation of the peripheral nerve (PN), intraocular injections of neurotrophic factors, or an antiapoptotic drug. Apoptosis of beta cells can be prevented with intravitreal injections of BDNF+CNTF+forskolin or a caspase inhibitor. The injection of BDNF+CNTF+forskolin also increases the numbers of regenerated beta and NAB cells, but only slightly enhances axonal regeneration of alpha cells. Electrical stimulation to the cut end of optic nerve is effective for the survival of axotomized RGCs in cats as well as in rats. To recover function of impaired vision in cats, further studies should be directed to achieve the following goals: (1). substantial number of regenerating RGCs, (2). reconstruction of the retino-geniculo-cortical pathway, and (3). reconstruction of retinotopy in the target visual centers.
 
Article
Despite a relatively long history, general knowledge is not widespread that adult neurons can be maintained in cell culture for fairly extended periods of time. Within the central nervous system, this capacity seems to be particularly well developed in the retina, although it is still not clear whether this property is due to physical reasons (spatial configuration, simple connections) or to more fundamental differences (molecular composition, physiological function). Irrespective of the reasons, in vitro model systems are useful for investigating physiological and pathological processes occurring in mature retina. The authors argue that the numerous molecular changes undergone during maturation (modifications in ion channels and receptors, apoptotic pathways and growth factor effects) should be taken into account when using in vitro approaches to study processes involved in photoreceptor and ganglion cell degeneration, and hence that more classical methods relying on embryonic or newborn tissue should be interpreted with caution. A number of examples are given where the use of adult retinal neuronal culture may be especially informative: neurite regeneration, neuroprotection assays and pathogenic mechanisms; and areas of further research that should be explored: cell transplantation.
 
Article
The neural retina as part of the brain has received a great deal of attention since quiescent neural stem cells/progenitor cells (NSC/PCs) were discovered in this non-neurogenic region. Herein, we particularly feature the adult rodent eye and provide an overview of all putative neuronal progenitor-like cells attributed to the various ocular areas that have been identified during the last decade. These neuronal progenitor-like cells include the pigmented cells of the ciliary body (CB), as well as the pigmented cells of the iris and the retinal pigment epithelium (RPE). Within the retina, the Müller cells, the specialized macroglia of the vertebrate eye, display neurogenic potential, i.e. de-differentiation into retinal neurons following exogenous stimulation. In addition, retinal astrocytes, which are immigrants from the brain and do not arise from a common retinal progenitor show signs of de-differentiation after injury. Interestingly, microglial cells, the immune competent cells of the central nervous system (CNS), feature neurogenic potential in vitro. Moreover, it appears that this potential can also be initially induced by injury in vivo, both in the brain and the retina. This review summarizes characteristics of various endogenous progenitor-like cells reported in in vitro and in vivo studies. A focus is placed on in vivo studies with a special regard to cellular responses after exogenous stimulation, such as growth factor treatment or injury. Finally, we discuss therapeutic potential of these cells with respect to cell replacement strategies and putative clinical application.
 
Article
Eye-drops are the conventional dosage forms that account for 90% of currently accessible ophthalmic formulations. Despite the excellent acceptance by patients, one of the major problems encountered is rapid precorneal drug loss. To improve ocular drug bioavailability, there is a significant effort directed towards new drug delivery systems for ophthalmic administration. This chapter will focus on three representative areas of ophthalmic drug delivery systems: polymeric gels, colloidal systems, cyclodextrins and collagen shields. Hydrogels generally offer a moderate improvement of ocular drug bioavailability with the disadvantage of blurring of vision. In situ activated gel-forming systems are preferred as they can be delivered in drop form with sustained release properties. Colloidal systems including liposomes and nanoparticles have the convenience of a drop, which is able to maintain drug activity at its site of action and is suitable for poorly water-soluble drugs. Among the new therapeutic approaches in ophthalmology, cyclodextrins represent an alternative approach to increase the solubility of the drug in solution and to increase corneal permeability. Finally, collagen shields have been developed as a new continuous-delivery system for drugs that provide high and sustained levels of drugs to the cornea, despite a problem of tolerance. It seems that new tendency of research in ophthalmic drug delivery systems is directed towards a combination of several drug delivery technologies. There is a tendency to develop systems which not only prolong the contact time of the vehicle at the ocular surface, but which at the same time slow down the elimination of the drug. Combination of drug delivery systems could open a new directive for improving results and the therapeutic response of non-efficacious systems.
 
Article
Three dimensional (3D) ophthalmic imaging using optical coherence tomography (OCT) has revolutionized assessment of the eye, the retina in particular. Recent technological improvements have made the acquisition of 3D-OCT datasets feasible. However, while volumetric data can improve disease diagnosis and follow-up, novel image analysis techniques are now necessary in order to process the dense 3D-OCT dataset. Fundamental software improvements include methods for correcting subject eye motion, segmenting structures or volumes of interest, extracting relevant data post hoc and signal averaging to improve delineation of retinal layers. In addition, innovative methods for image display, such as C-mode sectioning, provide a unique viewing perspective and may improve interpretation of OCT images of pathologic structures. While all of these methods are being developed, most remain in an immature state. This review describes the current status of 3D-OCT scanning and interpretation, and discusses the need for standardization of clinical protocols as well as the potential benefits of 3D-OCT scanning that could come when software methods for fully exploiting these rich datasets are available clinically. The implications of new image analysis approaches include improved reproducibility of measurements garnered from 3D-OCT, which may then help improve disease discrimination and progression detection. In addition, 3D-OCT offers the potential for preoperative surgical planning and intraoperative surgical guidance.
 
Article
The present models of phototransduction for vertebrates and invertebrates have been reviewed and the relative literature updated. The emerging picture for vertebrate phototransduction is a result of a better knowledge of its general outlines, although some important details such as the role of calcium ions are still lacking. The molecular events involved in the rising phase of the electrical response have basically been understood, whilst those involved in response inactivation and recovery remain to be elucidated. In an overall strategy, the phototransduction in invertebrates shares a great deal of similarity with that in vertebrates but differs in the underlying molecular events. However, a complete picture of phototransduction in invertebrate photoreceptors has not yet emerged. The available data on the structure of the visual pigment rhodopsin reveal further details on the present model of the retinal-binding pocket of the protein and consequently of the "red shift" of the absorbance of retinal. The problem of the energy supplied during photoreception, in particular, the availability of ATP in the rod outer segment and the presence in the disk membranes of a Ca-ATPase are discussed. Finally, recent progress in understanding the molecular mechanisms of inherited retinal diseases and relative gene identification are summarized.
 
Repaired damaged retina. (A) A sheet-transplant has morphologically reconstructed an area of a light-damaged retina, not like a normal, but resembling a normal retina. The transplant has developed 6–8 rows of photoreceptors and all retinal layers, although the inner retinal layers are less well developed. Note the good integration with the host retina. An inner nuclear layer is seen in both the host and the transplant. Microglia can be seen in the subretinal space. E19 retinal transplant, 1.8 months after transplantation to light-damaged Sprague Dawley host. (B) Donor cells labeled with bromo-deoxy-uridine (BrdU), prelabeled at E16/17. E19 retinal transplant to light-damaged rat, 2 months after transplantation. (C) Rod bipolar cells in host and transplant. Note the processes in the interface between transplant and host (arrows). PKC immunostaining. E17 transplant to light-damaged rat, 4.9 months after transplantation. Bars=20 m m. (Legends: H=host; T=transplant; IP=inner plexiform layer; IN=inner nuclear layer; ON=outer nuclear layer; RPE=retinal pigment epithelium; IS=inner segments; OS=outer segments; B, Bruch’s=Bruch’s membrane.) 
Sheets of retina with or without its RPE transplanted to RCS rats. (A), (B), (C), cografts of retina with RPE; (D) transplant of retina only. (A) The outer nuclear layer of transplant contains ca. 6–7 rows of photoreceptors. The donor RPE cells (asterisk) can be seen on top of the host RPE cells. Note the good integration between transplant and host retina. Cograft of E19 retina with RPE to albino RCS rat, transplanted at 2.1 months. 3.7 months after transplantation. (B) Approximately 8 rows of photoreceptor nuclei. In contrast to the transplant in (A), this transplant shows a distinctive border towards the host. Note the monolayer of pigmented donor RPE. The choroid was dissected away during tissue processing. Cograft of E19 retina with RPE to albino RCS rat, transplanted at 1.8 months. 5.1 months after transplantation. (C) S-antigen staining of photoreceptor outer segments in cograft. The donor RPE has lost some of its pigment. E18 retina with RPE to RCS rat, transplanted at 1.4 months. 5.1 months after transplantation. (D) The donor RPE sheet was lost during transplantation. In spite of being confronted with dystrophic RPE of the RCS host, the transplant shows 5 rows of photoreceptors with outer segments. Note the microglia in the subretinal space. This transplant is well integrated with the host retina. E19 retinal transplant to RCS rat, transplanted at 1.8 months. 5.1 months after transplantation. Bars=20 m m. (See Fig. 1 legends.) 
Electron microscopy of retina/RPE cografts. (A) Transplant/host interface, showing the plexiform area between host inner nuclear layer and transplant inner plexiform layer. The exact border between transplant and host cannot be determined. (B) Tight junctional complex (arrow) between donor RPE cells. (C) Phagocytosis of outer segments. (D) Donor RPE cell with basal infoldings with mitochondria towards Bruch’s membrane (B), with choroidal blood vessel underneath. (A) Same transplant as in Fig. 3A. (B), (C), (D): E20 transplant of retina with RPE to RCS rat, transplanted at 2 months. 1.7 months after transplantation. Bars=2 m m. (See Fig. 1 legends.) 
Do transplant photoreceptors function normally? F Light–dark shift of rod a -transducin. (A) Transplant fixed in light. The transplant photoreceptors are clearly immunoreactive for a -transducin in the inner segments and less intense in the outer nuclear layer. The host RPE cannot be seen because of a tissue processing artifact. E19 donor, 2 months after transplantation. (B) Transplant fixed at the end of dark cycle. The main immunoreactivity has now shifted to the outer segments of the transplant photoreceptors. E18 donor, 2.4 months after transplantation. Bars=20 m m. (See Fig. 1 legends.) 
Transplants restore visual responses in RCS rats. Multi-unit electrophysiological recordings from the superior colliculus, contralateral to the transplanted eye. (A) Recording examples of the first 5 of the 19 transplanted rats with visual responses, showing the location of sites from which visually evoked (+) or no visual response (À) could be elicited. The visually responsive area in the SC corresponds to the location of the transplant in the nasal/dorsal retina. (B) Examples of single sweeps (500 ms duration) recorded from two rats, 3.5-4.8 months after transplantation. An average of 16 sweeps at one location also is shown (mean). Taken from Fig. 2 of Woch et al., 2001. Reprinted with permission. Copyright holderFAssociation for Research in Vision and Ophthalmology.
Article
Retinal transplantation aims to prevent blindness and to restore eyesight, i.e., to rescue photoreceptors or to replace damaged photoreceptors with the hope of reestablishing neural circuitry. Retinal donor tissue has been transplanted as dissociated cells or intact sheets. A promising experimental paradigm is the subretinal transplantation of sheets of fetal retina with or without its attached retinal pigment epithelium (RPE) into recipient rats with retinal degeneration. As long as healthy RPE either from the host or from the graft is present, such transplants can develop lamination resembling a normal retina. Different methods have been used to demonstrate transplant/host connectivity. In two different rat retinal degeneration models, visually evoked responses can be demonstrated in an area of the superior colliculus corresponding to the placement of the transplant in the retina. In summary, sheets of fetal retina can morphologically repair an area of a degenerated retina, and there is evidence to suggest that transplants form synaptic connections with the host and restore visual responses in blind rats.
 
Article
Pseudomonas aeruginosa (P. aeruginosa) is a common organism associated with bacterial keratitis, especially in those who use extended wear contact lenses. Recent advances in our understanding of host innate and adaptive immune responses to experimental infection have been made using a variety of animal models, including inbred murine models that are classed as resistant (cornea heals) vs. susceptible (cornea perforates). Evidence has been provided that sustained IL-12-driven IFN-gamma production in dominant Th1 responder strains such as C57BL/6 (B6) contributes to corneal destruction and perforation, while IL-18-driven production of IFN-gamma in the absence of IL-12 is associated with bacterial killing and less corneal destruction in dominant Th2 responder strains such as BALB/c. The critical role of IL-1 and chemotactic cytokines such as MIP-2 in PMN recruitment and the critical role of this cell in the innate immune response to bacterial infection is reviewed. Regulation of PMN persistence is also discussed and evidence provided that persistence of PMN in B6 cornea is regulated by CD4+ T cells, while macrophages regulate PMN number in the cornea of BALB/c mice. The studies provide a better understanding of the inflammatory mechanisms that are operative in the cornea after P. aeruginosa challenge and are consistent with long-term goals of providing targets for alternative or adjunctive treatment for this disease. Future studies will be aimed at better defining the role of Toll receptors, neuropeptides (as unconventional modulators of the immune response) and exploitation of disease control by new techniques, such as RNA silencing.
 
Article
Aetiological and immunological aspects of AMD, a leading cause of blindness in Western countries, have been reviewed. Developmental studies suggest that anatomical features unique to the fovea result in a critical relationship between metabolic demand and blood supply at the macula, which is maintained throughout life. Recent studies show a sufficient degree of consistency in the link between smoking and both dry and wet AMD to regard it as causative. Dry AMD is considered to be the natural endstage of the disease; epidemiological and morphological studies point to choroidal vascular atrophy as the causative event and it is suggested that signals associated with acute vascular compromise lead to the development of subretinal neovascularisation. The relationship between sub-pigment epithelial deposits, including basal laminar deposit, and the pathogenesis of AMD is examined. Much of the literature is consistent with a choroidal origin for the constituents of drusen. The blood-retinal barrier preserves the physiological environment of the neural retina and limits inflammatory responses. The factors, including cytokines, adhesion molecules and the presence of resident immunocompetent cells (microglia), which determine the immune status of the retina are considered. Historical descriptions of the involvement of inflammatory cells are provided, evidence implicating inflammation in the pathogenesis of AMD involving macrophages, giant cells and microglia has been derived from observations of human and animal subretinal neovascular lesions. The role of humoral factors such as anti-retinal autoantibodies and acute phase proteins together with clinical observations has been surveyed. Taken together these data demonstrate the involvement of both cellular and humoral immunity in the pathogenesis of AMD. It remains to be determined to what degree the influence of immunity is causative or contributory in both wet and dry AMD, however, the use of anti-inflammatory agents to ameliorate the condition further indicates the existence of an inflammatory component.
 
Top-cited authors
Einar Stefánsson
  • University of Iceland
Peter Wiedemann
  • University of Leipzig
Sohan Hayreh
  • University of Iowa
Andreas Reichenbach
  • University of Leipzig
Mike Francke
  • University of Leipzig