Mediators of Inflammation

Published by Hindawi
Online ISSN: 1466-1861
Print ISSN: 0962-9351
Discipline: Immunology
Learn more about this page
Aims and scope

Mediators of Inflammation is a peer-reviewed, Open Access journal that publishes original research and review articles on all types of inflammatory mediators, including cytokines, histamine, bradykinin, prostaglandins, leukotrienes, PAF, biological response modifiers, inflammasomes and the family of cell adhesion-promoting molecules. We are particularly interested in papers that make a significant impact to move the field of inflammatory mediators forward. Descriptive articles, without novel applications or insights may not be considered.



Recent publications
  • Gang WangGang Wang
  • Huiyuan ZhengHuiyuan Zheng
  • Xiaoqian ChenXiaoqian Chen
  • [...]
  • Xin WeiXin Wei
Background. Functional nasal endoscopic surgery (FESS) is an effective treatment approach for chronic rhinosinusitis with nasal polyps (CRSwNP) patients, but some patients still suffer from postoperative recurrence. This study is aimed at investigating the expression of multiple cytokines in CRSwNP and revealing their relationships with postoperative recurrence. Methods. A total of 72 patients with CRSwNP, including 36 primary and 36 recurrent patients, were enrolled. Serum samples were obtained, 30 cytokine levels were measured by multiplex analysis, and the association between cytokine levels and recurrence was assessed. The most potential cytokines were further validated in another independent cohort with 60 primary and 60 recurrent CRSwNP patients. Results. The results of multiple cytokine profiling exhibited that the levels of eotaxin, G-CSF, IFN-α, IL-13, IL-17A, IL-5, MCP-1, and RANTES were vastly changed in the recurrent group in comparison with the primary group. Receiver-operating characteristic (ROC) curves highlighted that serum levels of eotaxin, IL-17A, and RANTES were strongly predictive of postoperative recurrence ( area under the curve AUC > 0.7 , P < 0.05 ). Further validation results showed that elevated serum eotaxin, IL-17A, and RANTES levels were enhanced in the recurrent group. The ROC curve showed that serum eotaxin ( AUC = 0.729 , P < 0.001 ) and RANTES ( AUC = 0.776 , P < 0.001 ) exhibited stronger ability than serum IL-17A ( AUC = 0.617 , P = 0.027 ) in predicting CRSwNP recurrence. Conclusion. Our data suggested that serum multiple cytokine profiling was associated with postoperative recurrence of CRSwNP, and eotaxin and RANTES might serve as potential biomarkers for predicting postoperative recurrence. These results might contribute to the understanding of the underlying mechanisms of recurrence and provide novel clues for precision therapy in CRSwNP.
  • Martina MaritatiMartina Maritati
  • Alessandro TrentiniAlessandro Trentini
  • Davide ChemelloDavide Chemello
  • [...]
  • Giuseppe De RitoGiuseppe De Rito
Purpose. The success of total joint arthroplasty (TJA) has led to consistent growth in the use of arthroplasty in progressively younger patients. However, more than 10 percent of patients require revision surgery due to implant failure caused by aseptic or septic inflammation. Among the latter, surgical site infection (SSI) represents one of the worst complications of TJA, potentially resulting in the removal of the prosthesis. The aim of our study was to identify potential risk factors for SSIs in a population of patients undergoing TJA. Methods. TJA were prospectively recruited at Casa di Cura Santa Maria Maddalena from February 2019 to April 2020. Age, sex, major comorbidities, American Society of Anesthesiologists (ASA) class, length of surgery, type of surgical suture, total hospital length of stay, and clinical laboratory data were collected. The study population was then divided into two groups: Group A, normal postoperative course, and Group B, patients who developed SSI at follow-up (17-25 days). Results. 25/760 (3.3%) patients developed SSIs at follow-up. Clinical and demographic parameters were not different between the two groups. Total leucocyte and neutrophil values at discharge resulted to be significatively higher in Group B compared to Group A ( p = 0.025 and p = 0.016 , respectively). Values of 7860/μL for total leucocyte and 5185/μL for neutrophil count at discharge significantly predicted the future development of SSI (AUC 0.623 and AUC 0.641, respectively; p < 0.05 ) independently from confounding factors (total leukocytes: O . R . = 3 , 69 [95% C.I. 1,63-8,32]; neutrophils: O . R . = 3 , 98 [95% C.I. 1,76-8,97]). Deep SSIs has been diagnosed significantly before superficial SSIs ( p = 0,008 ), with a median advance of 9 days. Conclusion. Total leukocytes and neutrophils at discharge seem useful to identify a population at risk for the development of septic inflammation at the surgical site following TJA. Further studies with larger populations are needed to develop a predictive SSIs risk score that should include those variables.
  • Xiangming FangXiangming Fang
  • Rensheng SongRensheng Song
  • Jiaxing WeiJiaxing Wei
  • [...]
  • Zhenhong ZengZhenhong Zeng
Heart failure (HF) is a globally prevalent cardiovascular disease, but effective drug targets and diagnostic models are still lacking. This study was designed to investigate effective drug targets and diagnostic models for HF in terms of miRNA targets, hoping to contribute to the understanding and treatment of HF. Using HF miRNA and gene expression profile data from the GEO database, we analyzed differentially expressed miRNAs/gene identification in HF using Limma and predicted miRNA targets by the online TargetScan database. Subsequently, gene set enrichment analysis and annotation were performed using WebGestaltR package. Protein-protein interactions were identified using the STRING database. The proximity of drugs to treat HF was also calculated and predicted for potential target therapeutic drug. In addition, further drug identification was performed by molecular docking. Finally, diagnostic models were constructed based on differential miRNAs. The GEO dataset was used to screen 66 differentially expressed miRNAs, incorporating 56 downregulated miRNAs and 10 upregulated miRNAs. The JAK-STAT signaling pathway, MAPK signaling pathway, p53 signaling pathway, Prolactin signaling pathway, and TGF-beta signaling pathway were enriched, as shown by KEGG enrichment analysis on the target genes. In addition, we found that 83 genes were upregulated and 92 genes were downregulated in HF patients vs. healthy individuals. Based on the inflammation-related score, hypoxia-related score, and energy metabolism-related score, we identified key miRNA-mRNA pairs and constructed an interaction network. Following that, TAP1, which had the highest expression and network connectivity in acute HF with crystal and molecular docking studies, was selected as a key candidate gene in the network. And the compound DB04847 was selected to produce a large number of favorable interactions with TAP1 protein. Finally, we constructed two diagnostic models based on the differential miRNAs hsa-miR-6785-5p and hsa-miR-4443. In conclusion, we identified TAP1, a key candidate gene in the diagnosis and treatment of HF, and determined that compound DB04847 is highly likely to be a potential inhibitor of TAP1. The TAP1 gene was also found to be regulated by hsa-miR-6785-5p and hsa-miR-4443, and a diagnostic model was constructed. This provides a new promising direction to improve the diagnosis, prognosis, and treatment outcome and guide more effective immunotherapy strategies of HF.
The relationship between RPR levels and 28-d mortality in patients with sepsis was plotted using multivariable adjusted restricted cubic splines. There was a nonlinear relationship between RPR and 28-d mortality, showing a trend of rapid first and then gradually increasing, that is, the higher the RPR level, the higher the mortality risk. The range area represents a 95% confidence interval. HR: hazard ratio; CI: confidence interval; RPR: red cell distribution width to platelet ratio.
Receiver operating characteristics curves of RPR, RDW, platelet, SOFA, and SAPS II score for predicting 28-d mortality in patients with sepsis. The predictive ability of PRR for 28-d mortality outperformed other indices, including RDW, platelet, SOFA score, and SAPS II score by comparing the area under the curve. RPR: red cell distribution width to platelet ratio; RDW: red cell distribution width; SOFA: sequential organ failure assessment; SAPS II: simplified acute physiology score II.
Kaplan-Meier analysis of 28-d mortality by the RPR levels in patients with sepsis. The 28-d mortality rate in the high RPR group was significantly higher than that in the low RPR group (log-rank test, P<0.001). RPR: red cell distribution width to platelet ratio.
Performance of red cell distribution width to platelet ratio for predicting 28-day mortality in patients with sepsis.
  • Jie LiuJie Liu
  • Xueying HuangXueying Huang
  • Suru YueSuru Yue
  • [...]
  • Jiayuan WuJiayuan Wu
Background. As a novel inflammatory index, the ratio of red cell distribution width (RDW) to platelet count (RPR) may have prognostic value in some critical illnesses. However, studies on the prognostic influence of RPR in patients with sepsis are few. This study is aimed at investigating the association between RPR levels and 28-day mortality in patients with sepsis. Methods. Data of patients with sepsis were obtained from the Medical Information Mart for Intensive Care III database. The best cut-off value was calculated by establishing the receiver operating characteristic curve (ROC), and the predictive ability of different indicators was compared through the area under the curve (AUC). The association between RPR levels and 28-day mortality was assessed using the Cox proportional hazards model. Restrictive cubic spline analysis was applied to the multivariable Cox model to investigate the nonlinear relationship between RPR and 28-day mortality. Results. A total of 3367 patients with sepsis were included in the study. A nonlinear relationship was observed between RPR and 28-day mortality, showing a trend of a first rapid increase and a gradual increase. For the prediction of mortality, the best cut-off value for RPR was 0.109, with an AUC of 0.728 (95% confidence interval [CI]: 0.709–0.747). The predictive capability of RPR was superior to those of RDW, platelet, SOFA score, and SAPS II score. After adjusting for various confounding factors, high RPR was significantly associated with increased mortality with adjusted hazard ratios of 1.210 (95% CI: 1.045–1.400) for categorical variables and 2.826 (95% CI: 2.025–3.944) for continuous variables. Conclusion. Elevated RPR level is significantly correlated with a high risk of 28-day mortality in patients with sepsis and can be a new predictor of patient prognosis.
Background. Osteoporosis is a common bone metabolic disease with increased bone fragility and fracture rate. Effective diagnosis and treatment of osteoporosis still need to be explored due to the increasing incidence of disease. Methods. Single-cell RNA-seq was acquired from GSE147287 dataset. Osteoporosis-related genes were obtained from chEMBL. Cell subpopulations were identified and characterized by scRNA-seq, t-SNE, clusterProfiler, and other computational methods. “limma” R packages were used to identify all differentially expressed genes. A diagnosis model was build using rms R packages. Key drugs were determined by proteins-proteins interaction and molecular docking. Results. Firstly, 15,577 cells were obtained, and 12 cell subpopulations were identified by clustering, among which 6 cell subpopulations belong to CD45+ BM-MSCs and the other subpopulations were CD45-BM-MSCs. CD45- BM-MSCs_6 and CD45+ BM-MSCs_5 were consider as key subpopulations. Furthermore, we found 7 genes were correlated with above two subpopulations, and F9 gene had highest AUC. Finally, five compounds were identified, among which DB03742 bound well to F9 protein. Conclusions. This work discovered that 7 genes were correlated with CD45-BM-MSCs_6 and CD45+ BM-MSCs_5 subpopulations in osteoporosis, among which F9 gene had better research value. Moreover, compound DB03742 was a potential inhibitor of F9 protein.
Background. Aberrant DNA methylation patterns are of increasing interest in the study of psoriasis mechanisms. This study aims to screen potential diagnostic indicators affected by DNA methylation for psoriasis based on bioinformatics using multiple machine learning algorithms and to preliminarily explore its molecular mechanisms. Methods. GSE13355, GSE14905, and GSE73894 were collected from the gene expression omnibus (GEO) database. Differentially expressed genes (DEGs) and differentially methylated region- (DMR-) genes between psoriasis and control samples were combined to obtain differentially expressed methylated genes. Subsequently, a protein-protein interaction (PPI) network was established to analyze the interaction between differentially expressed methylated genes. Moreover, the hub genes of psoriasis were screened by the least absolute shrinkage and selection operator (LASSO), Random Forest (RF), and Support Vector Machine (SVM), which were further performed single-gene gene set enrichment analysis (GSEA) to clarify the pathogenesis of psoriasis. The druggable genes were predicted using DGIdb. Finally, the expressions of hub genes in psoriasis lesions and healthy controls were detected by immunohistochemistry (IHC) and quantitative real-time PCR (RT-qPCR). Results. In this study, a total of 767 DEGs and 896 DMR-genes were obtained. Functional enrichment showed that they were significantly associated with skin development, skin barrier function, immune/inflammatory response, and cell cycle. The combined transcriptomic and DNA methylation data resulted in 33 differentially expressed methylated genes, of which GJB2 was the final identified hub gene for psoriasis, with robust diagnostic power. IHC and RT-qPCR showed that GJB2 was significantly higher in psoriasis samples than those in healthy controls. Additionally, GJB2 may be involved in the development and progression of psoriasis by disrupting the body’s immune system, mediating the cell cycle, and destroying the skin barrier, in addition to possibly inducing diseases related to the skeletal aspects of psoriasis. Moreover, OCTANOL and CARBENOXOLONE were identified as promising compounds through the DGIdb database. Conclusion. The abnormal expression of GJB2 might play a critical role in psoriasis development and progression. The genes identified in our study might serve as a diagnostic indicator and therapeutic target in psoriasis.
Objective. To investigate the mechanism of Connexin 37 (Cx37) and Kv1.3 pathways in atherosclerosis (AS). Methods. ApoE-/- mice were given a high-fat diet to establish atherosclerosis (AS) model, and macrophages in mice were isolated and extracted to transfect Cx37 vectors with silencing or overexpressing, and Kv1.3 pathway blockers were used to inhibit the pathway activity. The indexes of body weight, blood glucose, and blood lipid of mice were collected. The protein and mRNA expression levels of Cx37 and Kv1.3 were detected by reverse transcription-PCR (RT-PCR), Western blot, and immunofluorescence technique. Oil red O staining was used to observe plaque area. Masson staining was used to detect collagen content. The concentrations of chemokine CCL7 were quantified using the ELISA kits. CCK8 was used to detect cell proliferation. Results. Cx37 and Kv1.3 were highly expressed in macrophages of AS mice, and the expression of Kv1.3 and CCL7 decreased after Cx37 was silenced, and the proliferation of macrophages was also decreased. Wild-type mice and AS model mice were treated with Cx37 overexpression vectors and Kv1.3 pathway blocking, and it was found that Cx37 overexpression could improve the blood lipid and blood glucose levels and increase the area of AS in AS mice. However, blocking the activity of Kv1.3 pathway can reduce the levels of blood lipid and blood glucose, increase the body weight of mice, and reduce the area of AS mice. Blocking the activity of Kv1.3 pathway can slow down the plaque development of AS mice and make its indexes close to wild-type mice. And the use of Kv1.3 pathway blockers on the basis of overexpression of Cx37 indicated that inhibition of Kv1.3 pathway activity did not affect the expression of Cx37, but could inhibit the collagen content in the plaque area of AS mice, inhibit the expression of chemokine CCL7, and reverse the effect of Cx37 overexpression. Conclusion. Cx37 can improve the activity of macrophages by regulating the expression of chemokines and the activity of Kv1.3 pathway in AS mice, and enrich macrophages in inflammatory tissues and expand the area of plaque formation.
The purpose of this study was to uncover potential diagnostic indicators of pulmonary arterial hypertension (PAH), evaluate the function of immune cells in the pathogenesis of the disease, and find innovative treatment targets and medicines with the potential to enhance prognosis. Gene Expression Omnibus was utilized to acquire the PAH datasets. We recognized differentially expressed genes (DEGs) and investigated their functions utilizing R software. Weighted gene coexpression network analysis, least absolute shrinkage and selection operators, and support vector machines were used to identify biomarkers. The extent of immune cell infiltration in the normal and PAH tissues was determined using CIBERSORT. Additionally, the association between diagnostic markers and immune cells was analyzed. In this study, 258DEGs were used to analyze the disease ontology. Most DEGs were linked with atherosclerosis, arteriosclerotic cardiovascular disease, and lung disease, including obstructive lung disease. Gene set enrichment analysis revealed that compared to normal samples, results from PAH patients were mostly associated with ECM-receptor interaction, arrhythmogenic right ventricular cardiomyopathy, the Wnt signaling pathway, and focal adhesion. FAM171B was identified as a biomarker for PAH ( area under the curve = 0.873 ). The mechanism underlying PAH may be mediated by nave CD4 T cells, resting memory CD4 T cells, resting NK cells, monocytes, activated dendritic cells, resting mast cells, and neutrophils, according to an investigation of immune cell infiltration. FAM171B expression was also associated with resting mast cells, monocytes, and CD8 T cells. The results suggest that PAH may be closely related to FAM171B with high diagnostic performance and associated with immune cell infiltration, suggesting that FAM171B may promote the progression of PAH by stimulating immune infiltration and immune response. This study provides valuable insights into the pathogenesis and treatment of PAH.
Objective. Long non-coding RNAs (lncRNAs) play many important roles in gene regulation and disease pathogenesis. Here, we sought to determine that mitochondrial dynamic related lncRNA (MDRL) modulates NLRP3 inflammasome activation and apoptosis of vascular smooth muscle cells (VSMCs) and protects arteries against atherosclerosis. Methods. In vivo experiments, we applied LDLR knockout (LDLR-/-) mice fed the high-fat diet to investigate the effects of MDRL on atherosclerosis. In vitro experiments, we applied mouse aortic smooth muscle cells to determine the mechanism of MDRL in abrogating NLRP3 inflammasome and inhibiting cell apoptosis through miR-361/sequentosome 1 (SQSTM1) by TUNEL staining, quantitative RT-PCR, western blot, microribonucleoprotein immunoprecipitation, and luciferase reporter assay. Results. Downregulated MDRL and increased NLRP3 were observed in mouse atherosclerotic plaques, accompanied with the increase of miR-361. The results showed that MDRL overexpression significantly attenuated the burden of atherosclerotic plaque and facilitated plaque stability through inhibiting NLRP3 inflammasome activation and cell apoptosis, and vice versa. Mechanically, MDRL suppressed NLRP3 inflammasome activation and VSMC apoptosis via suppressing miR-361. Furthermore, miR-361 directly bound to the 3’UTR of SQSTM1 and inhibited its translation, subsequently activating NLRP3 inflammasome. Systematic delivery of miR-361 partly counteracted the beneficial effects of MDRL overexpression on atherosclerotic development in LDLR-/- mice. Conclusions. In summary, MDRL alleviates NLRP3 inflammasome activation and apoptosis in VSMCs through miR-361/SQSTM1/NLRP3 pathway during atherogenesis. These data indicate that MDRL and inhibition of miR-361 represent potential therapeutic targets in atherosclerosis-related diseases.
Systemic lupus erythematosus (SLE) is an autoimmune disease leading to inflammatory damage in multiple target organs, and lupus nephritis (LN) is one of the most life-threatening organ manifestations. CCAAT/enhancer-binding protein β (CEBPB) regulates the NLRP3 inflammasome and is involved in the pathogenesis of SLE. However, the role and mechanism of CEBPB in LN remains unclear. MRL/lpr mice and lipopolysaccharides (LPS) combined with adenosine triphosphate- (ATP-) treated glomerular podocytes were used as models of LN in vivo and in vitro, respectively. In vivo, we investigated the expressions of CEBPB during the development of MRL/lpr mice. Then we assessed the effect of CEBPB inhibition on renal structure and function through injecting shCEBPB lentivirus into MRL/lpr mice. In vitro, glomerular podocytes were treated with Pim-1-OE and siCEBPB to explore the relation between CEBPB and Pim-1. The progression of LN in mice was associated with the increased level of CEBPB, and the inhibition of CEBPB ameliorated renal structure impairments and improved renal function damage associated with LN. Knockdown of CEBPB could suppress the activation of NLRP3 inflammasome and the secretion of IL-1β and IL-6. Furthermore, the knockdown of CEBPB could inhibit NLRP3 inflammasome activation and pyroptosis via binding to Pim-1 promoter to downregulate its expression, and the overexpression of Pim-1 reversed the effects of CEBPB deficiency. The regulation of CEBPB on Pim-1 facilitated pyroptosis by activating NLRP3 inflammasome, thereby promoting the development of LN.
Gedan Jiangya decoction (GJD) (aqueous ethanol extract), a traditional Chinese medicine formula which contain six botanical drugs (Uncaria rhynchophylla (Miq.) Miq., Salvia miltiorrhiza Bunge, Pueraria lobata (Willd.) Ohwi, Eucommia ulmoides Oliv., Prunella vulgaris L., and Achyranthes bidentata Blume) was designed to treat hypertension; however, the underlying mechanism of action is unclear. This study aimed to determine the mechanisms of action of GJD in the treatment of hypertension in spontaneously hypertensive rats (SHR). Male SHRs were randomly divided into five groups: GJD doses were low (1.36 g/kg/d), medium (2.72 g/kg/d), and high (5.44 g/kg/d), captopril (13.5 mg/kg/d), and SHR groups, with Wistar-Kyoto rats (WKY) serving as the control. Every rat was gavaged once a day. The ALC-NIBP, a noninvasive blood pressure device, measured systolic (SBP) and diastolic (DBP) blood pressures. Six weeks following treatment, all rats were anesthetized. The blood samples were obtained from the abdominal aorta and then serum isolated to assess endothelin-1 and angiotensin II, interleukin-1beta, interleukin-6, and TNF-alpha. The left ventricular and thoracic aortas were taken for HE staining, immunohistochemistry, RT-qPCR, and western blot examination. Following GJD therapy, SBP and DBP were significantly lowered, as were serum levels of endothelin-1 and angiotensin II. The thickness of the left ventricular and thoracic aorta walls reduced, as did type I collagen, type III collagen, and alpha-SMA expression in the left ventricular and aortic tissues. The GJD treatment significantly reduced serum levels of the inflammatory markers interleukin-1beta, interleukin-6, and TNF-alpha. Furthermore, interleukin-1 beta, interleukin-6, TNF-alpha, TAK1, and NF-κB/p65 levels were significantly reduced in left ventricular and aortic tissues, whereas IkB-alpha levels were significantly elevated. GJD has a dose-dependent effect on all parameters. In conclusion, GJD has been shown to lower blood pressure, improve cardiovascular remodeling, and reduce inflammation via regulating NF-κB in SHRs.
Paclitaxel (PTX) is a commonly used antitumor drug. Approximately 80% of all patients receiving PTX chemotherapy develop chemotherapy-induced peripheral neuropathy (CIPN), limiting the use of PTX. Moreover, CIPN responds poorly to conventional analgesics. Experimental evidence suggests that the neuroinflammatory response plays an essential role in paclitaxel-induced peripheral neuropathy (PIPN). Previous studies have confirmed that dorsal root ganglion (DRG) neuron necroptosis and accompanying inflammation are linked with PIPN; however, the potential upstream regulatory mechanisms remain unclear. Preclinical studies have also established that macrophage infiltration in the DRG is associated with PIPN. TNF-α released by activated macrophages is the primary regulatory signal of necroptosis. In this study, we established a rat model of PIPN via quartic PTX administration (accumulated dose: 8 mg/kg, i.p.). The regulatory effect of macrophage infiltration on necroptosis in PIPN was observed using a macrophage scavenging agent (clodronate disodium). The results showed that PTX increased macrophage infiltration and the levels of TNF-α and IL-1β in the DRG. PTX also upregulated the levels of necroptosis-related proteins, including receptor-interacting protein kinase (RIP3) and mixed-lineage kinase domain-like protein (MLKL) in DRG neurons and promoted MLKL phosphorylation, resulting in neuronal necrosis and hyperalgesia. In contrast, clodronate disodium effectively removed macrophages, reduced the levels of RIP3, MLKL, and pMLKL, and decreased the number of necrotic cells in the DRG of PIPN rats, alleviating the behavioral pain abnormalities. These results suggest that PTX promotes macrophage infiltration, which results in the release of TNF-α and IL-1β in the DRG and the initiation of neuronal necroptosis via the RIP3/MLKL pathway, ultimately leading to neuropathic pain.
Ischemia-reperfusion injury. Ischemic injury due to blocked blood vessels and reperfusion injury when blood flow is restored.
The role of Fyn in reperfusion injury. Increased Fyn activity leads to hyperphosphorylation of the NMDAR2B subunit and IP3R, which leads to increased calcium influx and subsequent excitotoxicity. Fyn phosphorylates PKCδ, leading to activation of NF-κB and causing entry of the P65 component into the nucleus. P65 entry into the nucleus leads to transcription of proinflammatory cytokine genes, such as IL-1β.
Ischemic stroke caused by arterial occlusion is the most common type of stroke and is one of the leading causes of disability and death, with the incidence increasing each year. Fyn is a nonreceptor tyrosine kinase belonging to the Src family of kinases (SFKs), which is related to many normal and pathological processes of the nervous system, including neurodevelopment and disease progression. In recent years, more and more evidence suggests that Fyn may be closely related to cerebral ischemia-reperfusion, including energy metabolism disorders, excitatory neurotoxicity, intracellular calcium homeostasis, free radical production, and the activation of apoptotic genes. This paper reviews the role of Fyn in the pathological process of cerebral ischemia-reperfusion, including neuroexcitotoxicity and neuroinflammation, to explore how Fyn affects specific signal cascades and leads to cerebral ischemia-reperfusion injury. In addition, Fyn also promotes the production of superoxide and endogenous NO, so as to quickly react to produce peroxynitrite, which may also mediate cerebral ischemia-reperfusion injury, which is discussed in this paper. Finally, we revealed the treatment methods related to Fyn inhibitors and discussed its potential as a clinical treatment for ischemic stroke.
Hypertrophic cardiomyopathy is a hereditary disease characterized by asymmetric ventricular hypertrophy as the key anatomical feature. Currently, there exists no effective method for the early diagnosis of hypertrophic cardiomyopathy. In this analysis, we incorporated multiple GEO datasets containing RNA profiles of hypertrophic cardiomyopathic patient tissues, identified 642 differentially expressed genes, and performed GO and KEGG analyses. Furthermore, we narrowed down 46 characteristic genes from these differentially expressed genes using random decision forests and conducted transcription factor regulation analysis on them. Using 40 genes that showed overlap between the training set and the verification set, the artificial neural network was trained, and the final MPS scoring model was constructed, and a receiver-operating characteristic (ROC) curve was drawn. We used the MPS model to predict the verification dataset and drew the ROC curve, which demonstrated the good prediction performance of the model. In conclusion, this study combines a random decision forest and artificial neural network to build a diagnostic model for hypertrophic cardiomyopathy to predict the disease, aiming at early detection and treatment, prolonging the survival time, and improving the quality of life of patients.
Cerebral ischemia usually leads to axonal degeneration and demyelination in the adjacent white matter. Promoting remyelination still remains a challenging issue in the field. Considering that ischemia deprives energy supply to neural cells and high metabolic activities are required by oligodendrocyte progenitor cells (OPCs) for myelin formation, we assessed the effects of transplanting exogenous healthy mitochondria on the degenerating process of oligodendrocytes following focal cerebral ischemia in the present study. Our results showed that exogenous mitochondria could efficiently restore the overall mitochondrial function and be effectively internalized by OPCs in the ischemic cortex. In comparison with control cortex, there were significantly less apoptotic and more proliferative OPCs in mitochondria-treated cortex. More importantly, higher levels of myelin basic protein (MBP) and more morphologically normal myelin-wrapped axons were observed in mitochondria-treated cortex at 21 days postinjury, as revealed by light and electron microscope. Behavior assay showed better locomotion recovery in mitochondria-treated mice. Further analysis showed that olig2 and lipid synthesis signaling were significantly increased in mitochondria-treated cortex. In together, our data illustrated an antidegenerating and myelination-promoting effect of exogenous mitochondria, indicating mitochondria transplantation as a potentially valuable treatment for ischemic stroke.
Background: Inflammation plays a critical role in the progression of acute-on-chronic liver failure (ACLF). Atg13 is a vital regulatory component of the ULK1 complex, which plays an essential role in the initiation of autophagy. Previously, hepatic stellate cells (HSCs) were considered to be noninflammatory cells that contribute only to hepatic fibrosis. Recently, it has been found that HSCs can secrete inflammatory cytokines and participate in hepatic inflammation. Autophagy and proteasome-mediated degradation constitute two major means of protein turnover in cells. Autophagy has been shown to regulate inflammation, but it is unclear whether ubiquitin (Ub)-proteasome system (UPS) is involved in inflammatory responses in HSCs during ACLF. Methods: Clinical data were collected from ACLF patients, and surgically resected paraffin-embedded human ACLF liver tissue specimens were collected. The expression of Atg13 was assessed by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. Secretion of IL-1β was assessed by ELISA. Atg13 was knocked down by siRNA in LX2 cells. Coimmunoprecipitation assay was used to detect protein binding and polyubiquitination of Atg13. In vitro tests with LX2 cells were performed to explore the effects and regulation of p38 MAPK, Atg13, UPS, autophagy, and inflammation. Results: Serum lipopolysaccharide (LPS) was positively associated with disease severity in ACLF patients, and p38 MAPK was overexpressed in ACLF liver tissue. We evaluated the role of Atg13 in HSC inflammation and explored the possible underlying mechanisms. Inflammatory factors were upregulated via activation of p38 MAPK and inhibition of autophagy in LX-2 cells. Expression of Atg13 was decreased in LPS-incubated LX2 cells. Atg13 knockdown markedly inhibited autophagy and promoted LPS-induced inflammation in LX2 cells. Our in vitro experiments also showed that LPS induced depletion of Atg13 via UPS, and this process was dependent on p38 MAPK. Conclusions: LPS induces proteasomal degradation of Atg13 via p38 MAPK, thereby participating in the aggravation of LPS-induced autophagy inhibition and inflammatory responses in LX2 cells. Atg13 serves as a mediator between autophagy and proteasome. Modulation of Atg13 or proteasome activity might be a novel strategy for treating HSC inflammation.
Glioma is a malignant tumor that often occurs in the adult central nervous system. Metadherin/astrocyte-elevated gene-1 (MTDH) is involved in the development of cancer, but its relationship with glioma remains unclear. This study is aimed at clarifying the role of MTDH in glioma. GEPIA was employed to find the difference of the expression level of MTDH and MYB protooncogene-like 2 (MYBL2) in glioma tissues and normal tissues, and real-time quantitative reverse transcription PCR (qRT-PCR) and western blot (WB) were applied to verify the differential gene expression of MTDH and MYBL2 cells. After knocking down of MTDH, the expressions of forkhead box M1 (FoxM1), MTDH, and MYBL2 were detected by WB cells. Cell counting kit 8 (CCK-8) was used to detect cell proliferation, and flow cytometry was applied to measure cell apoptosis. The transwell assay was utilized to investigate the ability of cell migration and invasion. The results showed that MTDH and MYBL2 were overexpressed in glioma cells compared with normal cells. The knockdown of MTDH would inhibit the expression of MYBL2 through decreasing the expression of FoxM1 and further reduce glioma cell proliferation and cell migration and invasion. The present study showed that knockdown of MTDH inhibits glioma proliferation and migration and promotes apoptosis by downregulating MYBL2, which suggests that MTDH is a potential gene in clinical treatment of glioma.
Osteoarthritis (OA), a chronic degenerative joint disease, always occurred in the aging population. There is evidence suggests that chondrocytes’ survival, inflammation, and apoptosis play critical roles in OA pathogenesis. LMX1B has been shown to be involved in antiosteogenic function in early patterning of the calvaria. However, the role and mechanism of LMX1B in OA is not unknown. The present study observed that LMX1B was highly expressed in OA patients compared with normal patients. Besides, we found that IL-1β increased LMX1B mRNA and protein expression in SW1353 and C28/I2 chondrocytes. LMX1B knockdown increased IL-1β-induced cell viability and proliferation and suppressed cell apoptosis and inflammation response, including IFN-γ, TNF-α, IL-6, prostaglandin E2 (PGE2), and NO both in SW1353 and C28/I2. Furthermore, LMX1B silence inhibited MMP-3 and MMP-13 expression both in SW1353 and C28/I2 cells. Also, the activation of the NF-κB and NLRP3 signaling pathway was suppressed in LMX1B silence cells by decreasing the p-p65 and NLRP3 protein expressions. Additionally, inhibition of NF-κB by PDTC suppressed NLRP3 expression. Moreover, NLRP3 overexpression reversed the effects of LMX1B silence on chondrocytes’ survival, proliferation, apoptosis, and inflammation. Finally, we confirmed that LMX1B depletion had protective effects in OA rats in vivo.
In this study, we conducted a systematic review and meta-analysis regarding the role of the neutrophil to lymphocyte ratio (NLR) in Guillain Barré syndrome (GBS). The most recent update to the search was on July 18, 2022, through the databases of Web of Science, PubMed, Embase, and Scopus. The Newcastle-Ottawa scale was used for quality assessment of included studies. Finally, 14 studies were included in the review, and among them, ten studies were included in the meta-analysis. Our results showed that NLR levels were significantly increased in the patients with GBS compared with healthy controls ( SMD = 1.05 ; 95 % CI = 0.59 to 1.50, P < 0.001 ). After treatment, NLR levels were decreased to the extent that they became similar to healthy controls ( SMD = − 0.03 , 95 % CI = − 0.29 to 0.22, P = 0.204 ). Moreover, NLR was a stable predictor of outcome or response to treatment in such patients ( SMD = 1.01 , 95 % CI = 0.65 to 1.37, P < 0.001 ); the higher the NLR, the worse the outcome. In addition, patients who underwent mechanical ventilation had higher levels of NLR compared to those who did not ( SMD = 0.93 , 95 % CI = 0.05 to 1.82, P = 0.03 ). However, NLR levels were not different among distinct GBS subtypes, so it could not distinguish among them. In conclusion, our analysis indicates that the NLR levels are highly elevated in patients with GBS. Therefore, the NLR has the potential to be used as a biomarker to inform diagnosis, prognosis, or treatment responses in GBS, and future studies are warranted.
Infiltration and aggregation of lymphocytes in exocrine glands are the basic pathological manifestations of Sjögren’s syndrome (SS), and the incidence of SS has been increasing year by year in recent years. To explore the potential signaling pathway of Runzaoling (RZL) in alleviating SS, the possible targets of RZL in SS were firstly explored through network pharmacology, and then, the regulation of PI3K/AKT/mTOR signaling in NOD mice and Th17 cells was verified. 75 8-week-old NOD mice were casually classified into 5 groups: model; hydroxychloroquine; high, medium, and low dose RZL groups, with 15 in each; and 15 BALB/c mice were employed as control group. After 10 weeks of continuous intragastric administration in mice and 24 hours of drugs intervention in Th17 cells, histopathology was observed by HE staining, and the gene transcription levels were identified by real-time quantitative PCR (RT-qPCR). The protein expressions were detected by western blotting (WB). The findings showed that high and medium dose RZL group could attenuate the submandibular gland tissue damage. The results indicated that the mRNA expressions of PI3K, AKT, mTOR, STAT3, and IL-17 in SS mice and in IL-17 stimulation of Th17 cells were dramatically increased compared with control group and decreased to varying degrees after RZL intervention. The trend of phosphorylated PI3K/AKT/mTOR and STAT3 and IL-17 protein expression in NOD mice and Th17 cells were consistent with mRNA. RZL can downregulate STAT3 and IL-17 expressions in the submandibular gland of NOD mice and in Th17 cells via regulating the PI3K/AKT/mTOR signaling pathway. Moreover, RZL could reduce the activation of CD4+ T lymphocyte differentiation to Th17 cells.
Intervertebral disc degeneration (IVDD) has been a complex disorder resulted from genetic and environmental risk factors. The aim of this study was to identify the risk factors associated with IVDD in orthopaedic patients and develop a prediction model for predicting the risk of IVDD. A total of 309 patients were retrospectively included in the study and randomly divided into the training group and the validation group. The least absolute shrinkage and selection operator regression (LASSO) and the univariate logistic regression analysis were used to optimize factors selection for the IVDD risk model. Multivariable logistic regression analysis was used to establish a predicting nomogram model incorporating the factors. In addition, discrimination, calibration, and clinical usefulness of the nomogram model were evaluated via the C-index, receiver operating characteristic (ROC) curve, calibration plot, and decision curve analysis (DCA). Then, based on the results above, the relationship between IVDD and angiotensin II (AngII) level in peripheral blood was examined prospectively. The predictors of the nomogram include age, sex, hypertension, diabetes, gout, working posture, and exercising hours per week. The C-index values of the training and validation groups were 0.916 (95% CI, 0.876-0.956) and 0.949 (95% CI, 0.909-0.989), respectively, which indicated that the model displayed good discrimination. In addition, the area under the curve (AUC) values of the ROC curve of the training and the validation group were 0.815 (95% CI, 0.759-0.870) and 0.805 (95% CI, 0.718-0.892), respectively, revealing the satisfactory discrimination performance of the model. The prospective investigation showed that the average AngII level in the degenerated group (97.62±44.02 pg/mL) was significantly higher than that in the nondegenerated group (52.91±9.01 pg/mL) (p
Effects of ILs on the prognosis of HBV-ACLF and its mechanism. (Illustration: the picture shows the main cells producing ILs; the key mechanisms of different ILs affecting the prognosis of ACLF; the key signaling pathways that can regulate the function of ILs, and the key cytokines that cause the inflammatory storm of liver and summarized the whole paper briefly.)
Hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) is relatively common in China and has complex pathogenesis, difficult clinical treatment, and poor prognosis. Immune status is an important factor affecting ACLF prognosis. Interleukins are a family of secreted lymphocyte factors that interact with a host of cell types including immune cells. These signaling molecules play important roles in transmitting information; regulating immune cells; mediating the activation, proliferation, and differentiation of T and B cells; and modulating inflammatory responses. Many studies have investigated the correlation between interleukin expression and the prognosis of HBV-ACLF. This review focuses on the potential use of interleukins as prognostic biomarkers in HBV-ACLF. References were mainly identified through PubMed and CNKI search, including relevant studies published until December 2021. We have summarized reports of several promising diagnostic interleukin biomarkers that predict susceptibility to HBV-ACLF. The use of biomarkers to understand early prognosis can help devise different therapeutic measures and improve patient survival. Ongoing research on prognostic biomarkers of HBV-ACLF is promising, and future preclinical and clinical studies are warranted.
Ischemic stroke (IS) is a general term for necrosis of brain tissue caused by stenosis, occlusion of arteries supplying blood to the brain (carotid artery and vertebral artery), and insufficient blood supply to the brain. Cerebral ischemia is the main kind of IS causing cell damage. However, the underlying mechanism still needs to be clarified further. In this study, it was demonstrated that FFAR1 was a hub gene in IS. The expression of FFAR1 was increased in PC12 cells with OGD/R treatment. FFAR1 deficiency inhibited cell viability and induced cell apoptosis, which was reversed by FFAR1 overexpression. Moreover, candesartan, as a compound targeting FFAR1, facilitated cell viability and reduced cell apoptosis. The expression of ITGA4 was also high in OGD/R-PC12 cells as FFAR1. Furthermore, FFAR1 deficiency retarded the increasing of cell viability and inhibition of cell apoptosis by downregulation of Bax and Cleaved Caspase-3 in OGD/R-PC12 cells with candesartan treatment. In conclusion, candesartan may regulate neuronal apoptosis through FFAR1/ITGA4 axis.
In the Brazilian Amazon, the snake Bothrops atrox is the primary cause of snakebites. B. atrox (BaV) venom can cause systemic pathophysiological changes such as acute kidney injury (AKI), which leads to the production of chemokines and cytokines in response to the envenomation. These soluble immunological molecules act by modulating the inflammatory response; however, the mechanisms associated with the development of AKI are still poorly understood. Here, we characterize the profile of these soluble immunological molecules as possible predictive biomarkers of the development of AKI. The study involved 34 patients who had been victims of snakebites by Bothrops sp. These were categorized into two groups according to the development of AKI (AKI(-)/AKI(+)), using healthy donors as the control (HD). Peripheral blood samples were collected at three-time points: before antivenom administration (T0) and at 24 and 48 hours after antivenom (T1 and T2, respectively). The soluble immunological molecules (CXCL-8, CCL-5, CXCL-9, CCL-2, CXCL-10, IL-6, TNF, IL-2, IL-10, IFN-γ, IL-4, and IL-17A) were quantified using cytometric bead array. Our results demonstrated an increase in CXCL-9, CXCL-10, IL-6, IL-2, IL-10, and IL-17A molecules in the groups of patients who suffered Bothrops snakebites (AKI(-) and AKI(+)) before antivenom administration, when compared to HD. In the AKI(+) group, levels of CXCL-8 and CCL-2 molecules were elevated on admission and progressively decreased during the clinical evolution of patients after antivenom administration. In addition, in the signature analysis, these were produced exclusively by the group AKI(+) at T0. Thus, these chemokines may be related to the initiation and extension of AKI after envenomation by Bothrops and present themselves as two potential biomarkers of AKI at T0.
Psoriasis is a chronic inflammatory skin disease, and elevation of proinflammatory cytokine levels is a critical driver of the pathogenesis of psoriasis. Extracellular cold-inducible RNA-binding protein (eCIRP) has been shown to play a role in various acute and chronic inflammatory diseases. C23, a short peptide derived from CIRP, competitively binds CIRP receptors and reduces damage in inflammatory diseases. However, the effect of eCIRP in psoriasis has not been studied. In the present study, we investigated the role of eCIRP in the expression of proinflammatory cytokines in keratinocytes. Our data show that eCIRP expression was increased in the sera of psoriasis patients and imiquimod- (IMQ-) induced psoriatic mice and cells stimulated with proinflammatory cytokines (IL-1α, IL-17A, IL-22, oncostatin M, and TNF-α; mix M5). Recombinant human CIRP (rhCIRP) promoted the expression of the proinflammatory cytokines TNF-α, IL-6, and IL-8 and the activation of NF-kappaB (NF-κB) and ERK1/2 in cultured keratinocytes. We then found that the above effects of eCIRP could be blocked by C23 in both normal keratinocytes and M5-stimulated psoriatic keratinocytes. In addition, in vivo experiments revealed that C23 could effectively ameliorate IMQ-induced psoriatic dermatitis. TNF-α and IL-6 mRNA expressions were reduced in the skin lesions of mice with C23-treated IMQ-induced psoriasis, and this effect was accompanied by inhibition of the NF-κB and ERK1/2 signaling pathways. In summary, eCIRP plays an important role in the pathogenesis of psoriasis and may become a new target for psoriasis treatment.
Postoperative cognitive dysfunction (POCD) is consequence of anesthesia and surgery that primarily affects older people. The prevention and treatment of POCD has drawn an increasing attention in recent decades. Here, we established the animal model mimicked POCD after femoral fracture surgery, and analyze the effect of acupuncture stimulation on postoperative cognitive function after femoral fracture surgery. Compared with the mock group, the cognitive function performance was significantly decreased both in the anaesthesia group and the surgery group, between which the symptoms were more severe in the surgery group. The peripheral inflammation response and the neuron impairment and inflammation response in the hippocampus were observed in the surgery group, but only peripheral inflammation response was detected in the anaesthesia group. These findings indicated the POCD was the synergistic outcome of anaesthesia and surgical stimulation but with different pathogenic mechanism. The surgery with mental tri-needles (surgery+MTN) group outperformed the surgery group in terms of cognitive function performance. The peripheral inflammation response and the neuron impairment and inflammation response in the hippocampus was significantly reduced by the electroacupuncture stimulation. Our findings indicated the protection of electroacupuncture form POCD after femoral fracture surgery is related to the inhibition of inflammation response and neuron impairment.
The activation of cardiac fibroblasts (CFs) after myocardial infarction (MI) is essential for post-MI infarct healing, during which the regulation of transforming growth factor beta1 (TGF-β1) signaling is predominant. We have demonstrated that TGF-β1-mediated upregulation of LBH contributes to post-MI CF activation via modulating αB-crystallin (CRYAB), after being upregulated by TGF-β1. In this study, the effect of LBH-CRYAB signaling on the cardiac microenvironment via exosome communication and the corresponding mechanisms were investigated. The upregulation of LBH and CRYAB was verified in both cardiomyocytes (CMs) and CFs in hypoxic, post-MI peri-infarct tissues. CM-derived exosomes were isolated and identified, and LBH distribution was elevated in exosomes derived from LBH-upregulated CMs under hypoxia. Treatment with LBH+ exosomes promoted cellular proliferation, differentiation, and epithelial-mesenchymal transition-like processes in CFs. Additionally, in primary LBHKO CFs, western blotting showed that LBH knockout partially inhibited TGF-β1-induced CF activation, while LBH-CRYAB signaling affected TGF-β1 expression and secretion through a positive feedback loop. The administration of a Smad3 phosphorylation inhibitor to LBHKO CFs under TGF-β1 stimulation indicated that Smad3 phosphorylation partially accounted for TGF-β1-induced LBH upregulation. In conclusion, LBH upregulation in CMs in post-MI peri-infarct areas correlated with a hypoxic cardiac microenvironment and led to elevated exosomal LBH levels, promoting the activation of recipient CFs, which brings new insights into the studies and therapeutic strategies of post-MI cardiac repair.
Background: Middle-aged (45-59 years old) patients with major depressive disorder (MDD) have a predilection for dementia and cognitive disorders (CDs); however, the characteristics and mechanisms of CDs in these patients remain unclear. There are also known connections between thyroid-stimulating hormone (TSH), brain biochemical metabolism, and cognitive function (CF); however, there is scanty of information about these connections in middle-aged MDD patients. Methods: Cognitive assessment was performed on 30 first-episode, untreated middle-aged patients with MDD and 30 well-matched healthy controls (HCs) using the MATRICS Consensus Cognitive Battery (MCCB). N-acetyl aspartate (NAA)/creatine (Cr) and choline (Cho)/Cr ratios in the prefrontal cortex (PFC) and cerebellum were also obtained via proton magnetic resonance spectroscopy (1H-MRS), and the TSH level was measured by chemiluminescence analysis. Results: MDD patients presented significantly lower processing speed, working memory, verbal learning, reasoning problem-solving, visual learning, and composite cognition scores than controls, with a statistically lower NAA/Cr ratio in the right cerebellum. Age was positively related to reasoning problem-solving in the MDD group (r = 0.6249, p = 0.0220). Education also showed a positive association with visual learning, social cognition, and composite cognition. The 24-item Hamilton Depression Rating Scale (HDRS-24) score was negatively related to all domains of CF. TSH levels were markedly decreased in the MDD group, and a positive connection was determined between the NAA/Cr ratio in the right PFC and the TSH level. Conclusions: Middle-aged MDD patients have multidimensional CDs. There are changes in PFC and cerebellar biochemical metabolism in middle-aged patients with MDD, which may be related to CDs or altered TSH levels.
Hepatocellular carcinoma (HCC) is one of the most common cancers in the world and has a high mortality rate. Although prevention and treatment of HCC has improved, it still faces poor prognosis and high mortality. miRNAs play a critical role in the tumorigenesis of HCC, but the underlying mechanism has not been well investigated. Here, the functions and interaction between miR-559 and PARD3 were investigated in HCC cells. Increased PARD3 and decreased miR-559 expression were observed in HCC cells compared with those in normal liver cells, especially in Huh-7 cells. Studies further demonstrated that PARD3 silencing or miR-559 overexpression impaired the proliferation, autophagy, and angiogenesis in Huh-7 cells. Mechanistically, PARD3 represents a target of miR-559. Furthermore, investigations revealed that miR-559 inhibition induced the expression of PARD3, thereby enhancing cell proliferation, autophagy, and angiogenesis in Huh-7 cells. These results reveal the interaction between miR-559 and PARD3 in HCC cells and provide new insights into their potential targets as therapeutic treatment against HCC.
Bronchial asthma (BA) is a chronic inflammatory disease of the airway. Previous research has shown that Yanghe Pingchuan granules (YPGs) exert a precise therapeutic effect on BA. In our previous work, we showed that YPGs improved inflammation of the airways in rat models of BA. Other studies have shown that the pathogenesis of BA is closely related to pyroptosis and that the TOLL-like receptor pathway plays a key role in the mediation of pyroptosis. Therefore, in the present study, we established a rat model of BA by applying the concept of pyroptosis and used the TLR4/NF-κB/NRLP3 signaling pathway as the target and YPGs as the treatment method. We evaluated the effects of YPGs on airway inflammation and pyroptosis in the model rats by HE staining, Masson’s staining, AP-PAS staining, western blotting, and real-time quantitative PCR. The results showed that Yanghe Pingchuan granules could significantly improve the inflammatory response of bronchial tissue in BA rats, reduce the content of inflammatory factors IL-1β and IL-18, and inhibit the expression of pyroptosis factor. Meanwhile, YPG can block the TLR4/NF-κB signaling pathway. These findings suggest that YPG may be an effective drug for the treatment of BA by blocking the TLR4/NF-κB signaling pathway and inhibiting pyroptosis.
Objective: Activation of toll-like receptor 9 (TLR9) has been proposed to play an inhibitory role in RANKL-induced osteoclastogenesis. A20 deubiquitinase has been found to be related to bone loss. This study investigated the role of CpG oligodeoxynucleotides (CpG-ODNs) through regulation of A20 deubiquitinase in RANKL-induced osteoclast formation. Methods: RAW 264.7 cells, a murine monocyte-macrophage cell line, were incubated with or without CpG-ODN in the presence of RANKL. Osteoclast-specific genes and their related signaling molecules were measured by real-time quantitative polymerase chain reaction and Western blot assay. Morphological assessment for osteoclast formation was performed using tartrate-resistant acid phosphatase (TRAP) staining and F-actin ring formation staining. Results: RANKL-induced osteoclast-related genes and proteins, c-Fos, NFATc1, TRAP, cathepsin K, and carbonic anhydrase II were significantly inhibited in RAW 264.7 cells stimulated with CpG-ODN. CpG-ODN attenuated TNF receptor-associated factor 6 (TRAF6), p-IκBα, and p-NF-κB expression in RAW 264 cells mediated by RANKL. CpG-ODN increased A20 gene and proteins in time-dependent manner. A20 expression under costimulation with CpG-ODN and RANKL was more decreased than under stimulation with RANKL alone. Cells transfected with A20 siRNA augmented expression of osteoclast-related genes and proteins. Number of TRAP-positive cells transfected with A20 siRNA was higher than those transfected with NC siRNA. A20 expression in cells transfected with IL-1β siRNA in the presence of both RANKL and CpG-ODN was more decreased than those with NC siRNA. Conclusion: This study showed that CpG-ODN suppressed RANKL-induced osteoclast formation through regulation of the A20-TRAF6 axis in RAW 264.7 cells.
Nrf2 gene expression comparison in hippocampus between groups. ∗∗Significant difference compared to training group (P<0.05).
AKT gene expression comparison in hippocampus between groups. ∗∗Significant difference compared to control group (P<0.05).
Weights (mean±SD) of rats in groups.
Purpose: To study the effects of a six-week endurance training protocol and calcitonin gene-related peptide (CGRP) inhibition on the nuclear factor erythroid 2-related factor 2 (Nrf2) and protein kinase B (PKB) or AKT expression in the hippocampal tissue of male Wistar rats. Main Methods. Building on a controlled experimental design with a posttest, 28 healthy Wistar male rats were randomly assigned to four groups (n = 7 per group), including control, control+CGRP inhibition, endurance training, and endurance training+CGRP inhibition groups. The training groups were trained for six weeks. Rats in the CGRP inhibition group received CGRP receptor antagonist daily (0.25 mg/kg) via intravenous (IV) injection. The Nrf2 and AKT (PKB) expression was measured using the real-time PCR technique. Results: In the endurance training group, Nrf2 expression in the hippocampal tissue was increased significantly more than in other groups (P < 0.05). There was also a significant increase in the AKT expression in the endurance training group compared to the control group (P = 0.048) and in the endurance training+CGRP inhibition compared to the control group (P = 0.012). In addition, there was no significant relationship between AKT (PKB) and Nrf2 (r = -0.27, n = 28, P = 0.16). Conclusion: Endurance training alone has been able to increase Nrf2 and AKT (PKB) mRNA levels in the hippocampal tissue, considering that endurance training had no significant effect on AKT and Nrf2 expression after adding to CGRP inhibition.
Inflammation is the body’s biological reaction to endogenous and exogenous stimuli. Recent studies have demonstrated several anti-inflammatory properties of Ferula species. In this paper, we decided to study the anti-inflammatory effect of ethanolic extract of Ferula assafoetida oleo-gum-resin (asafoetida) against TNF-α-stimulated human umbilical vein endothelial cells (HUVECs). HUVECs were cultured in a flat-bottom plate and then treated with ethanolic extract of asafoetida (EEA, 0-500 μg/ml) and TNF-α (0-100 ng/ml) for 24 h. We used the MTT test to assess cell survival. In addition, the LC-MS analysis was performed to determine the active substances. HUVECs were pretreated with EEA and then induced by TNF-α. Intracellular reactive oxygen species (ROS) and adhesion of peripheral blood mononuclear cells (PBMCs) to HUVECs were evaluated with DCFH-DA and CFSE fluorescent probes, respectively. Gene expression of intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin and surface expression of ICAM-1 protein were measured using real-time PCR and flow cytometry methods, respectively. While TNF-α significantly increased intracellular ROS formation and PBMC adhesion to TNF-α-induced HUVECs, the pretreatment of HUVECs with EEA (125 and 250 μg/ml) significantly reduced the parameters. In addition, EEA pretreatment decreased TNF-α-induced mRNA expression of VCAM-1 and surface protein expression of ICAM-1 in the target cells. Taken together, the results indicated that EEA prevented ROS generation, triggered by TNF-α, and inhibited the expression of VCAM-1 and ICAM-1, leading to reduced PBMC adhesion. These findings suggest that EEA can probably have anti-inflammatory properties.
Background: Guttiferone E is a naturally occurring polyisoprenylated benzophenone exhibiting a wide range of remarkable biological activities. But its therapeutic application is still limited due to its poor water solubility. This study is aimed at preparing guttiferone E-loaded liposomes and assessing their in vitro cytotoxicity and anti-inflammatory effect. Methods: Liposomes containing guttiferone E were prepared by the thin film hydration method, and the physicochemical characteristics were determined using dynamic light scattering, laser Doppler velocimetry, and atomic force microscopy. The cytotoxicity was assessed by the MTT assay. The fluorometric cyclooxygenase (COX) activity assay kit was used to assess the COX activity while the nitric oxide production was evaluated by the Griess reagent method. Results: The liposomes with a mean size of 183.33 ± 17.28 nm were obtained with an entrapment efficiency of 63.86%. Guttiferone E-loaded liposomes successfully decreased the viability of cancer cells. The overall IC50 values varied between 5.46 μg/mL and 22.25 μg/mL. Compared to the untreated control, guttiferone E-loaded liposomes significantly reduced the nitric oxide production and the activity of COX in a concentration-dependent manner. Conclusion: This study indicates that liposomes can be an alternative to overcome the water insolubility issue of the bioactive guttiferone E.
Diabetes is well recognized to increase the risk of heart failure, which is associated with higher mortality and morbidity. It is important for the development of novel therapeutic methods targeting heart failure in diabetic patients. Ferroptosis, an iron-dependent regulated cell death, has been implicated in the progression of diabetes-induced heart failure (DIHF). This study was designed to investigate the contribution of Nr2f2 to the activation of ferroptosis and mitochondrial dysfunction in DIHF. We established a diabetic model by a high-fat feeding diet combined with an intraperitoneal injection of streptozotocin. After 16 weeks, Nr2f2 expression was increased in heart tissue of DIHF mice. In vivo, DIHF mice overexpressing Nr2f2 (AAV9-cTNT-Nr2f2) exhibited severe heart failure and enhanced cardiac ferroptosis compared with DIHF control mice (AAV9-cTNT-ctrl), accompanied by mitochondrial dysfunction and aggravated oxidative stress reaction. In vitro, Nr2f2 knockdown ameliorated ferroptosis and mitochondrial dysfunction by negatively regulating PGC-1α, a crucial metabolic regulator. PGC-1α knockdown counteracted the protective effect of Nr2f2 knockdown. These data suggest that Nr2f2 promotes heart failure and ferroptosis in DIHF by modulating the PGC-1α signaling. Our study provides a new idea for the treatment of diabetes-induced heart failure.
PRISMA 2020 flow diagram for new systematic reviews which includes searches of databases, registers, and other sources.
This study was conducted to summarize the results of studies investigating the role of neutrophil to lymphocyte ratio (NLR) in epilepsy. The search was conducted on PubMed, Scopus, and Web of Science up to December 25, 2021. Finally, a total of seven studies were included in the review. The NLR in patients who were in the acute phase was higher than that of healthy. NLR in the patients who were in either acute or subacute phase was higher than in healthy controls. A significant difference in NLR levels between the acute and subacute phases was also noted. Epilepsy is one of the most important neurological diseases in the world, and millions of people around the world suffer from it, and a cheap and fast biomarker is needed for it. The interesting thing is that inflammation plays a role in epilepsy, and elevated NLR value can be a good biomarker of inflammation and, as a result, for epilepsy.
Objectives: The study was aimed at investigating the reliability of computer-assisted three-dimensional surgical simulation (CA3DSS) of posterior osteotomies in thoracolumbar kyphosis secondary to ankylosing spondylitis (TLKAS) patients. Methods: Eligible TLKAS patients who underwent posterior correction surgery with posterior osteotomies were consecutively included. Simulated posterior osteotomies were performed in Mimics and 3-Matic Medical software. Coronal and sagittal angle and alignment parameters were measured in preoperative full-length X-ray, preoperative original 3D spine (Pre-OS), simulated 3D spine (SS), and postoperative original 3D spine (Post-OS). Reliability was tested by both intraclass correlation coefficients (ICCs) and Bland-Altman analysis. Results: A total of 30 TLKAS patients were included. Excellent consistency of radiological parameters was shown between preoperative X-ray and Pre-OS model. In SS and Post-OS models, excellent reliabilities were shown in global kyphosis (ICC 0.832, 95% CI 0.677-0.916), thoracic kyphosis (ICC 0.773, 95% CI 0.577-0.885), and lumbar lordosis (ICC 0.896, 95% CI 0.794-0.949) and good reliabilities were exhibited in the main curve (ICC 0.680, 95% CI 0.428-0.834) and sagittal vertical axis (ICC 0.619, 95% CI 0.338-0.798). ICCs of correction angle achieved by pedicle subtraction osteotomy (PSO) was 0.754 (95% CI 0.487-0.892), and that of posterior column osteotomies (PCO) was 0.703 (95% CI 0.511-0.829). Bland-Altman analysis also showed good agreement for both Cobb angle and distance measurements in Pre-OS and SS models, and good reliabilities were shown in PCO and PSO in real spine and SS models. Conclusions: CA3DSS can provide an accurate measurement, and it is a reliable and effective method to conduct proper simulation for correction surgery with posterior osteotomies in TLKAS patients. This trial is registered with Chinese Clinical Trial Registry ChiCTR2100053808.
Objective. The objective of the study was to determine if acute kidney injury (AKI) in patients with acute ischemic stroke was associated with the monocyte-to-lymphocyte ratio (MLR) assessed upon admission to the neurology intensive care unit (NICU) (AIS). We also looked into the MLR’s function in predicting hospital mortality in AIS patients. Methods. This retrospective analysis included 595 adult patients with AIS who were hospitalized to the NICU of the First Affiliated Hospital of South China between January 2017 and December 2019. Clinical signs and imaging studies were used to diagnose AIS. KDIGO criteria were used to define AKI. The ratio of monocytes to lymphocytes was used to compute MLR, the ratio of neutrophils to lymphocytes was used to calculate NLR, and the ratio of platelets to lymphocytes was used to calculate PLR. Result. 361 males and 234 women between the ages of 66.27±12.05 years took part in the study. The individuals’ MLR was 0.4729±0.3461 and their neutrophil-to-lymphocyte ratio (NLR) was 8.18±5.45. There were notable disparities in MLR and NLR between the AKI and non-AKI groups (p
Background: Acne is the most common chronic inflammatory disease of hair follicles and sebaceous glands in dermatology. Hyperplastic scar (HS), a very common sequelae of acne, is also the most common scar type in clinical practice. Objective: This research analyzed the clinical effectiveness and safety of pulsed dye laser (PDL) combined with pingyangmycin (PI) in the treatment of post-acne HS. Methods: One hundred and nine patients with post-acne HS admitted in June 2020 were selected and divided into a research group (n = 52) and a control group (n = 57) according to the difference in treatment methods. The efficacy, incidence of adverse reactions, skin repair, treatment comfort, and satisfaction were compared between groups. Results: The total effective rate was higher in the research group compared with the control group. No statistical difference was observed between groups in the incidence of adverse reactions. The research group showed better scar repair, skin improvement, and granulation tissue maturity than the control group. And compared with the control group, the growth factor of the research group was lower, while the treatment comfort and satisfaction, psychological state, and prognosis quality of life were higher. The two groups showed no notable difference in the recurrence rate. Conclusions: PDL combined with PI can effectively improve the clinical efficacy, scar repair effect, overall skin status, and treatment experience of patients and boost the psychological state and prognostic quality of life of patients, which has great clinical application prospect for the treatment of HS.
The adipose tissue NLRP3 inflammasome has recently emerged as a contributor to obesity-related metabolic inflammation. Recent studies have demonstrated that the activation of the NLRP3 inflammasome cleaves gasdermin D (GSDMD) and induces pyroptosis, a proinflammatory programmed cell death. However, whether GSDMD is involved in the regulation of adipose tissue function and the development of obesity-induced metabolic disease remains unknown. The aim of the present study was to investigate the role of GSDMD in adipose tissue inflammation as well as whole-body metabolism using GSDMD-deficient mice fed a high-fat diet (HFD) for 30 weeks. The effects of GSDMD deficiency on adipose tissue, liver, and isolated macrophages from wild-type (WT) and GSDMD knockout (KO) mice were examined. In addition, 3T3-L1 cells were used to examine the expression of GSDMD during adipogenesis. The results demonstrate that although HFD-induced inflammation was partly ameliorated in isolated macrophages and liver, adipose tissue remained unaffected by GSDMD deficiency. Compared with the WT HFD mice, GSDMD KO HFD mice exhibited a mild increase in HFD-induced glucose intolerance with increased systemic and adipose tissue IL-1β levels. Interestingly, GSDMD deficiency caused accumulation of fat mass when challenged with HFD, partly by suppressing the expression of peroxisome proliferator-activated receptor gamma (PPARγ). The expression of GSDMD mRNA and protein was dramatically suppressed during adipocyte differentiation and was inversely correlated with PPARγ expression. Together, these findings indicate that GSDMD is not a prerequisite for HFD-induced adipose tissue inflammation and suggest a noncanonical function of GSDMD in regulation of fat mass through PPARγ.
Purpose: To determine the clinical efficacy of recombinant human epidermal growth factor (rh-EGF) combined with povidone-iodine (PVI) on patients with pressure ulcers (PUs). Methods: One hundred and five PU patients treated between January 2018 and January 2021 were enrolled and retrospectively analyzed. Of them, 50 patients who received conventional treatment were assigned to the control group (Con group), while 55 patients treated with rh-EGF combined with PVI were assigned to the observation group (Obs group). The two groups were compared in clinical efficacy, PU alleviation (total area reduction rate, total depth reduction rate, and total volume reduction rate), healing time, pain degree (Visual Analog Scale [VAS] score), inflammatory indexes (interleukin-8 [IL-8], tumor necrosis factor-α [TNF-α], and hypersensitive C reactive protein [hs-CRP]), and hydroxyproline content in the wound. Results: The Obs group yielded a higher total effective rate than the Con group (P < 0.05). The Obs group also experienced statistically shorter healing time and milder pain, with better PU alleviation and lower levels of inflammation indexes compared with the Con group (all P < 0.05). In addition, a higher hydroxyproline content in the wound was found in the Obs group. Conclusions: All in all, rh-EGF combined with PVI has a definite curative effect on patients with PUs. It can promote PU alleviation and hydroxyproline secretion in the wound and inhibit pain and inflammatory reactions, which is worthy of clinical promotion.
Airway inflammation in asthma is managed with anti-inflammatory steroids such as dexamethasone (DEX). However, about 20% of asthmatics do not respond to this therapy and are classified as steroid-resistant. Currently, no effective therapy is available for steroid-resistant asthma. This work therefore evaluated the effect of a plant sterol, stigmasterol (STIG), and stigmasterol-dexamethasone combination (STIG+DEX) in LPS-ovalbumin-induced steroid-resistant asthma in Guinea pigs. To do this, the effect of drugs on inflammatory features such as airway hyperreactivity and histopathology of lung tissue was evaluated. Additionally, the possible pathway of drug action was assessed by measuring events such neutrophil levels, oxidative and nitrative stress, and histone deacetylase 2 (HDAC2) and interleukin 17 (IL-17) levels. STIG alone did not affect inflammatory features, although it caused some changes in the molecular events associated with steroid-resistant asthma. However, STIG +DEX caused significant modulation of inflammatory features by protecting against destruction of lung tissue. The modulation of inflammatory features was associated with significant inhibition of neutrophilia and oxidative and nitrative stress, decrease in HDAC2, and increase in IL-17 levels that are usually associated with steroid-resistant asthma. Our findings show that although STIG and DEX individually do not protect against steroid-resistant asthma, their coadministration results in significant modulation of inflammatory features and the associated molecular events that lead to steroid-resistant asthma.
To explore the role and possible mechanism of miRNA-212 in heart failure (HF). The rat model of abdominal aortic constriction was constructed, the changes of myocardial morphology were observed by hematoxylin-eosin (HE) staining, and the hypertrophy-related marker molecules were detected by quantitative real-time polymerase chain reaction (qRT-PCR). At the cellular level, phenylephrine and angiotensin II were added to induce cardiomyocyte hypertrophy. The overexpression of miR-212 adenovirus was constructed, and the expression of miR-212 was overexpressed, and its effect on cardiac hypertrophy (CH) was detected by immunofluorescence and qRT-PCR. Then, the mechanism of miR-212 regulating CH was verified by website prediction, luciferase reporter gene assay, qRT-PCR, and western blotting assay. In the successfully constructed rat model of abdominal aortic constriction and cardiomyocyte hypertrophy, ANP and myh7 were dramatically increased, myh6 expression was decreased, and miRNA-212 expression was increased. Overexpression of miRNA-212 in cardiomyocytes can promote cardiomyocyte hypertrophy, while knocking down miR-212 in cardiomyocytes can partially reverse cell hypertrophy. In addition, miR-212 targets TCF7L2 and inhibits the expression of this gene. miRNA-212 targets TCF7L2 and inhibits the expression of this gene, possibly through this pathway to promote cardiomyocyte hypertrophy.
Previous fundamental and clinical research has shown that electroacupuncture (EA) at the acupoints of Quchi (LI11) and Zusanli (ST36) can successfully alleviate motor dysfunction following stroke. Additionally, it has been discovered that gut microbiota and their metabolites play an essential role in stroke. However, the relationship between the metabolites of gut microbiota and the efficacy of EA is still unclear. Therefore, the aim of this study was to evaluate the mechanism of EA at LI11 and ST36 in the treatment of motor dysfunction after middle cerebral artery occlusion/reperfusion (MCAO/R) in model rats by comparing the differences and correlation between different short-chain fatty acids (SCFAs) and the recovery of motor function. The results indicated that EA at LI11 and ST36 acupoints enhanced the neurological function, motor function, and infarct volume of MCAO/R rats. The levels of acetic acid, propionic acid, and total SCFAs were considerably lower in the MCAO/R group than in the sham group ( P < 0.05 ). Acetic acid, propionic acid, and total SCFA concentrations were substantially higher in the MCAO/R + EA group than in the MCAO/R group ( P < 0.05 ). Finally, Pearson correlation analysis revealed that the propionic acid concentration was substantially favorably connected with the duration on the rotarod ( r = 0.633 and P < 0.05 ) and highly negatively correlated with the modified neurological severity score (mNSS) ( r = − 0.698 and P < 0.05 ) and the percentage of cerebral infarct volume ( r = − 0.729 and P < 0.05 ). Taken together, these findings indicate that the increase in propionic acid may be one of the mechanisms and targets of EA at LI11 and ST36 acupoints to improve poststroke motor dysfunction in MCAO/R rats.
of the exosomal secretion, uptake, and the effect of regulating inflammation and angiogenesis. Process A represents the exosomes derived from donor cells such as ADSCs, MSCs, and EPCs. This complex process is relevant to the formation of early endosomes, early endosomes mature into late endosomes, and MVEs fuse with the cell membrane and secrete exosomes. Process B is exosomes that bind to the central nervous system cells such as microglia, astrocytes, and endothelial cells through specific molecular interactions, the direct fusion of membrane, and various endocytosis. Process C shows the effect of exosomes in regulating inflammation and angiogenesis by promoting the formation of the blood vessel and suppressing the production of neuroinflammatory mediators following stroke. Abbreviations: ADSCs: adipose-derived stem cells; MSCs: mesenchymal stem cells; EPCs: endothelial progenitor cells; MVEs: multivesicular endosomes; ESCRT: endosomal-sorting complex required for transport.
of the exosomes in crosstalk between inflammation and angiogenesis. The red arrow represents regulation of inflammatory response, the yellow arrow represents regulation of angiogenesis, and the blue arrow represents general regulation. Exosomes from different sources carry miRNAs and other contents that affect central nervous system cells and simultaneously regulate inflammation and angiogenesis through different signals. The balance between inflammation and angiogenesis is also influenced by many factors following stroke, including the pathological stage of stroke, the signal received, and the dose of therapeutic substances. Abbreviations: MSC: mesenchymal stem cell; EPC: endothelial progenitor cell; ADSC: adipose-derived stem cell; NPC: neural progenitor cell; IONP: iron oxide nanoparticles; FGF: fibroblast growth factor; Ang-1: Angiogenin 1; VEGF: vascular endothelial growth factor; NF-κB: nuclear factor-κB; TRPM7: transient receptor potential cation channel member 7; TLR4: Toll-like receptor 4; LCN2: lipocalin 2; IRAK1: IL-1 receptor-associated kinases 1; TRAF6: TNF receptor-associated factor 6; PTEN: phosphatase and tensin homologue deleted on chromosome 10; AKT: protein kinase B; IL-1β: interleukin-1β; TNF-α: tumor necrosis factor α; TGF-β: transforming growth factor β; IGF: insulin-like growth factor (IGF); SPRED1: sprouty-related EVH1 domain-containing protein 1; VCAM1: vascular cell adhesion molecule 1
The endothelial dysfunction, associated with inflammation and vascular permeability, remains the key event in the pathogenesis of cerebral ischemic stroke. Angiogenesis is essential for neuroprotection and neural repair following stroke. The neuroinflammatory reaction plays a vital role in stroke, and inhibition of inflammation contributes to establishing an appropriate external environment for angiogenesis. Exosomes are the heterogeneous population of extracellular vesicles which play critical roles in intercellular communication through transmitting various proteins and nucleic acids to nearby and distant recipient cells by body fluids and circulation. Recent reports have shown that exosomal therapy is a valuable and potential treatment strategy for stroke. In this review, we discussed the exosomes in complex interaction mechanisms of angiogenesis and inflammation following stroke as well as the challenges of exosomal studies such as secretion, uptake, modification, and application.
Objectives: Following cerebral ischemia, microRNA- (miR-) 29b in circulating blood is downregulated. This study investigates the underlying mechanism and implications of miR-29b in leukocyte induction. Methods: miR-29b from stroke patients and rats with middle cerebral artery occlusion (MCAO) were assessed using real-time polymerase chain reaction (PCR). miR-29b agomir was used to increase miR-29b expression in leukocytes via intravenous injection. C1q and tumor necrosis factor (C1QTNF) 6, interleukin- (IL-) 1β, zonula occludens- (ZO-) 1, occludin, and ischemic outcomes were assessed in MCAO rats. Additionally, hCMEC/D3 cells were subjected to oxygen-glucose deprivation (OGD) and cocultured with HL-60 cells. Results: miR-29b levels in neutrophils were found to be significantly lower in stroke patients compared with healthy controls, which may indicate its high diagnostic sensitivity and specificity for stroke. Moreover, miR-29b levels in leukocytes showed a negative correlation with National Institute of Health Stroke Scale (NIHSS) scores and C1QTNF6 levels. In MCAO rats, miR-29b overexpression reduced brain infarct volume and brain edema, decreasing IL-1β levels in leukocytes and in the brain 24 hours poststroke. miR-29b attenuated IL-1β expression via C1QTNF6 inhibition, leading to decreased blood-brain barrier (BBB) disruption and leukocyte infiltration. Moreover, miR-29b overexpression in HL-60 cells downregulated OGD-induced hCMEC/D3 cell apoptosis and increased ZO-1 and occludin levels in vitro. Conclusion: Leukocytic miR-29b attenuates inflammatory response by augmenting BBB integrity through C1QTNF6, suggesting a novel miR-29b-based therapeutic therapy for ischemic stroke.
Background: Radiotherapy is one of the major strategies for treating tumors, and it inevitably causes damage to relevant tissues and organs during treatment. Radiation-induced heart disease (RIHD) refers to radiation-induced cardiovascular adverse effects caused by thoracic radiotherapy. Currently, there is no uniform standard in the treatment of RIHD. Methods: In our group study, by administering a dose of 4 Gy radiation, we established a radiation injured cardiomyocyte model and explored the regulatory relationship between tanshinone IIA and p38 MAPK in cardiomyocyte injury. We assessed cell damage and proliferation using clonogenic assay and lactate dehydrogenase (LDH) release assay. The measures of antioxidant activity and oxidative stress were conducted using superoxide dismutase (SOD) and reactive oxygen species (ROS). The apoptosis rate and the relative expression of apoptotic proteins were conducted using flow cytometry and western blot. To assess p38 and p53 expressions and phosphorylation levels, western blot was performed. Results: Experimental results suggested that tanshinone IIA restored cell proliferation in radiation-induced cardiomyocyte injury (∗∗P < 0.01), and the level of LDH release decreased (∗P < 0.05). Meanwhile, tanshinone IIA could decrease the ROS generation induced by radiation (∗∗P < 0.01) and upregulate the SOD level (∗∗P < 0.01). Again, tanshinone IIA reduced radiation-induced cardiomyocyte apoptosis (∗∗P < 0.01). Finally, tanshinone IIA downregulated radiation-induced p38/p53 overexpression (∗∗∗P < 0.001). Conclusions: The treatment effects of tanshinone IIA against radiation-induced myocardial injury may be through the regulation of the p38/p53 pathway.
Background: Venous thromboembolism (VTE) is considered a common complication in lung cancer patients. Despite its widespread use, the Khorana score performed moderately in predicting VTE risk. This study aimed to determine the diagnostic utility of the Systemic Immunoinflammatory Index (SII) and to create a novel nomogram for predicting VTE in patients with pulmonary carcinoma. Materials and methods: The data, like clinical features and laboratory indicators, of inpatients diagnosed with lung cancer from March 2019 to March 2020 were collected and analyzed. Univariate and multivariate logistic analyses were performed to confirm the risk factors and then construct a nomogram model. The calibration curve and clinical decision curve analysis (DCA) were used to assess the model's fitting performance. The receiver-operating characteristic (ROC) curve and the area under the ROC curve (AUC) were used to evaluate the diagnostic value of SII and the nomogram. Results: This study enrolled 369 lung patients with a VTE morbidity rate of 23.33%. The patients with VTE had higher SII levels than the non-VTE group (1441.47 ± 146.28 vs. 626.76 ± 26.04, P < 0.001). SII is the stronger correlator for VTE among inflammatory markers, of which the optimal cut-off value was 851.51. Univariate and multivariate analysis revealed that the age, metastasis, antitumor treatment, hemoglobin<100 g/L, SII>851.51 × 109/L, and D-dimer>2 folds were independent risk factors for lung cancer-related VTE, and a new prediction nomogram model was constructed based on them. ROC curve analysis showed the AUC of the new model and Khorana score were 0.708 (0.643-0.772) and 0.600 (0.531-0.699). Conclusion: The SII was a simple and valuable biomarker for VTE, and the new nomogram model based on it can accurately forecast the occurrence of VTE. They can be utilized in clinical practice to identify those at high risk of VTE in lung cancer patients.
TLR4 binds to ligands and activates downstream pathways in both MyD88-dependent and MyD88-independent pathways. TLR4-MD2 recruits TIRAP and MyD88 and then signals to IRAKs. Then recruit TRAF-6, which with Ubc13 and Uev1A initiate the complex consisting of TAK1, TAB1, and TAB2/3 activation. The complexes of IKK-α, IKK-β, and IKK-γ are activated, promoting NF-κB entry into the nucleus and leading to the release of proinflammatory factors, such as TNF-α, IL-1β, and IL-6. In addition, MAPKs are activated, and MAPKs-induced p38, ERK and JNK lead to AP-1 nuclear translocation. SOCS1 inhibits the TLR4 signaling pathway by affecting NF-κB, MAPK activity, and p65 phosphorylation. TLR4-MD2 leads to endosome formation, resulting in TRAM translocation into the cytoplasm and activation of the TRIF-dependent signaling pathway. TRIF activates TRAF3 and the TBK1/IKKi complex, leading to phosphorylation of the interferon regulatory factors IRF3 and IRF7, which induce type I IFN gene expressions, such as IFNα and IFNβ. Besides, TRIF interacts with RIP1, which activates the TAK1 complex and NF-κB (this figure is made using the Figdraw).
TLR4 mediates AD pathology by regulating inflammation, apoptosis, autophagy, and gut microbiota (this figure is made using the Figdraw).
Summary of AD therapeutic approaches targeting TLR4.
Alzheimer’s disease (AD) is a progressive neurodegenerative disease that primarily manifests as memory deficits and cognitive impairment and has created health challenges for patients and society. In AD, amyloid β-protein (Aβ) induces Toll-like receptor 4 (TLR4) activation in microglia. Activation of TLR4 induces downstream signaling pathways and promotes the generation of proinflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β), which also trigger the activation of astrocytes and influence amyloid-dependent neuronal death. Therefore, TLR4 may be an important molecular target for treating AD by regulating neuroinflammation. Moreover, TLR4 regulates apoptosis, autophagy, and gut microbiota and is closely related to AD. This article reviews the role of TLR4 in the pathogenesis of AD and a range of potential therapies targeting TLR4 for AD. Elucidating the regulatory mechanism of TLR4 in AD may provide valuable clues for developing new therapeutic strategies for AD.
Thymic stromal lymphopoietin (TSLP), long known to be involved in Th2 response, is also implicated in multiple inflammatory dermatoses and cancers. The purpose of this study was to improve our understanding of the expression of TSLP in the skin of those dermatoses. Lesional specimens of representative immune-related dermatoses, including lichen planus (LP), discoid lupus erythematosus (DLE), eczema, bullous pemphigoid (BP), psoriasis vulgaris (PsV), sarcoidosis, and mycosis fungoides (MF), were retrospectively collected and analyzed by immunohistochemistry. Morphologically, TSLP was extensively expressed in the epidermis of each dermatosis, but the expression was weak in specimens of DLE. In a semiquantitative analysis, TSLP was significantly expressed in the epidermis in LP, BP, eczema, PsV, sarcoidosis, and MF. TSLP expression was higher in the stratum spinosum in LP, eczema, BP, PsV, and MF and higher in the stratum basale in sarcoidosis and PsV. Moreover, we found positive TSLP staining in the dermal infiltrating inflammatory cells of BP, PsV, and sarcoidosis. Our observation of TSLP in different inflammatory dermatoses might provide a novel understanding of TSLP in the mechanism of diseases with distinctly different immune response patterns and suggest a potential novel therapeutic target of those diseases.
Journal metrics
Article Processing Charges (APC)
Acceptance rate
12 days
Submission to first decision
95 days
Submission to final decision
26 days
Acceptance to publication
4.529 (2021)
Journal Impact Factor™
7 (2021)