The Royal Society

Philosophical Transactions B

Published by The Royal Society

Online ISSN: 1471-2970

·

Print ISSN: 0962-8436

Disciplines: Organismal, environmental and evolutionary biology Neuroscience and cognition Cellular, molecular and developmental biology Health and disease

Journal websiteAuthor guidelines

Top-read articles

484 reads in the past 30 days

Figure 1. Analytical framework to assess social-ecological relations in the nature-based adaptation to climate change.
Figure 3. Factor analysis outputs showing the major loadings on each of the six factors (in italic text). All loadings with an absolute value above a cut-off point of 0.25 are represented as a path.
Figure 4. Clustering results. The scatterplot (left) is a principal component analysis biplot showing the 25 case studies (circles, whose colours indicate clusters with membership above 0.25), the four cluster centroids (stars), the four envelopes drawn around the cases belonging to only one cluster and the centroid, and the six factors (arrows with labels). The bottom-right plot shows the mean values of the six factors in the clusters.
Intertwined people–nature relations are central to nature-based adaptation to climate change

January 2025

·

666 Reads

·

1 Citation

·

·

·

[...]

·

Download

171 reads in the past 30 days

A global biogeographic regionalization for butterflies

January 2025

·

322 Reads

·

1 Citation

The partitioning of global biodiversity into biogeographic regions is critical for understanding the impacts of global-scale ecological and evolutionary processes on species assemblages as well as prioritizing areas for conservation. However, the lack of globally comprehensive data on species distributions precludes fine-scale estimation of biogeographical regionalization for numerous taxa of ecological, economic and conservation interest. Using a recently published phylogeny and novel curated native range maps for over 10 000 species of butterflies around the world, we delineated biogeographic regions for the world’s butterflies using phylogenetic dissimilarity. We uncovered 19 distinct phylogenetically delimited regions (phyloregions) nested within 6 realms. Regional boundaries were predicted by spatial turnover in modern-day temperature and precipitation seasonality, but historical climate change also left a pronounced fingerprint on deeper- (realm-) level boundaries. We use a culturally and ecologically important group of insects to expand our understanding of how historical and contemporary factors drive the distribution of organismal lineages on the Earth. As insects and global biodiversity more generally face unprecedented challenges from anthropogenic factors, our research provides the groundwork for prioritizing regions and taxa for conservation, especially with the goal of preserving the legacies of our biosphere’s evolutionary history. This article is part of the discussion meeting issue ‘Bending the curve towards nature recovery: building on Georgina Mace's legacy for a biodiverse future’.

Aims and scope


Philosophical Transactions B publishes high quality theme issues on topics of current importance and general interest within the life sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers. Each issue aims to create an original and authoritative synthesis, often bridging traditional disciplines, which showcases current developments and provides a foundation for future research, applications and policy decisions.

Recent articles


Characterization of extracellular vesicles released from Prochlorococcus MED4 at the steady state and under a light–dark cycle
  • Article
  • Full-text available

January 2025

·

6 Reads

·

1 Citation

Bacterial extracellular vesicles (EVs) are vesicles secreted by bacteria into the extracellular environment. Containing DNA, RNA and proteins, EVs are implicated to mediate intercellular communications. The marine cyanobacterium Prochlorococcus, the most abundant photosynthetic organism in marine ecosystems, has been shown to generate EVs continuously during cell growth. However, biogenesis and functions of EVs released by Prochlorococcus remain largely unclear. Here, we isolated and characterized EVs released by Prochlorococcus MED4 culture. We found that the majority of MED4 EVs are elliptical and enriched with specific proteins performing particular cellular functions. The light–dark cycle has been demonstrated to affect the cell cycle of Prochlorococcus, with cell division occurring at night time. Interestingly, we found that the net production of MED4 EVs was faster during the night time. Moreover, we revealed that MED4 EVs that are released or absorbed in the night time are enriched with distinct proteins, suggesting the release and absorbance of EVs are influenced by the diel cycle. We found that inhibiting cell division decreased the net production of MED4 EVs during the night time, suggesting that cell division is important for the biogenesis of MED4 EVs. These analyses provide novel insights into biogenesis and functions of EVs released from bacteria. This article is part of the Theo Murphy meeting issue ‘Circadian rhythms in infection and immunity’.


Seasonal plasticity in daily timing of flight activity in Anopheles stephensi is driven by temperature modulation of dawn entrainment

January 2025

·

14 Reads

·

1 Citation

The Asian malaria vector Anopheles stephensi is invading Africa, requiring it to adapt to novel climates and ecosystems. In part, this may be facilitated by An. stephensi’s poorly understood seasonal behavioural plasticity in flight timing, leading to earlier biting activity in cold Asian winters and later biting times in the warm summer. Changes in behavioural timing could be directly imposed by seasonal variation in ambient light and temperature levels or result from altered entrainment of intrinsically expressed circadian rhythms by these factors. We demonstrate that An. stephensi entrained flight activity timing is phase-locked to dawn and is not affected by constant ambient temperature, which cannot explain earlier biting activity in colder winters with later dawn. Instead, we show that where night temperatures are the colder part of daily temperature cycle; the entrained phase-angle between dawn and flight activity is altered, hereby increasingly colder, winter-like nights progressively advance flight activity onset. We propose that seasonal timing plasticity optimizes behaviour to warmer daytime in winter, and colder nights in summer, providing protection against both heat-desiccation and cold immobility. The adaptive advantage of this plasticity could be relevant to the successful invasion and survival of An. stephensi in African climates, and changing climate worldwide. This article is part of the Theo Murphy meeting issue, ‘Circadian rhythms in infection and immunity’.


Time to start taking time seriously: how to investigate unexpected biological rhythms within infectious disease research

The discovery of rhythmicity in host and pathogen activities dates back to the Hippocratic era, but the causes and consequences of these biological rhythms have remained poorly understood. Rhythms in infection phenotypes or traits are observed across taxonomically diverse hosts and pathogens, suggesting general evolutionary principles. Understanding these principles may enable rhythms to be leveraged in manners that improve drug and vaccine efficacy or disrupt pathogen timekeeping to reduce virulence and transmission. Explaining and exploiting rhythms in infections require an integrative and multidisciplinary approach, which is a hallmark of research within chronobiology. Many researchers are welcomed into chronobiology from other fields after observing an unexpected rhythm or time-of-day effect in their data. Such findings can launch a rich new research topic, but engaging with the concepts, approaches and dogma in a new discipline can be daunting. Fortunately, chronobiology has well-developed frameworks for interrogating rhythms that can be readily applied in novel contexts. Here, we provide a ‘how to’ guide for exploring unexpected daily rhythms in infectious disease research. We outline how to establish: whether the rhythm is circadian, to what extent the host and pathogen are responsible, the relevance for host–pathogen interactions, and how to explore therapeutic potential. This article is part of the Theo Murphy meeting issue ‘Circadian rhythms in infection and immunity’.


Circadian metabolic adaptations to infections

January 2025

·

8 Reads

·

1 Citation

Circadian clocks are biological oscillators that evolved to coordinate rhythms in behaviour and physiology around the 24-hour day. In mammalian tissues, circadian rhythms and metabolism are highly intertwined. The clock machinery controls rhythmic levels of circulating hormones and metabolites, as well as rate-limiting enzymes catalysing biosynthesis or degradation of macromolecules in metabolic tissues, such control being exerted both at the transcriptional and post-transcriptional level. During infections, major metabolic adaptation occurs in mammalian hosts, at the level of both the single immune cell and the whole organism. Under these circumstances, the rhythmic metabolic needs of the host intersect with those of two other players: the pathogen and the microbiota. These three components cooperate or compete to meet their own metabolic demands across the 24 hours. Here, we review findings describing the circadian regulation of the host response to infection, the circadian metabolic adaptations occurring during host–microbiota–pathogen interactions and how such regulation can influence the immune response of the host and, ultimately, its own survival. This article is part of the Theo Murphy meeting issue ‘Circadian rhythms in infection and immunity’.


Development of compounds for targeted degradation of mammalian cryptochrome proteins

January 2025

·

26 Reads

·

2 Citations

The mammalian cryptochrome proteins (CRY1 and CRY2) are transcriptional repressors most notable for their role in circadian transcriptional feedback. Not all circadian rhythms depend on CRY proteins, however, and the CRY proteins are promiscuous interactors that also regulate many other processes. In cells with chronic CRY deficiency, protein homeostasis is highly perturbed, with a basal increase in cellular stress and activation of key inflammatory signalling pathways. Here, we developed tools to delineate the specific effects of CRY reduction, rather than chronic deficiency, to better understand the direct functions of CRY proteins. Performing a bioluminescence screen and immunoblot validation, we identified compounds that resulted in CRY reduction. Using these compounds, we found that circadian PERIOD2 (PER2) protein rhythms persisted under CRY-depleted conditions. By quantitative mass spectrometry, we found that CRY-depleted cells partially phenocopied the proteomic dysregulation of CRY-deficient cells, but showed minimal circadian phenotypes. We did, however, also observe substantial off-target effects of these compounds on luciferase activity and could not ascertain a specific mechanism of action. This work therefore highlights both the utility and the challenges of targeted protein degradation and bioluminescence reporter approaches in disentangling the contribution of CRY proteins to circadian rhythmicity, homeostasis and innate immune regulation. This article is part of the Theo Murphy meeting issue ‘Circadian rhythms in infection and immunity’.


BioClocks UK: driving robust cycles of discovery to impact

January 2025

·

48 Reads

·

1 Citation

Chronobiology is a multidisciplinary field that extends across the tree of life, transcends all scales of biological organization, and has huge translational potential. For the UK to harness the opportunities presented within applied chronobiology, we need to build our network outwards to reach stakeholders that can directly benefit from our discoveries. In this article, we discuss the importance of biological rhythms to our health, society, economy and environment, with a particular focus on circadian rhythms. We subsequently introduce the vision and objectives of BioClocks UK, a newly formed research network, whose mission is to stimulate researcher interactions and sustain discovery-impact cycles between chronobiologists, wider research communities and multiple industry sectors. This article is part of the Theo Murphy meeting issue ‘Circadian rhythms in infection and immunity’.


Chronic CRYPTOCHROME deficiency enhances cell-intrinsic antiviral defences

January 2025

·

6 Reads

·

1 Citation

The within-host environment changes over circadian time and influences the replication and severity of viruses. Genetic knockout of the circadian transcription factors CRYPTOCHROME 1 and CRYPTOCHROME 2 (CRY1−/−/CRY2−/−; CKO) leads to altered protein homeostasis and chronic activation of the integrated stress response (ISR). The adaptive ISR signalling pathways help restore cellular homeostasis by downregulating protein synthesis in response to endoplasmic reticulum overloading or viral infections. By quantitative mass spectrometry analysis, we reveal that many viral recognition proteins and type I interferon (IFN) effectors are significantly upregulated in lung fibroblast cells from CKO mice compared with wild-type (WT) mice. This basal ‘antiviral state’ restricts the growth of influenza A virus and is governed by the interaction between proteotoxic stress response pathways and constitutive type I IFN signalling. CKO proteome composition and type I IFN signature were partially phenocopied upon sustained depletion of CRYPTOCHROME (CRY) proteins using a small-molecule CRY degrader, with modest differential gene expression consistent with differences seen between CKO and WT cells. Our results highlight the crosstalk between circadian rhythms, cell-intrinsic antiviral defences and protein homeostasis, providing a tractable molecular model to investigate the interface of these key contributors to human health and disease. This article is part of the Theo Murphy meeting issue ‘Circadian rhythms in infection and immunity’.


Circadian rhythms: pervasive, and often times evasive

January 2025

·

25 Reads

·

1 Citation

Most circadian texts begin by stating that clocks are pervasive throughout the tree of life. Indeed, clock mechanisms have been described from cyanobacteria to humans, representing a notable example of convergent evolution: yet, there are several phyla in animals, protists or within fungi and bacteria, in which homologs of some—or all—known clock components seem to be absent, posing inevitable questions about the evolution of circadian systems. Moreover, as we move away from model organisms, there are several taxa in which core clock elements can be identified at the genomic levels. However, the functional description of those putative clocks has been hard to achieve, as rhythmicity is not observed unless defined abiotic or nutritional cues are provided. The mechanisms ‘conditioning’ the functionality of clocks remain uncertain, emphasizing the need to delve further into non-model circadian systems. As the absence of evidence is not evidence of absence, the lack of known core-clock homologs or of observable rhythms in a given organism, cannot be an a priori criterion to discard the presence of a functional clock, as rhythmicity may be limited to yet untested experimental conditions or phenotypes. This article seeks to reflect on these topics, highlighting some of the pressing questions awaiting to be addressed. This article is part of the Theo Murphy meeting issue ‘Circadian rhythms in infection and immunity’.


Individual associations of self-reported sleep duration, sleep quality, chronotype and social jet lag with infectious disease risk

January 2025

·

15 Reads

·

1 Citation

Sleep deficiency is associated with infectious disease risk. However, little is known about the individual roles of different aspects of sleep, including sleep duration, sleep quality, sleep timing (assessed by chronotype) and sleep regularity (in the form of social jet lag) in this context. Here, we examined associations of the probability of reporting a cold or other infections with self-reported sleep duration, sleep quality and chronotype in a sample of 642 adults, and with social jet lag in a subsample of 274 adults. We found that short (≤ 6 h) and long sleepers (≥ 9 h) were more likely to report a cold in the past 30 days than average sleepers (7–8 h). Also, individuals with a definite evening chronotype were more likely to report a cold in the past 30 days than those with an intermediate chronotype, even when controlling for sleep duration. Finally, social jet lag was dose-dependently associated with the risk of reporting a cold in the past 12 months, independently of sleep duration, sleep quality and chronotype. No associations were found with sleep quality or with infections other than colds. The findings show that different aspects of sleep are independently associated with incidence of reported colds. This article is part of the Theo Murphy meeting issue ‘Circadian rhythms in infection and immunity’.


Developmental synchrony and extraordinary multiplication rates in pathogenic organisms

January 2025

·

21 Reads

·

1 Citation

The multiplication rates of pathogenic organisms influence disease progression, efficacy of immunity and therapeutics, and potential for within-host evolution. Thus, accurate estimates of multiplication rates are essential for biological understanding. We recently showed that common methods for inferring multiplication rates from malaria infection data substantially overestimate true values (i.e. under simulated scenarios), providing context for extraordinarily large estimates in human malaria parasites. A key unknown is whether this bias arises specifically from malaria parasite biology or represents a broader concern. Here, we identify the potential for biased multiplication rate estimates across pathogenic organisms with different developmental biology by generalizing a within-host malaria model. We find that diverse patterns of developmental sampling bias—the change in detectability over developmental age—reliably generate overestimates of the fold change in abundance, obscuring not just true growth rates but potentially even whether populations are expanding or declining. This pattern emerges whenever synchrony—the degree to which development is synchronized across the population of pathogenic organisms comprising an infection—decays with time. Only with simulated increases in synchrony do we find noticeable underestimates of multiplication rates. Obtaining robust estimates of multiplication rates may require accounting for diverse patterns of synchrony in pathogenic organisms. This article is part of the Theo Murphy meeting issue ‘Circadian rhythms in infection and immunity’.


PERspectives on circadian cell biology

January 2025

·

25 Reads

·

1 Citation

Daily rhythms in the activities of PERIOD proteins are critical to the temporal regulation of mammalian physiology. While the molecular partners and genetic circuits that allow PERIOD to effect auto-repression and regulate transcriptional programmes are increasingly well understood, comprehension of the time-resolved mechanisms that allow PERIOD to conduct this daily dance is incomplete. Here, we consider the character and controversies of this central mammalian clock protein with a focus on its intrinsically disordered nature. This article is part of the Theo Murphy meeting issue ‘Circadian rhythms in infection and immunity’.


Endocrine and molecular regulation of seasonal avian immune function

January 2025

·

43 Reads

·

1 Citation

Birds have evolved seasonal adaptations in multiple aspects of the innate and adaptive immune systems. Seasonal immunological adaptations are crucial for survival in harsh environmental conditions and in response to increased prevalence of acute and chronic diseases. Similar to other vertebrates, birds exhibit remarkable plasticity in cytokine production, chemotaxis, phagocytosis and inflammation across the year. In this review, we provide a comparative perspective on seasonal rhythms in bird immune function. We describe advances in our understanding of annual changes in immune cells and responses to innate and adaptive immune challenges. Then, the role of glucocorticoids, sex steroids, thyroid hormones (THs) and melatonin to act as immunomodulators is described. We then discuss the impact of a major and emerging disease, the high pathogenicity avian influenza, as one of the most critical seasonal diseases with significant implications for poultry and wild bird populations. The review identifies the need to enhance our knowledge of annual rhythms in immune cells and tissues in birds, at molecular, cellular and hormonal levels across the year. Moreover, there is a significant absence of information on sex-specific seasonal variation in immune function. Understanding seasonal immune system dynamics will aid in addressing the negative impacts of pathogenic diseases, minimize global economic losses and aid conservation efforts. This article is part of the Theo Murphy meeting issue ‘Circadian rhythms in infection and immunity’.


The role of the jasmonate signalling transcription factors MYC2/3/4 in circadian clock-mediated regulation of immunity in Arabidopsis

January 2025

·

9 Reads

·

1 Citation

Plants are exposed to pathogens at specific, yet predictable times of the day–night cycle. In Arabidopsis, the circadian clock influences temporal differences in susceptibility to the necrotrophic pathogen Botrytis cinerea. The jasmonic acid (JA) pathway regulates immune responses against B. cinerea. The paralogous basic helix–loop–helix transcription factors MYC2, MYC3 and MYC4 are primary regulators of the JA pathway, but their role in regulating temporal variation in immunity is untested. This study aimed to investigate the roles of the MYC transcription factors in the temporal defence response to B. cinerea. We inoculated leaves from wild-type, myc single-, double- and triple-knockout mutants, and lines overexpressing MYC2, MYC3 or MYC4, with B. cinerea at two times of day in constant light, and compared lesion sizes. The presence of MYC2, MYC3 or MYC4 alone was sufficient to maintain temporal variation in susceptibility, but this was abolished in the myc234 triple-knockout mutant. Constitutive expression of MYC2, MYC3 or MYC4 abolished time-of-day differences in susceptibility. The data suggest that MYC2, MYC3 and MYC4 function redundantly in regulating temporal defence responses against B. cinerea and are a point of convergence between the JA pathway and the circadian clock in Arabidopsis. This article is part of the Theo Murphy meeting issue ‘Circadian rhythms in infection and immunity’.


Immune regulation of host energy metabolism and periodicity of malaria parasites

January 2025

·

1 Read

·

1 Citation

The synchronization of Plasmodium parasites as they replicate within red blood cells of their vertebrate host remains largely unexplored. Understanding this synchronization could reveal how parasites optimize their lifecycle to maximize transmission, evade the immune response and maximize energy acquisition. Rhythmic replication fulfils some criteria of an endogenous oscillator with time of day cues potentially provided by temperature, oxygen levels, hormones and/or nutrient availability. Recent research on a rodent malaria model has highlighted that rhythms associated with the host’s feeding/fasting cycle are a crucial factor influencing the synchronization of the erythrocytic stages of Plasmodium to the host’s circadian cycle. Innate immune responses are also rhythmic and can regulate host metabolism, suggesting that the innate immune response triggered by Plasmodium contributes to its rhythmic replication. Here, we outline how the interplay between immune responses and metabolism could influence the timing and synchronization of Plasmodium’s replication rhythm, focusing on the roles of the cytokine tumour necrosis factor, mitochondrial function and metabolites generated by the tricarboxylic acid cycle in highly activated monocytes. These processes are pivotal in controlling parasitemia and determining disease outcome, suggesting that a better understanding of energy metabolism on rhythmic host–parasite interactions may provide new insights for therapeutic interventions against malaria. This article is part of the Theo Murphy meeting issue ‘Circadian rhythms in infection and immunity’.


Phenotypic and fitness consequences of plasticity in the rhythmic replication of malaria parasites

January 2025

·

4 Reads

·

1 Citation

The environments that parasites experience within hosts change dramatically over 24 h. How rhythms shape host–parasite–vector interactions is poorly understood owing to the challenges of disentangling the roles of rhythms of multiple interacting species in the context of the complex lifecycles of parasites. Using canonical circadian clock-disrupted hosts, we probe the limits of flexibility in the rhythmic replication of malaria (Plasmodium) parasites and quantify the consequences for fitness proxies of both parasite and host. We reveal that parasites alter the duration of their replication rhythm to resonate with host rhythms that have short (21 h) daily T-cycles as accurately as when infecting hosts with 24 h cycles, but appear less capable of extending their replication rhythm in hosts with long (27 h) cycles. Despite matching the period of short T-cycle hosts, parasites are unable to lock to the correct phase, likely leading to lower within-host productivity and a reduction in transmission potential. However, parasites in long T-cycle hosts do not experience substantial fitness costs. Furthermore, T-cycle duration does not affect disease severity in clock-disrupted hosts. Understanding the rhythmic replication of malaria parasites offers the opportunity to interfere with parasite timing to improve health and reduce transmission. This article is part of the Theo Murphy meeting issue issue ‘Circadian rhythms in infection and immunity’.


Circadian gating: concepts, processes, and opportunities

January 2025

·

5 Reads

·

1 Citation

Circadian clocks provide a biological measure of time that coordinates metabolism, physiology and behaviour with 24 h cycles in the environment. Circadian systems have a variety of characteristic properties, such as entrainment to environmental cues, a self-sustaining rhythm of about 24 h and temperature compensation of the circadian rhythm. In this perspective, we discuss the process of circadian gating, which refers to the restriction of a biological event to particular times of day by the circadian clock. We introduce principles and processes associated with circadian gating in a variety of organisms, including some associated mechanisms. We highlight socioeconomic opportunities presented by the investigation of circadian gating, using selected examples from circadian medicine and agricultural crop production to illustrate its importance. This article is part of the Theo Murphy meeting issue ‘Circadian rhythms in infection and immunity’.


Accounting for functionality in the identification of global conservation priorities: promises and pitfalls

January 2025

·

32 Reads

·

1 Citation

Whereas preventing species extinctions remains a central objective of conservation efforts, it must be complemented by the long-term preservation of functional ecosystems and of the benefits humans derive from them. Here, I review recent approaches that explicitly account for functionality in setting large-scale conservation priorities, discussing their promise while highlighting challenges and pitfalls. Crossing data on species’ distributions and ecological traits has enabled the mapping of global patterns of functional diversity and functional rarity and the identification of species that stand out for their functional distinctiveness. However, the priorities identified through these general indices do not directly address ecosystem functionality, instead, they are methods for ensuring the representation of individual functional traits as intrinsically valuable biodiversity elements. Three other approaches integrate functionality into large-scale priorities by taking into account the specific context of each ecosystem, site or species: the International Union for Conservation of Nature's Red List of Ecosystems, Key Biodiversity Areas and the Green Status of Species. Currently at various stages of development, testing and implementation, these approaches are playing an increasingly important role in the definition, implementation and monitoring of global- and national-scale conservation strategies to ensure the long-term persistence of ecosystem functions and associated ecosystem services. This article is part of the discussion meeting issue ‘Bending the curve towards nature recovery: building on Georgina Mace's legacy for a biodiverse future’.



A global biogeographic regionalization for butterflies

January 2025

·

322 Reads

·

1 Citation

The partitioning of global biodiversity into biogeographic regions is critical for understanding the impacts of global-scale ecological and evolutionary processes on species assemblages as well as prioritizing areas for conservation. However, the lack of globally comprehensive data on species distributions precludes fine-scale estimation of biogeographical regionalization for numerous taxa of ecological, economic and conservation interest. Using a recently published phylogeny and novel curated native range maps for over 10 000 species of butterflies around the world, we delineated biogeographic regions for the world’s butterflies using phylogenetic dissimilarity. We uncovered 19 distinct phylogenetically delimited regions (phyloregions) nested within 6 realms. Regional boundaries were predicted by spatial turnover in modern-day temperature and precipitation seasonality, but historical climate change also left a pronounced fingerprint on deeper- (realm-) level boundaries. We use a culturally and ecologically important group of insects to expand our understanding of how historical and contemporary factors drive the distribution of organismal lineages on the Earth. As insects and global biodiversity more generally face unprecedented challenges from anthropogenic factors, our research provides the groundwork for prioritizing regions and taxa for conservation, especially with the goal of preserving the legacies of our biosphere’s evolutionary history. This article is part of the discussion meeting issue ‘Bending the curve towards nature recovery: building on Georgina Mace's legacy for a biodiverse future’.


Towards a ‘people and nature’ paradigm for biodiversity and infectious disease

January 2025

·

80 Reads

·

2 Citations

Zoonotic and vector-borne infectious diseases are among the most direct human health consequences of biodiversity change. The COVID-19 pandemic increased health policymakers’ attention on the links between ecological degradation and disease, and sparked discussions around nature-based interventions to mitigate zoonotic emergence and epidemics. Yet, although disease ecology provides an increasingly granular knowledge of wildlife disease in changing ecosystems, we still have a poor understanding of the net consequences for human disease. Here, we argue that a renewed focus on wildlife-borne diseases as complex socio-ecological systems—a ‘people and nature’ paradigm—is needed to identify local interventions and transformative system-wide changes that could reduce human disease burden. We discuss longstanding scientific narratives of human involvement in zoonotic disease systems, which have largely framed people as ecological disruptors, and discuss three emerging research areas that provide wider system perspectives: how anthropogenic ecosystems construct new niches for infectious disease, feedbacks between disease, biodiversity and social vulnerability and the role of human-to-animal pathogen transmission (‘spillback’) in zoonotic disease systems. We conclude by discussing new opportunities to better understand the predictability of human disease outcomes from biodiversity change and to integrate ecological drivers of disease into health intervention design and evaluation. This article is part of the discussion meeting issue ‘Bending the curve towards nature recovery: building on Georgina Mace's legacy for a biodiverse future’.



Clustered warming tolerances and the nonlinear risks of biodiversity loss on a warming planet

January 2025

·

138 Reads

·

3 Citations

Anthropogenic climate change is projected to become a major driver of biodiversity loss, destabilizing the ecosystems on which human society depends. As the planet rapidly warms, the disruption of ecological interactions among populations, species and their environment, will likely drive positive feedback loops, accelerating the pace and magnitude of biodiversity losses. We propose that, even without invoking such amplifying feedback, biodiversity loss should increase nonlinearly with warming because of the non-uniform distribution of biodiversity. Whether these non-uniformities are the uneven distribution of populations across a species’ thermal niche, or the uneven distribution of thermal niche limits among species within an ecological community, we show that in both cases, the resulting clustering in population warming tolerances drives nonlinear increases in the risk to biodiversity. We discuss how fundamental constraints on species’ physiologies and geographical distributions give rise to clustered warming tolerances, and how population responses to changing climates could variously temper, delay or intensify nonlinear dynamics. We argue that nonlinear increases in risks to biodiversity should be the null expectation under warming, and highlight the empirical research needed to understand the causes, commonness and consequences of clustered warming tolerances to better predict where, when and why nonlinear biodiversity losses will occur. This article is part of the discussion meeting issue ‘Bending the curve towards nature recovery: building on Georgina Mace’s legacy for a biodiverse future’.


Revealing gaps in marine evidence with a natural capital lens

January 2025

·

29 Reads

·

1 Citation

The natural capital concept positions the natural environment as an asset, crucial for the flow of goods and benefits to humanity. There is a growing trend in applying this concept in marine environmental management in the United Kingdom (UK). This study evaluates six varied marine decisions across England, Scotland and Wales. It focuses on the evidence informing these decisions and the extent to which they represent the complete spectrum of marine natural assets and ecosystem services. We identified a reliance on various evidence types, including consultations, data and statistics, maps and literature reviews. Natural assets such as aquatic resources and energy sources were most frequently evidenced. Fishing was the predominant provisioning ecosystem service benefit. There was a notable gap in evidence on marine habitats’ water quality regulation service. Recreation and tourism dominated the cultural ecosystem service evidence, with less focus on indirect uses such as spiritual nature connections. We reveal gaps in the evidence in marine decisions on significant marine ecosystem service benefits. Our study provides additional evidence to an already identified need to fill evidence gaps in marine water regulation and non-use values of the UK’s marine environments. This article is part of the discussion meeting issue ‘Bending the curve towards nature recovery: building on Georgina Mace's legacy for a biodiverse future’.


An African perspective to biodiversity conservation in the twenty-first century

January 2025

·

167 Reads

·

1 Citation

Africa boasts high biodiversity while also being home to some of the largest and fastest-growing human populations. Although the current environmental footprint of Africa is low compared to other continents, the population of Africa is estimated at around 1.5 billion inhabitants, representing nearly 18% of the world’s total population. Consequently, Africa’s rich biodiversity is under threat, yet only 19% of the landscape and 17% of the seascape are under any form of protection. To effectively address this issue and align with the Convention on Biological Diversity’s ambitious ‘30 by 30’ goal, which seeks to protect 30% of the world’s land and oceans by 2030, substantial funding and conservation measures are urgently required. In response to this critical challenge, as scientists and conservationists working in Africa, we propose five recommendations for future directions aimed at enhancing biodiversity conservation for the betterment of African society: (i) accelerate data collection, data sharing and analytics for informed policy and decision-making; (ii) innovate education and capacity building for future generations; (iii) enhance and expand protected areas, ecological networks and foundational legal frameworks; (iv) unlock creative funding channels for cutting-edge conservation initiatives; and (v) integrate indigenous and local knowledge into forward-thinking conservation strategies. By implementing these recommendations, we believe Africa can make significant strides towards preserving its unique biodiversity, while fostering a healthier society, and contributing to global conservation efforts. This article is part of the discussion meeting issue ‘Bending the curve towards nature recovery: building on Georgina Mace's legacy for a biodiverse future’.


Measuring trends in extinction risk: a review of two decades of development and application of the Red List Index

January 2025

·

262 Reads

·

3 Citations

The Red List Index (RLI) is an indicator of the average extinction risk of groups of species and reflects trends in this through time. It is calculated from the number of species in each category on the IUCN Red List of Threatened Species, with trends influenced by the number moving between categories when reassessed owing to genuine improvement or deterioration in status. The global RLI is aggregated across multiple taxonomic groups and can be disaggregated to show trends for subsets of species (e.g. migratory species), or driven by particular factors (e.g. international trade). National RLIs have been generated through either repeated assessments of national extinction risk in each country or through disaggregating the global index and weighting each species by the proportion of its range in each country. The RLI has achieved wide policy uptake, including by the Convention on Biological Diversity and the United Nations Sustainable Development Goals. Future priorities include expanding its taxonomic coverage, applying the RLI to the goals and targets of the Kunming–Montreal Global Biodiversity Framework, incorporating uncertainty in the underlying Red List assessments, integrating into national RLIs the impact of a country on species’ extinction risk abroad, and improving analysis of the factors driving trends. This article is part of the discussion theme issue ‘Bending the curve towards nature recovery: building on Georgina Mace's legacy for a biodiverse future’.


Journal metrics


5.4 (2023)

Journal Impact Factor™


12.0 (2023)

CiteScore™


2.8 (2023)

Immediacy Index


0.03862 (2023)

Eigenfactor®


2.461 (2023)

Article Influence Score


1.629 (2023)

SNIP


GBP 1995 / USD 2795 / EUR 2398

Article processing charge

Editors