1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a potent toxin used to selectively destroy dopaminergic neurons in the substantia nigra and induce parkinsonism. MPTP is metabolised to the 1-methyl-4-phenylpyridinium ion (MPP(+)) in glia, after which it enters the neuron via the dopamine transporter and results in elevated levels of oxidative stress. The mechanism through which MPP(+) causes cell death is thought to involve redox-active metals, particularly iron (Fe). This review will examine how cellular metal metabolism is altered following MPTP insult, and how this relates to metal dyshomeostasis in idiopathic Parkinson's disease. This includes both cell damage arising from increased metal concentration, and how metal-binding proteins respond to MPTP-induced neurotoxicity. Implications for using MPTP as a model for human Parkinson's disease will be discussed in terms of cell metallobiology.
(E)- and (Z)-3-Ferrocenylmethylidene-1,3-dihydro-2H-indol-2-ones 1 have been structurally modified in order to explore SAR against a range of kinases. Of note is the submicromolar to low micromolar inhibition of DYRK3 and 4 by a number of complexes. Screening using Xenopus embryos showed some of the compounds to have potent antiangiogenisis activity.
Prion diseases are progressive neurodegenerative diseases that are associated with the conversion of normal cellular prion protein (PrP(C)) to abnormal pathogenic prion protein (PrP(SC)) by conformational changes. Prion protein is a metal-binding protein that is suggested to be involved in metal homeostasis. We investigated here the effects of trace elements on the conformational changes and neurotoxicity of synthetic prion peptide (PrP106-126). PrP106-126 exhibited the formation of β-sheet structures and enhanced neurotoxicity during the aging process. The co-existence of Zn(2+) or Cu(2+) during aging inhibited β-sheet formation by PrP106-126 and attenuated its neurotoxicity on primary cultured rat hippocampal neurons. Although PrP106-126 formed amyloid-like fibrils as observed by atomic force microscopy, the height of the fibers was decreased in the presence of Zn(2+) or Cu(2+). Carnosine (β-alanyl histidine) significantly inhibited both the β-sheet formation and the neurotoxicity of PrP106-126. Our results suggested that Zn(2+) and Cu(2+) might be involved in the pathogenesis of prion diseases. It is also possible that carnosine might become a candidate for therapeutic treatments for prion diseases.
Protein tyrosine phosphatases (PTPs) are key enzymes in cellular regulation. The 107 human PTPs are regulated by redox signalling, phosphorylation, dimerisation, and proteolysis. Recent findings of very strong inhibition of some PTPs by zinc ions at concentrations relevant in a cellular environment suggest yet another mechanism of regulation. One of the most extensively investigated PTPs is PTP1B (PTPN1). It regulates the insulin and leptin signalling pathway and is implicated in cancer and obesity/diabetes. The development of novel assay conditions to investigate zinc inhibition of PTP1B provides estimates of about 5.6 nM affinity for inhibitory zinc(ii) ions. Analysis of three PTP1B 3D structures (PDB id: , and ) identified putative zinc binding sites and supports the kinetic studies in suggesting an inhibitory zinc only in the closed and cysteinyl-phosphate intermediate forms of the enzyme. These observations gain significance with regard to recent findings of regulatory roles of zinc ions released from the endoplasmic reticulum.
Several Zn(II) complexes (2a-e) of 1-arylmethyl-2,5-dihydro-4-hydroxy-5-oxo-1H-pyrrole-3-carboxylates (1a-e), known drug candidates for diabetic complications, were synthesized and proved to have in vitro insulin-mimetic activities, suggesting that these complexes are potential chemotherapeutics that are effective against both diabetes and diabetic complications.
Ruthenium-indazole complexes are promising anticancer agents undergoing clinical trials. KP1339 is administered intravenously (i.v.), where serum proteins are the first available biological binding partners. In order to gain a better insight into the mode of action, mice were treated with different doses of KP1339 i.v. and sacrificed at different time points. The blood plasma was isolated from blood samples and analyzed by capillary zone electrophoresis (CZE) and size exclusion/anion exchange chromatography (SEC-IC) both combined on-line to inductively coupled plasma-mass spectrometry (ICP-MS). The performance of the analytical methodology was compared and the interaction of KP1339 with mouse plasma proteins characterized in vivo. Interestingly, the samples of the mice treated with 50 mg kg(-1) and terminated after 24 h showed a ca. 4-fold lowered albumin content and increased ruthenation of albumin aggregates as compared to the untreated control group and the 40 mg kg(-1) group. The majority of Ru was bound to albumin and the stoichiometry of the KP1339 protein binding was determined through the molar Ru/S ratio. In general, good agreement of the data obtained with both techniques was achieved and the SEC-IC method was found to be more sensitive as compared to the CZE-ICP-MS approach, whereas the latter benefits from the shorter analysis time and lower sample consumption.
A series of [Pt(ii)Cl2(4,4'-dialkoxy-2,2'-bipyridine)] complexes of the general formula of [Pt(ii)Cl2(4,4'-bis(RO)-2,2'-bipyridine)] (where R = -(CH2)n-1CH3, n = 2-6, 8) were synthesized and characterized using (1)H NMR, (13)C NMR spectroscopy, elemental analysis, mass spectroscopy, and differential scanning calorimetry measurements. The in vitro anti-proliferative activities of these compounds were evaluated against human cancer cell lines A549 (lung adenocarcinoma), DU145 (prostate carcinoma), MCF-7 (breast adenocarcinoma), and MDA-MB-435 (melanoma) using the MTS cell proliferation assay. Several Pt(ii) coordination compounds were found to have greatly enhanced activity compared to cisplatin after a one hour treatment in all cell lines tested. A structure-activity relationship was observed, that is, the activity increases as the carbon chain length of the alkyl group increases. The activity was maximum when the carbon chain length reached four or five carbons and decreased with the longer carbon chain length. Fluorescence microscopy and flow cytometry data indicate that the main mode of cell death is through apoptosis with some necrotic responses.
To discover whether novel anti-tumor platinum agents are capable of selectively accumulating in tumor tissue, three novel potassium N-[(2S,3R,4R,5R)-2,3,4,5,6-pentahydroxylhex-1-yl]-L-amino acid dichloroplatinates(II) were prepared. At a dose of 1.67 μmol kg(-1) the in vivo anti-tumor potencies of two of the compounds were higher than that of oxaliplatin. The mortality analysis indicated that these compounds resulted in a 100% survival rate, whereas oxaliplatin lead to an 80% survival rate. The organ damage examination indicated that these compounds induced less damage than oxaliplatin. The platinum accumulation in the organs, blood and bone was significantly lower than that of oxaliplatin treated mice, while the platinum accumulation in the tumor tissue was significantly higher than that of the oxaliplatin treated mice.
Open in new tabDownload slide
This themed issue of Metallomics captures just a little of what you might have missed in Cincinnati.
Graphical Abstract
Open in new tabDownload slide
This themed issue of Metallomics captures just a little of what you might have missed in Cincinnati.
Polypyridyl pentadentate ligands N4Py (1) and Bn-TPEN (2), along with their respective iron complexes, have been investigated for their ability to inhibit the purified 20S proteasome. Results demonstrated that the iron complexes of both ligands are potent inhibitors of the 20S proteasome (IC(50) = 9.2 μM for [Fe(II)(OH(2))(N4Py)](2+) (3) and 4.0 μM for [Fe(II)(OH(2))(Bn-TPEN)](2+) (4)). Control experiments showed that ligand 1 or Fe(II) alone showed no inhibition, whereas 2 was moderately active (IC(50) = 96 μM), suggesting that iron, when bound to these ligands, plays a key role in proteasome inhibition. Results from time-dependent inactivation studies suggest different modes of action for the iron complexes. Time-dependent decay of proteasome activity was observed upon incubation in the presence of 4, which accelerated in the presence of DTT, suggesting reductive activation of O(2) and oxidation of the 20S proteasome as a mode of action. In contrast, loss of 20S proteasome activity was not observed with 3 over time, suggesting inhibition through direct binding of the iron complex to the enzyme. Inhibition of the 20S proteasome by 4 was not blocked by reactive oxygen species scavengers, consistent with a unique oxidant being responsible for the time-dependent inhibition observed.
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was developed as a powerful analytical technique for metal imaging of 2D gels for the detection of metalloproteins in rat kidney after electrophoretic separation. Protein complexes, extracted with water, were separated in their native state in the first and second dimension by blue native gel electrophoresis (BN-PAGE). Essential and toxic metals, such as zinc, copper, iron, manganese and lead, were monitored by LA-ICP-MS after gel ablation by a focused laser beam in a way that the total surface of a selected fragment of the gel was totally ablated. The metal distribution of this part of the gel was then constructed by plotting the metal (isotope) signal intensity as a function of the x,y (isoelectric point, molecular mass) coordinates of the gel. The proteins at locations rich in metals were cut out, digested with trypsin and analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS).
Potentiometric titrations of the cytochrome c oxidase (CcO) immobilized in a biomimetic membrane system were followed by two-dimensional surface-enhanced IR absorption spectroscopy (2D SEIRAS) in the ATR-mode. Direct electron transfer was employed to vary the redox state of the enzyme. The CcO was shown to undergo a conformational transition from a non-activated to an activated state after it was allowed to turnover in the presence of oxygen. Differences between the non-activated and activated state were revealed by 2D SEIRA spectra recorded as a function of potential. The activated state was characterized by a higher number of correlated transitions as well as a higher number of amino acids associated with electron transfer.
This work reports the use of 2D-HPLC-ICP-MS to enlarge metallomics information when considering soybean seeds. Separations using size exclusion chromatography (SEC) allowed the identification of three metal fractions: the first corresponding to molecular weights from 38.1 to 181.1 kDa, the second from 8.2 to 17.2 kDa and the third from 0.4 to 3.8 kDa. In a second dimension, using anion exchange chromatography (AEX), three sub-fractions containing Fe, Mg and Mn, one containing Cu, and three containing Co, Cu, Mg, Mn and Zn were obtained. After these separations, 33 proteins were identified using the ESI-MS/MS technique, and divided into four functional categories: plant growth/cell division, protein destination and storage, metabolism and unclassified proteins. Among the identified proteins, proteins previously related to metals were found.
Glutaredoxins have been characterised as enzymes regulating the redox status of protein thiols via cofactors GSSG/GSH. However, such a function has not been demonstrated with physiologically relevant protein substrates in in vitro experiments. Their active sites frequently feature a Cys-xx-Cys motif that is predicted not to bind metal ions. Such motifs are also present in copper-transporting proteins such as Atox1, a human cytosolic copper metallo-chaperone. In this work, we present the first demonstration that: (i) human glutaredoxin 1 (hGrx1) efficiently catalyses interchange of the dithiol and disulfide forms of the Cys(12)-xx-Cys(15) fragment in Atox1 but does not act upon the isolated single residue Cys(41); (ii) the direction of catalysis is regulated by the GSSG/2GSH ratio and the availability of Cu(i); (iii) the active site Cys(23)-xx-Cys(26) in hGrx1 can bind Cu(i) tightly with femtomolar affinity (KD = 10(-15.5) M) and possesses a reduction potential of E(o)' = -118 mV at pH 7.0. In contrast, the Cys(12)-xx-Cys(15) motif in Atox1 has a higher affinity for Cu(i) (KD = 10(-17.4) M) and a more negative potential (E(o)' = -188 mV). These differences may be attributed primarily to the very low pKa of Cys23 in hGrx1 and allow rationalisation of conclusion (ii) above: hGrx1 may catalyse the oxidation of Atox1(dithiol) by GSSG, but not the complementary reduction of the oxidised Atox1(disulfide) by GSH unless Cuaq(+) is present at a concentration that allows binding of Cu(i) to reduced Atox1 but not to hGrx1. In fact, in the latter case, the catalytic preferences are reversed. Both Cys residues in the active site of hGrx1 are essential for the high affinity Cu(i) binding but the single Cys(23) residue only is required for the redox catalytic function. The molecular properties of both Atox1 and hGrx1 are consistent with a correlation between copper homeostasis and redox sulfur chemistry, as suggested by recent cell experiments. These proteins appear to have evolved the features necessary to fill multiple roles in redox regulation, Cu(i) buffering and Cu(i) transport.
Rat basophilic leukemia RBL-2H3 cells show markedly high sensitivity to both CdCl2 and MnCl2 compared with other rat cell lines, due to efficient accumulation of cadmium and manganese. To clarify the roles of metal transporters in hyperaccumulation of cadmium and manganese in RBL-2H3 cells, Cd-resistant and Mn-resistant cells were developed from RBL-2H3 cells by continuous exposure to CdCl2 and MnCl2, respectively. The established Cd-resistant (RBL-Cdr) and Mn-resistant (RBL-Mnr) cells exhibited about 20 times higher LC50 values of CdCl2 and MnCl2, respectively, than parental RBL-2H3 cells, and showed cross-resistance to each metal. The resistance to cadmium and manganese was primarily conferred by a marked decrease in the uptake of both metals. RBL-Cdr cells also showed cross-resistance to HgCl2 and AgNO3 probably due to enhanced expression of metallothionein. Among the possible transporters involved in the uptake of Cd(2+) and Mn(2+), the expression of ZIP8 (Zrt-, Irt-related protein 8), encoded by Slc39a8, showed a marked suppression in both RBL-Cdr and RBL-Mnr cells. These results suggest that ZIP8 plays a pivotal role in the transport and toxicity of Cd(2+) and Mn(2+) in RBL-2H3 cells.
Cellular incorporation of Cd involves multiple transport systems for other metals such as Fe, Zn, Mn, and Ca. Metal transporters including divalent metal transporter 1, Zrt/Irt-related protein (ZIP) 8, and ZIP14, and certain types of voltage-dependent Ca channels have been shown to be involved in cellular Cd uptake. However, tissue- or cell-specific roles of these metal transporters in the accumulation and toxicity of Cd remains unclear. In the present study, we compared the sensitivity to and accumulation of Cd, Mn, and Zn among four types of rat cell lines. Rat basophilic leukemia RBL-2H3 cells showed the highest sensitivity to Cd and Mn due to the highest accumulation of Cd and Mn among the four cell lines. The high accumulation of Cd and Mn was caused by high uptake rates of Cd and Mn. Since relatively high expression of ZIP8 and ZIP14 was found in RBL-2H3 cells, siRNAs of ZIP8 and ZIP14 were transfected into RBL-2H3 cells. The knockdown of ZIP8, but not of ZIP14, significantly reduced the uptake rates of Cd and Mn in RBL-2H3 cells, especially in the presence of bicarbonate. These results suggest that the high expression of ZIP8, which is known to have affinities for both Cd and Mn, resulted in high accumulation of Cd and Mn, leading to high sensitivity to these metals in RBL-2H3 cells. Thus, RBL-2H3 cells may serve as a good model for clarifying the mechanisms of Cd and Mn transport via ZIP8.
The reaction of Re(CO)(3)(H(2)O)(3)(+) with hen egg white lysozyme in aqueous solution results in a single covalent adduct. Both NMR spectroscopy and single crystal X-ray diffraction show that the rhenium tricarbonyl cation binds to His15 via replacement of one of the coordinated water molecules. The formation of this adduct does not greatly affect the structure of the protein.
The aim of this study was to radiolabel ciprofloxacin (Cip) and nitrofuryl thiosemicarbazone (NFT) with the fac-[(99m)Tc(CO)(3)(H(2)O)(3)](+) core and to evaluate the ability of the radiopharmaceuticals as tracers in detecting sites of infection. Cip and NFT were radiolabeled with the fac-[(99m)Tc(CO)(3)(H(2)O)(3)](+) core and characterized by RHPLC. The stabilities of the preparations were evaluated in saline and rat serum. In vitro binding studies of the radiopharmaceuticals with S. aureus were performed. Biodistribution studies were conducted at different time points after injecting (i.v.) the radiopharmaceuticals in rats (intramuscularly infected with S. aureus) as well as in rats with sterile inflammation. To assess the infection targeting capacity of (99m)Tc-tricarbonyl ciprofloxacin and nitrofuryl thiosemicarbazone, (99m)Tc(v)O-Cip and (99m)Tc(v)O-NFT were used as control. Scintigraphic imaging studies of tricarbonyl compounds and (99m)Tc(v)O-Cip were performed at 4 h after injection. The radiochemical purities of (99m)Tc(CO)(3)-Cip and (99m)Tc(CO)(3)-NFT were between 97-98% as determined by thin layer chromatography (TLRC) and RHPLC; no further purification is necessary before injection. The radiopharmaceuticals exhibited substantial stability when incubated in isotonic saline and serum up to 24 h. Biodistribution studies showed maximum uptake in the infected rat thigh muscle at 4 h post injection and washing out at slower rate from the infected site than the oxo technetium chelate. The mean ratios of uptake in infected/non-infected thighs were 3.87:1, 3.41:1 and 3.17:1 for (99m)Tc(CO)(3)-Cip, (99m)Tc(CO)(3)-NFT and (99m)Tc(v)O-Cip respectively. During scintigraphic studies, infection sites appeared quite distinctly with (99m)Tc(CO)(3)-Cip and (99m)Tc(CO)(3)-NFT, comparable to the behaviour with (99m)Tc(v)O-Cip. These results encouraged us for further development of infection imaging radiopharmaceuticals based on the (99m)Tc-tricarbonyl core.
Approximately 40% of all proteins are metalloproteins, and approximately 80% of Earth's ecosystems are at temperatures ≤5 °C, including 90% of the global ocean. Thus, an essential aspect of marine metallobiochemistry is an understanding of the structure, dynamics, and mechanisms of cold adaptation of metalloproteins from marine microorganisms. Here, the molecular structure of the electron-transfer protein cytochrome c552 from the psychrophilic marine bacterium Colwellia psychrerythraea 34H has been determined by X-ray crystallography (PDB: ). The structure is highly superimposable with that of the homologous cytochrome from the mesophile Marinobacter hydrocarbonoclasticus. Based on structural analysis and comparison of psychrophilic, psychrotolerant, and mesophilic sequences, a methionine-based ligand-substitution mechanism for psychrophilic protein stabilization is proposed.
Lanthanides are widely used in various fields for industrial, agricultural and medical purposes. They have also been used in Chinese agriculture either as fertilizers in plant production or as performance-enhancers in animal nutrition for many years. In view of their possible application for growth enhancing purposes and new medical applications, detailed information on how lanthanides influence physiological processes in biological systems is indispensable. In the present work, the effects of lanthanides (LaCl3, CeCl3 and GdCl3) on cell proliferation and adipogenesis in 3T3-L1 preadipocytes were evaluated. The results demonstrate that lanthanides inhibit adipogenesis in 3T3-L1 preadipocytes, evidenced by decreased triglyceride content and expression of C/EBPα and PPARγ. Simultaneously, the results show that lanthanides can promote cell proliferation during the different stages of differentiation. Firstly, prior to the addition of differentiation inducers (MDI), all the three types of lanthanides resulted in a significant increase of cell growth. Secondly, during the mitotic clonal expansion (MCE) process, GdCl3, as a representative compound, is able to promote cell-cycle entry into the S phase and levels of cell cycle-regulating proteins. Third, at the late stage of the terminal differentiation, on day 8, in the presence of GdCl3, cells exhibited higher levels of G1/S regulatory proteins and proliferating cell nuclear antigen (PCNA). In addition, GdCl3 caused stronger sustained ERK activation during the differentiation process of 3T3-L1 cells. The present study demonstrates that lanthanides may modulate lipid metabolism by inhibition of adipocyte differentiation. The sustained activation of the ERK pathway might be responsible for their inhibition of differentiation and a possible link between their pro-proliferative ability and inhibition of the differentiation process is indicated.
Metal dyshomeostasis plays a crucial role in promoting several neurodegenerative diseases including Alzheimer's disease (AD), a condition that has been linked to deregulation of brain levels of Al, Fe, Mn, Cu, and Zn. Thus, quantitative multi-element profiling of brain tissues from AD models can be of great value in assessing the pathogenic role of metals as well as the value of therapeutic interventions aimed at restoring metal homeostasis in the brain. In this study, we employed low resolution inductively coupled plasma mass spectrometry (ICP-MS) to evaluate levels of ultra-trace, trace, and major elements in brains and cerebella of 3xTg-AD mice, a well characterized transgenic (Tg) AD model. This method is based on alternated cool and hot plasma ICP-MS. The essay fulfilled analytical requirements for the quantification of 14 elements in the Central Nervous System (CNS) of our Tg model. Quantification of Li, Al, Cr, and Co, a procedure that requires a pre-concentration step, was validated by high resolution ICP-MS. Changes in element profiles occurring in 3xTg-AD mice were compared to the ones observed in wild type (WT) mice. We also investigated variations in element profiles in 3xTg-AD mice receiving a long-term (17 months) dietary supplementation of Zn. Our data indicate that, compared to WT animals, 3xTg-AD mice displayed signs of altered brain metal homeostasis. We also found that long-term Zn administration promoted decreased brain levels of some metals (K, Ca, and Fe) and restored levels of Al, Cr, and Co to values found in WT mice.
The recently sequenced genome of the marine actinomycete Salinispora tropica CNB-440 revealed a high frequency of gene clusters which code for the biosynthesis of known and novel secondary metabolites. Of these metabolites, bioinformatics analysis predicted that S. tropica CNB-440 could potentially biosynthesize, as high affinity Fe(iii) ligands, siderophores from the hydroxamic acid desferrioxamine class (sid1 gene cluster) and the phenolate-thia(oxa)zoli(di)ne class (sid2 and sid4 gene clusters). In this work, we have used Ni(ii)-based immobilized metal ion affinity chromatography (IMAC) to pre-fractionate the hydroxamic acid siderophore metabolome of S. tropica CNB-440 from the secondary metabolome, to reveal low abundance siderophores. LC-MS measurements and electronic absorption spectra from purified extracts incubated with exogenous Fe(iii) revealed eight siderophores from the desferrioxamine class (DFOA2, DFOA1a, DFOA1b, DFOB, DFON, DFOD2, DFOE, DFOD1), which included two constitutional isomers (DFOA1a, DFOA1b), and one new siderophore (DFON), the latter which would require assembly from a combination of 1,5-diaminopentane and 1,6-diaminohexane as diamine substrates. Three additional species (m/zobs 496.14, 792.34 and 804.34) with electronic absorption spectra characteristic of complexes formed between Fe(iii) and hydroxamic acid-type siderophores were evident under some conditions. The signal at m/zobs 792.34 eluted in the hydrophobic region of the reverse-phase LC and correlated with a DFOD1 analogue with a C-terminal branched chain fatty acid ([M + K(+)](+)m/zcalc 792.35), which has been previously identified from marine sediment dwelling Micrococcus luteus KLE1011. The S. tropica CNB-440 hydroxamic acid siderophore metabolome was modulated by culture conditions (pH 7, 22 °C; pH 7, 28 °C; pH 9, 28 °C) designed to simulate the variable marine environment. An increase in temperature at constant pH value showed increased levels of DFOA2 and DFOA1, and decreased levels of DFOB and DFOE. An increase in pH value at constant temperature showed decreased levels of DFOA2 and DFOA1, and increased levels of DFOB, DFON and DFOE. These results indicate that the marine adaptation of S. tropica CNB-440 could involve its ability to select a suite of siderophores from a large number of candidates, which are optimized for the iron microenvironment.
Background:
56MESS has been shown to be cytotoxic but the mode of this action is unclear. In order to probe the mechanism of action for 56MESS, MDCK cells were utilised to investigate the effect on treated cells.
Results:
IC50 values for 56MESS and cisplatin in the MDCK cell line, determined by a SRB assay, were 0.25 ± 0.03 and 18 ± 1.2 μM respectively. In a preliminary study, cells treated with 56MESS displayed no caspase-3/7 activity, suggesting that the mechanism of action is caspase independent. Protein expression studies revealed an increase the expression in the MTC02 protein associated with mitochondria in cells treated with 56MESS and cisplatin. Non-synchronised 56MESS-treated cells caused an arrest in the G2/M phase of the cell cycle, in comparison to the S phase arrest of cisplatin. In G0/G1 synchronised cells, both 56MESS and cisplatin both appeared to arrest within the S phase.
Conclusions:
these results suggest that 56MESS is capable of causing cell-cycle arrest, and that mitochondrial and cell cycle proteins may be involved in the mode of action of cytotoxicity of 56MESS.
Severe environmental problems arise from old uranium mines, which continue to discharge uranium (U) via acid mine drainage water, resulting in soil, subsoil and groundwater contamination. Bioremediation of U contaminated environments has been attempted, but most of the conceptual models propose U removal by cell suspensions of anaerobic bacteria. In this study, strain Rhodanobacter A2-61, isolated from Urgeiriça Mine, Portugal, was shown to resist up to 2 mM of U(vi). The conditions used (low nutrient content and pH 5) potentiated the interaction of the toxic uranyl ion with the tested strain. The strain was able to remove approximately 120 μM of U(vi) when grown aerobically in the presence of 500 μM U. Under these conditions, this strain was also able to lower the phosphate concentration in the medium and increased its capacity to take up inorganic phosphate, accumulating up to 0.52 μmol phosphate per optical density unit of the medium at 600 nm, after 24 hours, corresponding approximately to the late log phase of the bacterial culture. Microscopically dense intracellular structures with nanometer size were visible. The extent of U inside the cells was quantified by LS counting. EDS analysis of heated cells showed the presence of complexes composed of phosphate and uranium, suggesting the simultaneous precipitation of U and phosphate within the cells. XRD analysis of the cells containing the U-phosphate complexes suggested the presence of a meta-autunite-like mineral structure. SEM identified, in pyrolyzed cells, crystalline nanoparticles with shape in the tetragonal system characteristic of the meta-autunite-like mineral structures. U removal has been reported previously but mainly by cell suspensions and through release of phosphate. The innovative Rhodanobacter A2-61 can actively grow aerobically, in the presence of U, and can efficiently remove U(vi) from the environment, accumulating it in a structural form consistent with that of the mineral meta-autunite inside the cell, corresponding to effective metal immobilization. This work supports previous findings that U bioremediation could be achieved via the biomineralization of U(vi) in phosphate minerals.
Copper is an essential micronutrient for all living organisms. ATP7A protein is a copper-transporting ATPase which plays a vital role in the maintenance of cellular copper homeostasis in mammals. This protein is retained within the trans-Golgi network, but after binding copper it can be translocated to the cell membrane to participate in the efflux of excess Cu. Mutation of the ATP7A gene in humans results in the severe neurodegenerative disorder, Menkes disease. The mouse ATP7A homolog encodes a protein that plays the same role in copper transport. Mosaic mutant mice display a lethal phenotype which resembles Menkes disease, although the underlying molecular defect has not been characterized until now. In the present study we identified a G to C nucleotide exchange in exon 15 of the Atp7a gene in mosaic mutants, which resulted in an arginine to proline substitution in the highly conserved 6th transmembrane domain of the ATP7A protein. This mutated protein was mislocalized in kidney cells isolated from mosaic mutant mice, and following exposure of these cells to increased copper concentrations it was not translocated to the plasma membrane. Disturbance of ATP7A function in mosaic mice results in increased copper accumulation in the small intestine and kidneys, and in Cu deficiency in the brain, liver and heart. Mouse models of Menkes disease belong to the mottled mutant group. The mosaic mutant represents another interesting animal model for Menkes disease that will be of value in research on copper metabolism and transport in mammals.
Urinary excretion of selenium after ingestion of isotope labeled selenite and selenate was studied in seven healthy volunteers, 4 men and 3 women (age 28-50 years). An aqueous solution containing 330 μL (82)Se-selenate (corresponding to 74.3 μg (82)Se) was given orally and urine samples were subsequently collected during the following 24 hours. The scheme was repeated four weeks later with a 280 μL (82)Se-selenite solution (corresponding to 74.4 μg (82)Se). The amount of total Se in the urine samples was determined by inductively coupled mass spectrometry. The mean total urinary excretion of (82)Se following (82)Se-selenate administration was 33.7% (range 15.6-42.5%) while the mean total excretion of (82)Se after (82)Se-selenite administration was 3.2% (range 2.8-3.9%) of the ingested amount. LC-ICPMS analysis of the urine samples showed that the majority of the selenium excreted after selenate ingestion was unchanged selenate for 6 of the individuals while one individual had metabolized a fraction (approx. 20%) of the selenate to selenosugar. Ingestion of 10 times larger doses of selenite in two individuals resulted in 13-23% excretion primarily excreted as selenosugar. These results show that the human metabolic pathways of selenite and selenate are different and indicate that not all selenate, although well absorbed, may be available for the beneficial health effects.
The organic Se compounds (particularly selenomethionine [SeMet]) in plants and yeasts are very effective chemoprotectants for mammalian cancer. To characterize the dynamics of selenomethionine utilization pathways, we intravenously injected (82)Se-enriched SeMet into mice under different nutritional states (Se-adequate and Se-deficient mice) and then measured their endogenous and exogenous (82)Se levels. Furthermore, we quantified Se compounds and selenoproteins in liver, kidneys, plasma, and urine. The average recoveries of exogenous (82)Se from solid tissues, urine, and feces were 81% for Se-adequate mice and 84% for Se-deficient mice. Exogenous (82)Se was distributed in the hepatic and renal cytosols as cellular glutathione peroxidase (cGPx), selenosugar, and SeMet within 1 h after injection. Synthesis of cGPx was maintained until 72 h after injection, regardless of the Se nutritional status. Whereas plasma levels of exogenous (82)Se as selenoprotein P (Sel-P) peaked at 6 h after injection, those of Se-containing albumin (SeAlb), extracellular GPx, and SeMet peaked at 1 h after injection. These results suggest three Se transport pathways in mice injected with SeMet: SeAlb (within 1 h after injection); SeMet (from 1 to 72 h after injection); and Sel-P (from 6 to 72 h after injection). The amount of Sel-P in Se-deficient mice was 1.5 times that of Se-adequate mice, and this increase was much larger than Se-containing compounds other than Sel-P. Our results indicate that Sel-P has an important role in Se transport when the nutritional supply of Se is insufficient.
The aim of this study was to develop (99m)Tc(CO)(3)-labeled fluoroquinolones as novel SPECT radiopharmaceuticals for imaging bacterial infection. Fluoroquinolones, e.g., ofloxacin (OFX), levofloxacin (LVX), lomefloxacin (LMX) and norfloxacin (NFX) were labeled with a fac-[(99m)Tc(CO)(3)(H(2)O)(3)](+) precursor. The radiochemical purity of the radiopharmaceuticals exceeded 97% as determined by thin layer chromatography and HPLC. No further purification was necessary before injection. The Re(CO)(3) complex of one of the fluoroquinolones (levofloxacin) was synthesized using [Re(CO)(3)(H(2)O)(3)]OTf and Re(CO)(5)Br precursors in separate experiments and characterized by IR, NMR and mass spectroscopic analysis. These studies revealed the formation of a single species in which the piperazinyl nitrogen and the -COOH group attached to the benzoxazine ring system of quinolone were involved in co-ordination to the Re(CO)(3) core. The HPLC elution pattern and retention time of the Re(CO)(3)-LVX complex were comparable to those of the corresponding (99m)Tc(CO)(3)-complex proving their similarity. When incubated in isotonic saline and serum up to 24 h (99m)Tc(CO)(3)-labeled fluoroquinolones exhibited good in vitro stability. Biodistribution studies performed at different time points on rats intramuscularly infected with S. aureus as well as on rats with sterile inflammation revealed a higher uptake in the infected area than the turpentine induced inflamed area. The uptake in infected thigh was significant with (99m)Tc(CO)(3)-OFX followed by (99m)Tc(CO)(3)-LVX. The mean ratios of the uptake in infected/non-infected thighs were 4.75 and 4.27 at 8 h and 24 h, respectively, for (99m)Tc(CO)(3)-OFX and 4.42 and 4.18 at 24 h and 8 h, respectively, for (99m)Tc(CO)(3)-LVX. The above abscess to muscle ratios were higher than reported for (99m)Tc-ciprofloxacin and other (99m)Tc-labeled fluoroquinolones. Scintigraphy studies also showed a significant uptake in the infectious lesions suggesting that (99m)Tc(CO)(3)-fluoroquinolones might be useful as diagnostic agents for targeted delivery in bacterial infection.
In our efforts to develop a novel class of SPECT imaging agents based on nonsteroidal androgen receptor (AR) antagonists, we have synthesized N-cyclopentadienyltricarbonyltechnetium-N-[4-nitro-3-trifluoromethyl-phenyl] carboxamide (NF(99m)Tc), an analog of the AR antagonist ligand flutamide. NF(99m)Tc was obtained in 82% yield from the reaction of N-[4-nitro-3-trifluoromethyl-phenyl]-ferrocenecarboxamide (NFFe) with fac-[(99m)Tc(H(2)O)(3)(CO)(3)](+) in DMF-water at pH 1 and at 150 °C for 1 h. The corresponding Re analog was also prepared. In vitro assays demonstrated high stability of NF(99m)Tc under physiological conditions, buffer and blood. The tissue biodistribution in mature male Wistar rats showed a significant selective uptake by prostate but this uptake was not blocked by an excess of testosterone acetate. A higher uptake by lung tissues was observed.
Pancreatic phospholipase A(2) (PLA(2)) plays an important role in cellular homeostasis as well as in the process of carcinogenesis. Effects of metallo-drugs used as chemotherapeutics on the activity of this enzyme are unknown. In this work, the interaction between porcine pancreatic PLA(2) and two selected transition metal complexes--tetrachloro(bipyridine) platinum(IV) ([PtCl(4)(bipy)]) and dichloro (bipyridine) ruthenium(III)chloride ([RuCl(2)(bipy)(2)]Cl)--was studied. Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) and fluorescence spectroscopy have been used to analyse the enzyme activity in the absence and presence of metal complexes and to verify potential binding of these drugs to the enzyme. The tested metal complexes decreased the activity of phospholipase A(2) in an uncompetitive inhibition mode. A binding of the ruthenium complex near the active site of the enzyme could be evidenced and possible modes of interaction are discussed.
The problems of acquired resistance associated with platinum drugs may be addressed by chemotherapeutics based on other transition metals as they offer the possibility of novel mechanisms of action. In this study, the cellular uptake and induction of apoptosis in A549 human non-small cell lung cancer cells of three promising osmium(ii) arene complexes containing azopyridine ligands, [Os(η(6)-arene)(p-R-phenylazopyridine)X]PF6, where arene is p-cymene or biphenyl, R is OH or NMe2, and X is Cl or I, were investigated. These complexes showed time-dependent (4-48 h) potent anticancer activity with highest potency after 24 h (IC50 values ranging from 0.1 to 3.6 μM). Cellular uptake of the three compounds as quantified by ICP-MS, was independent of their log P values (hydrophobicity). Furthermore, maximum cell uptake was observed after 24 h, with evident cell efflux of the osmium after 48 and 72 h of exposure, which correlated with the corresponding IC50 values. The most active compound , [Os(η(6)-p-cymene)(NMe2-phenylazopyridine)I]PF6, was taken up by lung cancer cells predominately in a temperature-dependent manner indicating that energy-dependent mechanisms are important in the uptake of . Cell fractionation studies showed that all three compounds accumulated mainly in cellular membranes. Furthermore, compound induced apoptosis and caused accumulation in the S-phase of the cell cycle. In addition, induced cytochrome c release and alterations in mitochondrial membrane potential even after short exposure times, indicating that mitochondrial apoptotic pathways are involved. This study represents the first steps towards understanding the mode of action of this promising class of new osmium-based chemotherapeutics.
Metallothioneins (MTs) constitute a universal family of polymorphic, ubiquitous small Cys-rich metal-binding polypeptides that in mammals are represented by four highly similar isoforms (MT1 to MT4). MT1 and MT2 have generally been considered as equivalent proteins, so that they are commonly referred to as MT1/MT2. However, transcription data have suggested a differential behavior for both gene products. In the present study, the metal binding abilities of mouse MT2 (mMT2) with divalent (Zn(ii) and Cd(ii)) and monovalent (Cu(i)) ions were analyzed and compared to those of the mouse MT1 (mMT1) isoform, previously determined using the same methodological approach. The comprehensive consideration of all the results obtained in this work experimentally demonstrates that the mMT2 isoform exhibits metal ion binding abilities distinct from those of mMT1, with a clear preference for Zn(ii) coordination, if compared to Cu(i) or even to Cd(ii). This is in full agreement with the gene expression regulation pattern for the MT1 and MT2 genes, as well as with the hypothesized preferential role of mMT2 in Zn(ii) homeostasis mechanisms, while MT1, possibly differentiated from a most recent duplication event in the mammalian MT gene cluster, would have evolved to detoxify Cd(ii), and probably other divalent metal ions.
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been developed as a powerful MS imaging (MSI) tool for the direct investigation of element distributions in biological tissues. Here, this technique was adapted for the analysis of native mouse spinal cord cryosections of 3.1 mm × 1.7 mm by implementing a new conventional ablation system (NWR-213) and improving the spatial resolution from 120 μm to 65 μm in routine mode. Element images of the spinal cord are provided for the first time and the metalloarchitecture was established using a multimodal atlas approach. Furthermore, the spatial distribution of Rb was mapped for the first time in biological tissue. Metal concentrations were quantified using matrix-matched laboratory standards and normalization of the respective ion intensities to the average (13)C ion intensity of standards and samples as a surrogate of slice thickness. The "butterfly" shape of the central spinal grey matter was visualized in positive contrast by the distributions of Fe, Mn, Cu and Zn and in negative contrast by C and P. Mg, Na, K, S and Rb showed a more homogenous distribution. The concentrations averaged throughout grey matter and white matter were 8 and 4 μg g(-1) of Fe, 3 and 2 μg g(-1) of Cu, 8 and 5 μg g(-1) of Zn, 0.4 and 0.2 μg g(-1) of Mn. The carbon concentration in white matter exceeded that of grey matter by a factor of 1.44. Zn and Cu at 9 and 4 μg g(-1), respectively, were particularly enriched in the laminae I and II, in line with the high synaptic and cellular density there. Surprisingly Zn but not Cu was enriched in the central channel. Rb occurred at 0.3 μg g(-1) with a distribution pattern congruent to that of K. The coefficients of variation were 6%, 5%, 8% and 10% for Fe, Cu, Zn and Mn, respectively, throughout three different animals measured on different days. These MSI analyses of healthy wild type spinal cords demonstrate the suitability of the established techniques for investigating diseased or transgenic states in future imaging studies.
The present study focused on the elemental distribution in the developing wheat grain by using the laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) imaging technique. Our studies show that the embryo accumulated high concentrations of nutrient elements, such as Fe, K, Cu, and Zn, while Ca was accumulated in the bran of the wheat grain which might be attributed to its function of structural maintenance. In the endosperm the majority of the nutrients were located in the aleurone layer. Within the grain, the embryo could be considered as a nutrient pool for macro- and micro-elements essential for the development of the seedling. Elemental images showed that considerable amounts of nutrients were stored in the scutellum of the embryo, which might be related to the high gene expression of element transporters in the scutellum. Root primordia and leaf primordia were enriched in particular elements, such as Mn and Zn respectively. In total 34 cross sections were analyzed and used for generation of a sequence of elemental distribution images to demonstrate elemental changes along the perpendicular axis of the wheat grain embryo. Further development of three-dimensional modeling will be combined with physiological studies to better understand the mechanisms of elemental distribution and storage in the wheat grain. These studies will provide fundamental knowledge on improving the nutritional value and agronomic practices.
A method that allows partial denaturation of protein ligands in Bi- and Zn-protein complexes, leaving the metal coordination centre intact, was developed. It was based on the reduction of the S-S bridges with tris(2-carboxyl)phosphine followed by derivatization with iodoacetamide. Consequently conditions that allow the separation of Bi- and Zn-protein complexes using SDS electrophoresis were found. The separation efficiency was much higher than that in non-denaturating blue native electrophoresis. The method allowed the detection of seven Bi-binding protein candidates in H. pylori treated with bismuth subcitrate, some of which-fructose-bisphosphate aldolase (33.6 kDa), urease alpha subunit (26.4 kDa), and the 16.8 kDa proteins: 30S ribosomal protein S6 and neutrophil activating protein (NapA)-were bio-induced during the treatment. The method also allowed the monitoring of the changes in the Zn-proteome during treatment of H. pylori with the Bi-drug, which was found to increase the concentration of the Zn-binding proteins with particularly strong expression of the urease, S-adenosylmethionine synthetase and the above 16.8 kDa proteins.
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been developed and established as an emerging technique in the generation of quantitative images of metal distributions in thin tissue sections of brain samples (such as human, rat and mouse brain), with applications in research related to neurodegenerative disorders. A new analytical protocol is described which includes sample preparation by cryo-cutting of thin tissue sections and matrix-matched laboratory standards, mass spectrometric measurements, data acquisition, and quantitative analysis. Specific examples of the bioimaging of metal distributions in normal rodent brains are provided. Differences to the normal were assessed in a Parkinson's disease and a stroke brain model. Furthermore, changes during normal aging were studied. Powerful analytical techniques are also required for the determination and characterization of metal-containing proteins within a large pool of proteins, e.g., after denaturing or non-denaturing electrophoretic separation of proteins in one-dimensional and two-dimensional gels. LA-ICP-MS can be employed to detect metalloproteins in protein bands or spots separated after gel electrophoresis. MALDI-MS can then be used to identify specific metal-containing proteins in these bands or spots. The combination of these techniques is described in the second section.
We have studied the binding of the toxic element Cd to plant proteins and have used for this purpose spinach (Spinacia oleracea L.) plants treated with 50 μM Cd(II) as a model system. Laser ablation ICP-MS has been applied for the screening of Cd-binding proteins after separation by native anodal polyacrylamide gel electrophoresis (AN-PAGE) and electroblotting onto membranes. The main Cd-carrying protein band was isolated and investigated by nano-electrospray ionization-Fourier transform ion cyclotron resonance (FTICR) mass spectrometry after tryptic digestion. By this procedure, the main Cd-binding protein was identified as ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). The latter enzyme has been discussed in the literature to be affected in its activity by oxidative stress induced by Cd. However, in this paper it is demonstrated for the first time that RuBisCO directly binds Cd and thus may be directly altered by this toxic element. A commercially available protein standard was used to verify direct binding of Cd(II) to the protein, even without metabolisation. The resulting metal-protein complex was shown to be stable enough to survive AN-PAGE separation and electroblotting. By the use of size exclusion chromatography coupled with ICP-MS it was demonstrated that the RuBisCO protein standard shows similar metal binding properties to Cd. Furthermore, essential elements such as Mn(II), Fe(II) and Cu(II), which are known to possibly replace the RuBisCO activator Mg(II), were investigated in addition to Zn(II). Again, similar binding properties in comparison to the plant protein were observed.
Copper may play an important role in the brain in aging and neurodegenerative diseases. We compare the active Cu uptake, Cu-containing enzyme levels, and total Cu distribution in the brains of young and aging mice. (67)Cu was administered intravenously to 2, 7-9, and 14 month old mice. Active uptake of (67)Cu in the brain was measured at 24 h by digital phosphor autoradiography. Cerebral superoxide dismutase-1 (SOD-1) and cytochrome-C oxidase subunit-1 (CCO-1) levels were analyzed by immunohistochemistry. The total Cu distribution in brain section was determined by imaging laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). In aging mice, active (67)Cu uptake and SOD-1 levels were significantly decreased in the brain, whereas blood (67)Cu and CCO-1 levels were similar for all mice, irrespective of age. Paradoxically, global Cu cerebral content was increased in aged mice, suggesting that regulation of active Cu uptake by the brain may be linked to total Cu levels in an attempt to maintain Cu homeostasis. However, focal areas of both decreased Cu uptake and Cu content were noted in the striatum and ventral cortex in aging mice. These focal areas of Cu deficit correspond to the regions of greatest reduction in SOD-1 in the aged mice. In aging, dysregulated Cu homeostasis may result in decreased SOD-1 levels, which may contribute to oxidative vulnerability of the aging brain. This study illustrates the importance of a multi-modality approach in studying the biodistribution and homeostasis of Cu in the brain.
A novel quantification approach for tissue imaging using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) based on tissue embedding in cold-curing resins (Technovit 7100) is presented. With respect to massive side effects on cisplatin, the platinum distribution at different time intervals after cisplatin treatment of mice was determined quantitatively in different tissues including cochlea, testis and kidney. For this purpose, cold-curing resin blocks spiked with different amounts of platinum acetyl acetonate prior to curing were ablated after sectioning at 5 μm thickness and were analysed using ICP-MS after microwave digestion. High spatial resolution and limits of detection in the low ppb range (8 μg kg(-1)) were achieved using a simple and efficient sample preparation. External calibration using the Technovit 7100 standards proved to yield precise and reproducible quantification results. The distribution and retention behaviour of cisplatin in the organs was investigated using the new calibration method.
Qualitative and quantitative methods were developed for selenium and sulphur mapping/quantification in sunflower (Helianthus annuus L.) leaves. The plants were grown for 50 days in a greenhouse, being divided into two groups, one irrigated with only deionized water and the other treated with a daily dose of 7.58 mg of Na(2)SeO(3). Leaves were collected during the growth period for directly evaluating the distribution of Se and S in these structures. For quantification analysis, pellets were produced from both CRM (100 and 1575a for Se and S, respectively) and the sunflower materials. The pellets were doped with 25 and 1200 μg g(-1) Se and 5 and 20 mg g(-1) S and analyzed by LA-ICP-MS. For accuracy purposes all the samples were also decomposed via microwave and analyzed by ICP-MS. To avoid polyatomic interferences Se and S were monitored as SeO(+) and SO(+) at m/z 96 and 48, respectively, (12)C(+) was used as an internal standard, and the ratios between SeO(+)/C(+) and SO(+)/C(+) were used for measurements. Statistic tests (t test at 95% confidence level) confirming good agreement between LA-ICP-MS and ICP-MS indicated the accuracy of this technique.
Wilson's disease (WD) is caused by mutations within the copper-transporting ATPase (ATP7B), characterized by copper deposition in various organs, principally the liver and the brain. With the availability of Atp7b(-/-) mice, the valid animal model of WD, the mechanism underlying copper-induced hepatocyte necrosis has been well understood. Nonetheless, little is known about the adverse impact of copper accumulation on the brain in WD. Therefore, the aim of this study was to identify copper disturbances according to various brain compartments and further dissect the causal relationship between copper storage and neuronal damage using Atp7b(-/-) mice. Copper levels in the liver, whole brain, brain compartments and basal ganglia mitochondria of Atp7b(-/-) mice and age-matched controls were measured by atomic absorption spectroscopy. Delicate electron microscopic studies on hepatocytes and neurons in the basal ganglia were performed. Here we further confirmed the remarkably elevated copper content and abnormal ultrastructure findings in livers of Atp7b(-/-) mice. Interestingly, we found the ultrastructure abnormalities in neurons of the basal ganglia of Atp7b(-/-) mice, whereas copper deposition was not detected in the whole brain, even within the basal ganglia and its mitochondria. The disparity provided a new understanding of neuronal dysfunction in WD, and strongly indicated that copper might not be the sole causative player and other unidentified pathogenic factors could enhance the toxic effects of copper on neurons in WD.
Harbour seals (Phoca vitulina) are bio-indicators for the assessment of their habitat and environmental changes. Besides population parameters and trends (survival, age structure, sex ratio), the individual health status represents a further important parameter for this assessment. The health status of seals is a complex and vague term, determined by a wide range of diagnostic parameters. Quantities of important blood proteins such as transferrin (Tf), as well as altered distribution patterns of its glycoforms, are frequently used as biomarkers in clinical diagnosis. Within this context Tf quantities and a varying pattern of its glycoforms are used as indicator for e.g. certain liver diseases, which also represents one of the most frequently observed pathological indication in harbour seals of the North Sea. Currently, most assay based quantification methods for Tf are limited since they often provide only information regarding the total Tf concentration rather than information of its different glycoforms. Due to a lack of suitable seal Tf antibodies also the application of more specific antibody based approaches is not possible. Within this background a new approach for the absolute quantification of the iron-transport protein Tf in the blood of harbour seals using its characteristic iron content and HPLC-ICP-MS detection is described. Method validation was performed using a certified human serum reference material (ERM-DA470K/IFCC). A Tf concentration of 2.33 ± 0.03 g L(-1) (sum of all quantified glycoforms) has been calculated, which is in good agreement with the certified total Tf concentration of 2.35 ± 0.08 g L(-1), confirming the accuracy of the proposed analytical method. Finally, different seal samples were analysed to demonstrate the suitability of the procedure for the quantification of Tf in real samples as well as to observe modified glycoform patterns. Compared to our previous studies for the first time it was possible to quantify the serum Tf baseline reference range for male (1.42-2.35 g L(-1)) and female German North Sea seals (1.93-2.74 g L(-1)) as well as a CDT level of 0.00-0.10 g L(-1), respectively, which provides valuable further diagnostic information regarding the health status of these specific marine mammals. Compared to assay based quantification approaches the proposed technique indicates great potential to obtain comparable and traceable absolute quantitative results, which are in particular important for long term investigations. This absolute quantification is based on an accurate, traceable element standard, while assay based approaches often show variations depending on the kit quality or changing activities of the used antibodies.
X-ray absorption spectroscopy (XAS) and micro-synchrotron based X-ray fluorescence (micro-SXRF) are element specific spectroscopic techniques and have been proven to be valuable tools for the investigation of changes in the chemical environment of metal centres. XAS allows the determination of the oxidation state, the coordination motif of the probed element, the identity and the number of adjacent atoms and the absorber-ligand distances. It is further applicable to nearly all types of samples independent of their actual physical state (solid, liquid, gaseous) down to μM concentrations. Micro-SXRF can provide information on the distribution and concentration of multiple elements within a sample simultaneously, allowing for the chemical state of several elements within subcellular compartments to be probed. Modern third generation synchrotrons offer the possibility to investigate the majority of the biologically relevant elements. The biological mode of action of metal-based compounds often involves interactions with target and/or transport molecules. The presence of reducing agents may also give rise to changes in the coordination sphere and/or the oxidation state. XAS and micro-SXRF are ideal techniques for investigating these issues. This tutorial review introduces the use of XAS and micro-SXRF techniques into the field of inorganic medicinal chemistry. The results obtained for platinum, ruthenium, gallium, gold and cobalt compounds within the last few years are presented.
The platinum(II) drugs cisplatin, carboplatin and oxaliplatin are usefully employed against a range of malignancies, but toxicities and resistance have spurred the search for improved analogs. This has included investigation of the platinum(IV) oxidation state, which provides greater kinetic inertness. It is generally accepted that Pt(IV) complexes must be reduced to Pt(II) for activation. As such, the ability to monitor reduction of Pt(IV) complexes is critical to guiding the design of candidates, and providing mechanistic understanding. Here we report in full that the white line height of X-ray absorption near-edge spectra (XANES) of Pt complexes, normalized to the post-edge minima, can be used to quantitatively determine the proportion of each oxidation state in a mixture. A series of Pt(IV) complexes based on the Pt(II) complexes cisplatin and transplatin were prepared with chlorido, acetato or hydroxido axial ligands, and studies into their reduction potential and cytotoxicity against A2780 human ovarian cancer cells were performed, demonstrating the relationship between reduction potential and cytotoxicity. Analysis of white line height demonstrated a clear and consistent difference between Pt(II) (1.52 ± 0.05) and Pt(IV) (2.43 ± 0.19) complexes. Reduction of Pt(IV) complexes over time in cell growth media and A2780 cells was observed by XANES, and shown to correspond with their reduction potentials and cytotoxicities. We propose that this method is useful for monitoring reduction of metal-based drug candidates in complex biological systems.
The effects of mercury added as Hg(2+) and selenium as selenite to cultures of the sulfate reducing bacterium Desulfovibrio desulfuricans were investigated under controlled laboratory conditions. There was no significant difference in the growth curves in comparison to control except in the 0.5 μM Hg-6.3 μM Se combined system in which Hg methylation was significantly reduced. A significant decrease in the production of methylmercury indicates a disruption of the methylation process due to the presence of the relatively high concentrations of Se in the system, suggesting a modification of the biological pathway. The results of detailed 2D gel electrophoresis in combination with mass spectrometry confirmed that the Hg methylation process should certainly be influenced when the protein Dde_1198 protein-glutamate O-methyltransferase was totally suppressed in a culture containing 0.5 μM Hg and 6.3 μM Se. Since this protein plays an important role in the methylation process, its suppression in the presence of Se brings a possible explanation for the antagonism between Se and Hg in natural systems. The experiment involving the determination of Hg and Se in membrane proteins separated by 1D gel thin-layer isoelectric focusing revealed that when both elements were present in a culture, the concentration of Hg in the separated proteins was significantly lower in comparison to those without added Se to the culture and vice versa. Finally, near-edge X-ray absorption spectroscopy and extended X-ray absorption fine structure were used to corroborate the presence of a very inert solid HgSe in the cell membrane obtained from the culture containing 0.5 μM Hg and 6.3 μM Se. This confirms the protective effect of Se against Hg assimilation at the molecular level and reinforces the findings of our research group in numerous field and laboratory studies.
Iron is an essential trace metal in the human diet because of its role in a number of metabolic processes including oxygen transport. In the diet, iron is present in two fundamental forms, heme and non-heme iron. This article presents a brief overview of the molecular mechanisms of intestinal iron absorption and its regulation. While many proteins that orchestrate iron transport pathway have been identified, a number of key factors that control the regulation of iron absorption still remain to be elucidated. This review also summarizes new and emerging information about iron metabolic regulators that coordinate regulation of intestinal iron absorption.
Selenium concentration in the brain tissue is far less variable than those in peripherals, such as the liver and kidneys, in rodents, when fed a selenium-deficient diet. This fact implies the importance of this element for maintaining the integrity of brain functions and the distinctive selenium metabolism and/or the regulatory mechanism in the brain. To obtain basic information concerning the homeostatically maintained selenium store in the brain, we investigated absorption and retention characteristics of selenium from selenious acid (SA) and seleno-l-methionine (SeMet) in rat dorsal root ganglion (DRG) neurons, in comparison to isolated rat hepatocytes and renal cells in vitro. When DRG neurons were cultured in an SA-free medium subsequent to an SA-supplemented one for 24 h, the DRG neurons maintained a higher selenium concentration than that before SA supplementation over a period of 96 h after removal of SA from the culture medium. The cellular glutathione peroxidase activity of the cells increased for 72 h after removal of SA from the culture medium. A similar retention characteristic of selenium was also observed for DRG neurons treated with SeMet-supplemented culture medium. Consequently, selenium from source compounds, in part, was thought to be retained in DRG neurons and then be utilized for the synthesis of selenium-containing proteins, which implied the presence of a neuron-specific selenium retention mechanism.
Bromine is one of the most abundant and ubiquitous trace elements in the biosphere and until recently had not been shown to perform any essential biological function in animals. A recent study demonstrated that bromine is required as a cofactor for peroxidasin-catalysed formation of sulfilimine crosslinks in Drosophila. In addition, bromine dietary deficiency is lethal in Drosophila, whereas bromine replenishment restores viability. The aim of this study was to examine the distribution and speciation of bromine in mammalian tissues and fluids to provide further insights into the role and function of this element in biological systems. In this study we used X-ray fluorescence (XRF) imaging and inductively coupled plasma-mass spectrometry (ICP-MS) to examine the distribution of bromine in bovine ovarian tissue samples, follicular fluid and aortic serum, as well as human whole blood and serum and X-ray absorption spectroscopy (XAS) to identify the chemical species of bromine in a range of mammalian tissue (bovine, ovine, porcine and murine), whole blood and serum samples (bovine, ovine, porcine, murine and human), and marine samples (salmon (Salmo salar), kingfish (Seriola lalandi) and Scleractinian coral). Bromine was found to be widely distributed across all tissues and fluids examined. In the bovine ovary in particular it was more concentrated in the sub-endothelial regions of arterioles. Statistical comparison of the near-edge region of the X-ray absorption spectra with a library of bromine standards led to the conclusion that the major form of bromine in all samples analysed was bromide.