This paper shows the results obtained from the study on the variables that have the greatest influence on the decision to replace three-phase induction motors, without a defined efficiency class and installed in industrial applications, with IE3 efficiency class induction motors. The work has been carried out on motors with a nominal power of 1.5 kW due to the availability of laboratory tests that have allowed us to accurately quantify the selected study variables. According to IEC 60034-30, between 0.75 kW and 4 kW is the greatest potential for energy savings in electric motors installed within the industrial sector. The tests carried out have made it possible to assess different operating conditions of the motor: direct power supply from the grid, electronic power supply using scalar control, and electronic power supply using direct torque control. The study has focused on three aspects: energy evaluation, assessing the savings potential; economic evaluation, based on indicators such as Payback Period and Net Present Value; environmental assessment, quantifying the impact indicators proposed by the Methodology for Ecodesign of Energy-related Products (MEErP). A sensitivity analysis has been carried out to quantify, through ratios, different operating points from those directly analyzed in the article.
To achieve multi-objective aerodynamics design optimization for a 1.5-stage transonic compressor, a design platform incorporating blade parameterization methods, a BPNN surrogate model, and the NSGA-II optimization method was developed. The stagger angle distribution of three blade rows was selected as the optimization variable, with isentropic efficiency at the new design condition and stall margin set as the goal functions. Results demonstrated that, without altering the blade profile shape and endwall contour, the flow rate at design condition increased by 7.1%, stall margin increased by 1.8%, isentropic efficiency decreased by 0.0087, and total pressure ratio experienced a slight increase. The flow field at different conditions before and after optimization was compared and analyzed. The analysis indicated that the tangential velocity of rotor outlet becomes the determining factor for the compressor’s work capacity. The relative Mach number at the rotor inlet emerged as the key parameter affecting shock wave intensity and shock wave/boundary layer interaction, which directly influenced the efficiency of the rotor passage. At near stall condition, the stator vane root’s stagger angle is crucial for the compressor’s performance.
The continuous operation of 1000 MW large hydro generators in China is of great value to the implementation of “double carbon strategy” and power grid safety. However, with the continuous increase of single unit capacity of the hydro generator, the problems of unit fault grounding current and neutral point voltage drift become more and more prominent, and the traditional analysis methods cannot accurately obtain the fault dynamic data. Therefore, starting from the neutral point grounding mode of the large hydro generator, taking a 1000 MW hydro generator as the research object, this paper establishes the single-phase grounding fault model under the condition of three-phase parameter asymmetry of stator winding and analyzes the dynamic characteristics of fault current, transient overvoltage, and neutral point voltage drift under different grounding modes by using transient analysis method; the influence of frequency offset on neutral voltage drift and the dynamic characteristics of single-phase grounding fault of the large hydro generator under different grounding modes are also obtained. Finally, according to the analysis results, the selection and optimization method of neutral grounding parameters are proposed, which provides a reference for the selection of neutral grounding mode and the research of protection strategy of the large hydro generator.
Pulse width modulation current harmonics and space harmonics are some of the major factors affecting the rotor eddy current loss of the high-speed permanent magnet motor. In this study, based on the principle of the equivalent current sheet, a two-dimensional motor model in a rectangular coordinate system was established. Considering the armature reaction, the end effect, and the current harmonics generated by variable frequency power supply, the eddy current loss of the rotor at different frequencies was analyzed and calculated using the analytical and finite element methods (FEM). When the frequency is between 200 Hz and 600 Hz, the variation trend of the rotor eddy current loss with a frequency obtained by analytical calculation and FEM analysis is roughly the same, and the error is still within a reasonable range. However, as the frequency continues to increase, the error between the two becomes larger and larger. Furthermore, based on the two-dimensional FE model, the influence of the sleeve material, the thickness, and the composite structure on the rotor eddy current loss were studied and analyzed. It was found that adding a graphene shielding layer between the permanent magnet and the sleeve can effectively shield the harmonic magnetic field, greatly reduce the eddy current loss of the permanent magnet, and effectively prevent the temperature of the permanent magnet from being too high, which is conducive to the continuous and stable operation of the high-speed permanent magnet motor.
This paper presents the two-phase condensation heat transfer and pressure drop characteristics of R-513A as an alternative refrigerant to R-134a in a 9.52-mm OD horizontal microfin copper tube. The test facility had a straight, horizontal test section with an active length of 2.0 m and was cooled by cold water circulated in a surrounding annular space. The annular-side heat transfer coefficients were obtained using the Wilson plot method. The average heat transfer coefficient and pressure drop data are presented at the condensation temperature of 35 °C in the range of 100–440 kg·m−2·s−1 mass flux. The test data of R-513A are compared with those of R-134a, R-1234yf, and R-1234ze(E). The average condensation heat transfer coefficients of the R-513A and R-1234ze(E) refrigerants were similar to R-134a at the lower mass flux (100~150 kg·m−2·s−1), while they were up to 10% higher than R-134a as the mass flux increased. The pressure drop of R-513A was similar to R-1234yf and 10% lower than that of R-134a at the higher mass flux. The R-1234ze(E) pressure drops were 20 % higher compared to those of R-134a at the higher mass flux.
The annular seal between stator and rotor substantively acts as a bearing that affects the rotordynamic characteristic of the turbomachinery rotor system. The rotor wake turbulence in a canned motor Reactor Coolant Pump (RCP) will lead to inflow pressure distortion at the annular seal entrance, thus further affecting the seal rotordynamic characteristics and threatening the stable operation of RCP. In order to obtain the seal rotordynamic coefficients, a transient numerical method applies the mesh deformation technique to simulate the multiple-frequency elliptical rotor whirling orbit model. The transient solutions were proposed to solve the unsteady reaction forces of annular seals at five excitation frequencies for each case. The inflow pressure distortion patterns were simplified as harmonic functions, including two important influence parameters that are impeller blades number m and pressure fluctuation ratio λ. The numerical results showed that with nonuniform time-averaged pressure distribution at the entrance of the annular seal in Case 2, the inflow distortion significantly affects the seal rotordynamic coefficients, while the rotational spinning speed in Case 3 can weaken the time-averaged nonuniformity and accordingly make a dent in the influence. Increasing impeller blades number m and pressure fluctuation λ both result in a sharp diminution of the negative stiffness Keff, as well as an obvious increase in the effective damping Ceff, which will strengthen rotor misalignment and system stability. In addition, the larger impeller blades number m and higher pressure fluctuation λ will make the effective damping Ceff more independent of the whirling frequency. These results provide theoretical guidance for the operation safety of RCP.
The purpose of this research is to study the influence of the processing conditions that affect the final behaviour of specimens made from a 17-4PH composition powder without the necessary thermal treatment to be considered 17-4PH, which is manufactured using the additive technique known as plasma metal deposition (PMD). To that end, two walls manufactured from the prealloyed powder were built under two distinct atmospheric conditions, i.e., air and argon, with previously optimized manufacturing parameters. The additional effect of two applied thermal treatments (TT) was studied by means of property and microstructural analyses of the extracted specimens from each consolidated wall. The two thermal treatments consisted of a heating rate of 10 °C/min to 482 °C (TT1) and 620 °C (TT2), with the temperatures for 1 and 4 h, respectively; the cooling rate was 5 °C/min for both treatments. According to the findings, the presence of an argon atmosphere during manufacturing promoted the presence of an austenite phase, reducing the deformation of the samples and enhancing their Young’s modulus. The TT1 treatment positively contributed, improving the mechanical properties in general, and TT2 substantially improved the elongation in both sets of specimens.
The existing publications on the analysis of power quality indicators in modern electric power supply systems are void of a comprehensive approach to improving these indicators in power systems by implementing multipulse connections. To the authors’ knowledge, this paper is the first to analyze current harmonic distortions in an 18-pulse connection of three-level active front-ends (AFE) featuring a programmed PWM. Raw data were obtained from, and current quality was analyzed for the power circuit of the main electric drive actuating the rolls in the rolling stand of a plate mill. The key feature of such circuitry is that the synchronous motor of each work roll is connected to the grid with an 18-pulse connection that uses three phase-shift transformers, where the phase shifts are 0° (delta/delta), 20° (delta/polygon) and −20° (delta/polygon). The circuitry connects three frequency converters (FC) with the AFEs in parallel. Phase-shift transformers were found to periodically overheat in the process. When overheating occurred, a programmed PWM voltage waveform was applied where harmonics 17 and 19 were eliminated. The goal and objectives were to analyze why the transformer would overheat and to find out how the issue could be addressed. The authors developed a simulation model of the research object in order to assess power quality parameters. Simulation results obtained in Matlab/Simulink were used to estimate the total harmonic distortions (THD) and individual harmonic factors for up to the 50th secondary transformer winding and grid harmonic with four different programmed AFE PWM voltage waveforms. The results helped find the best such waveform to prevent phase-shift transformers from overheating; one with harmonics 5, 7, 17 and 19 eliminated. The experimental and mathematical modeling results in the paper were confirmed by positive effects after industrial implementation of the system. Research performed directly on the operating equipment has been classified by the company and is not publicly available. These results are highly versatile and could be used in similar research on other circuitries to ensure the electromagnetic compatibility of nonlinear power-consuming devices.
Due to an arising COVID-19 positive confirmed case in Taiwan, the screening of body temperature, mask wearing and quarantined violation is enhanced. A mobile robot that conducts this task is demanded to reduce the human labor. However, conventional robots suffer from several limitations, perceptual aliasing (e.g., different places/objects can appear identical), occlusion (e.g., place/object appearance changes between visits), different viewpoints, the scale of objects, low mobility, less functionality, and some environmental limitations. As for the thermal imager, it displays the current heat spectrum colors, and needs manual monitoring. This paper proposes applying Simultaneous Localization and Mapping in an unknown environment and using deep learning for detection of temperature, mask wearing, and human face on the Raspberry Pi to overcome these problems. It also uses the A* algorithm to do path planning and obstacle avoidance via 3D Light Detection and Ranging to make the robot move more smoothly. Evaluating and implementing different Simultaneous Localization and Mapping algorithms and deep learning models, then selecting the most suitable method. Root Mean Square Error of three Simultaneous Localization and Mapping algorithms are compared. The predictions of deep learning models are evaluated via the metrics (model speed, accuracy, complexity, precision, recall, precision–recall curve, F1 score). In conclusion, Google Cartographer for building a map, Convolutional Neural Network for mask wearing detection, and only looking once for human face detection achieve the best result among all algorithms.
This article shows an approach to the three-dimensional modelling of a sugarcane mill and its associated steam engine, designed by the Robey and Co. engineering company in 1869. In order to obtain the 3D CAD model of said invention, CATIA V5 R20 software has been employed. Various sources of starting material, from the basis of this research and found in the process of searching for relevant information, provide information on the main elements, operating conditions, and mechanism of the machine. Thanks to the three-dimensional geometric modelling carried out, it has been possible to explain, in detail, both its operation and the final assembly of the invention through the assemblies of its different subsets, thereby obtaining a virtual recreation that shows its operation. Likewise, a study has been carried out, from a mechanical engineering viewpoint, of the gear train that transmitted the movement, in order to ascertain the compression force exerted on the sugar cane. This research, related to industrial archaeology, therefore, enables the reader to understand a machine that constituted a milestone in the sugarcane industry, while paying tribute to the English engineer, Robert Robey.
It is necessary to analyze the intake/exhaust gas flow of a diesel engine when turbocharger matching and when installing emission control devices such as exhaust gas recirculation (EGR), selective catalytic reduction (SCR), and scrubbers. Analyzing the intake/exhaust gas flow using a 3D approach can use various analytical models, but it requires a significant amount of time to perform the computation. An approach that combines 1D and 3D is a fast numerical analysis method that can utilize the analysis models of the 3D approach and obtain accurate calculation results. In this study, the flow characteristics of the exhaust gas were analyzed using a 1D–3D coupling algorithm to analyze the unsteady gas flow of a diesel engine, and whether the 1D–3D approach was suitable for analyzing exhaust systems was evaluated. The accuracy of the numerical analysis results was verified by comparison with the experimental results, and the flow characteristics of various shapes of the exhaust system of a diesel engine could be analyzed. Numerical analysis using the 1D–3D approach was able to be computed about 300 times faster than the 3D approach, and it was a method that could be used for research focused on the exhaust system. In addition, since it could quickly and accurately calculate intake/exhaust gas flow, it was expected to be used as a numerical analysis method suitable for analyzing the interaction of diesel engines with emission control devices and turbochargers.
One-dimensional (1D) aerodynamic performance predictions are very often conducted by researchers and designers during the preliminary design of centrifugal compressors. This paper focuses on a 1D prediction method for centrifugal compressors with splitter blades, which is rarely seen in the open literature. One-dimensional prediction of aerodynamic overall performance is made for centrifugal compressors with different technical design specifications. However, the aerodynamic overall prediction accuracy relies on the accuracy of the 1D-loss-models used. Therefore, an optimum combination of loss models is proposed by summarizing a variety of loss models presented in the public literature. In addition, an optimization method is utilized to optimize some coefficients involved in loss models in order to improve the generality of the combined model. The modified models obtained in this study are proved to have good predictive accuracy.
The development of an automatic walking-type pepper transplanter could be effective in improving the mechanization rate in pepper cultivation, where the dibbling mechanism plays a vital role and determines planting performance and efficiency. The objective of this research was to determine a suitable working speed for a gear-driven dibbling mechanism appropriate for a pepper transplanter, while considering agronomic transplanting requirements. The proposed dibbling mechanism consisted of two dibbling hoppers that simultaneously collected free-falling seedlings from the supply mechanism and dibbled them into soil. To enable the smooth collection and plantation of pepper seedlings, analysis was carried out via a mathematical working trajectory model of the dibbling mechanism, virtual prototype simulation, and validation tests, using a physical prototype. In the mathematical model analysis and simulation, a 300 mm/s forward speed of the transplanter and a 60 rpm rotational speed of the dibbling mechanism were preferable in terms of seedling uprightness and low mulch film damage. During the field test, transplanting was conducted at a 40 mm planting depth, using different forward speed levels. Seedlings were freely supplied to the hopper from a distance of 80 mm, and the success rate for deposition was 96.79%. A forward speed of 300 mm/s with transplanting speed of 120 seedlings/min was preferable in terms of achieving a high degree of seedling uprightness (90 ± 3.26), a low rate of misplanting (8.19%), a low damage area on mulch film (2341.95 ± 2.89 mm2), high uniformity of planting depth (39.74 ± 0.48 mm), and low power consumption (40.91 ± 0.97 W).
In the German Pavilion at the EXPO 2015, two large cable-driven parallel robots are flying over the heads of the visitors representing two bees flying over Germany and displaying everyday life in Germany. Each robot consists of a mobile platform and eight cables suspended by winches and follows a desired trajectory, which needs to be computed in advance taking technical limitations, safety considerations and visual aspects into account. In this paper, a path planning software is presented, which includes the design process from developing a robot design and workspace estimation via planning complex trajectories considering technical limitations through to exporting a complete show. For a test trajectory, simulation results are given, which display the relevant trajectories and cable force distributions.
This Special Issue is aimed to promote and circulate recent developments and achievements in the field of Mechanism and Machine Science coming from the Italian community with international collaborations and ranging from theoretical contributions to experimental and practical applications. [...]
The change towards a clean electric generation system is essential to achieve the economy decarbonization goal. The Canary Islands Archipelago confronts social, environmental, and economic challenges to overcome the profound change from a fossil fuel-dependent economy to a fully sustainable renewable economy. This document analyzes a scenario with a totally renewable generation system and with total electrification of the economy for the Canary Islands by 2040. In addition, it also shows the significant reduction in this fully renewable system when an optimized interconnection among islands is considered. This scenario consists of a solar PV system of 11 GWp, a wind system of only 0.39 GWp, a pumped storage system of 16.64 GWh (2065 MW), and a lithium-ion battery system of 34.672 GWh (3500 MW), having a system LCOE of 10.1 cEUR/kWh. These results show the certainty of being able to use an autonomous, reliable, and fully renewable system to generate and store the energy needed to dispense with fossil fuels, thus, resulting in a system free of greenhouse gas emissions in the electricity market. In addition, the proposed system has low energy wastage (less than 20%) for a fully renewable, stand-alone, and off-grid system.
The transition to clean electricity generation is a crucial focus for achieving the current objectives of economy decarbonization. The Balearic Archipelago faces significant environmental, economic, and social challenges in shifting from a predominantly fossil fuel-based economy to one based on renewable sources. This study proposes implementing a renewable energy mix and decarbonizing the economy of the Balearic Islands by 2040. The proposed system involves an entirely renewable generation system with interconnections between the four Balearic islands and the Spanish mainland grid via a 650 MW submarine cable. This flexible electrical exchange can cover approximately 35% of the peak demand of 1900 MW. The scenario comprises a 6 GWp solar photovoltaic system, a wind system of under 1.2 GWp, and a 600 MW biomass system as generation sub-systems. A vanadium redox flow battery sub-system with a storage capacity of approximately 21 GWh and 2.5 GWp power is available to ensure system manageability. This system’s levelized electricity cost (LCOE) is around 13.75 cEUR/kWh. The design also incorporates hydrogen as an alternative for difficult-to-electrify uses, achieving effective decarbonization of all final energy uses. A production of slightly over 5 × 104 tH2 per year is required, with 1.7 GW of electrolyzer power using excess electricity and water resources. The system enables a significant level of economy decarbonization, although it requires substantial investments in both generation sources and storage.
The employment of tools and techniques for monitoring and supervising the performance of industrial systems has become essential for enterprises that seek to be more competitive in today’s market. The main reason is the need for validating tasks that are executed by systems, such as industrial machines, which are involved in production processes. The early detection of malfunctions and/or improvable system values permits the anticipation to critical issues that may delay or even disallow productivity. Advances on Information and Communication Technologies (ICT)-based technologies allows the collection of data on system runtime. In fact, the data is not only collected but formatted and integrated in computer nodes. Then, the formatted data can be further processed and analyzed. This article focuses on the utilization of standard Key Performance Indicators (KPIs), which are a set of parameters that permit the evaluation of the performance of systems. More precisely, the presented research work demonstrates the implementation and visualization of a set of KPIs defined in the ISO 22400 standard-Automation systems and integration, for manufacturing operations management. The approach is validated within a discrete manufacturing web-based interface that is currently used for monitoring and controlling an assembly line at runtime. The selected ISO 22400 KPIs are described within an ontology, which the description is done according to the data models included in the KPI Markup Language (KPIML), which is an XML implementation developed by the Manufacturing Enterprise Solutions Association (MESA) international organization.
It is too difficult to directly obtain the correspondence features between the two-dimensional (2D) laser-range-finder (LRF) scan point and camera depth point cloud, which leads to a cumbersome calibration process and low calibration accuracy. To address the problem, we propose a calibration method to construct point-line constraint relations between 2D LRF and depth camera observational features by using a specific calibration board. Through the observation of two different poses, we construct the hyperstatic equations group based on point-line constraints and solve the coordinate transformation parameters of 2D LRF and depth camera by the least square (LSQ) method. According to the calibration error and threshold, the number of observation and the observation pose are adjusted adaptively. After experimental verification and comparison with existing methods, the method proposed in this paper easily and efficiently solves the problem of the joint calibration of the 2D LRF and depth camera, and well meets the application requirements of multi-sensor fusion for mobile robots.
Nowadays, the automation of factory floors is necessary for extensive manufacturing processes to meet the ever-increasing competitiveness of current markets. The technological advances applied to the digital platforms have led many businesses to automate their manufacturing processes, introducing robotic manipulators collaborating with human operators to achieve new productivity, manufacturing quality, and safety levels. However, regardless of the amount of optimization implemented, some quality problems may be introduced in production lines with many products being designed and produced. This project proposes a solution for feature extraction that can be applied to automatic shape- and position-detection using a 2-dimension (2D) industrial laser to extract 3-dimension (3D) data where the movement of the item adds the third dimension through the laser’s beam. The main goal is data acquisition and analysis. This analysis will later lead to the generation of trajectories for a robotic manipulator. The results of this application proved reliable given their small measurement error values of a maximum of 2 mm.
This study proposes a 2D contour measurement system at the tool center point (TCP) that consists of a Blu-ray pickup head and position sensitive detector (PSD). The TCP displacement is equivalent to the relative position between the tool and workpiece. When the machine tools operate the machine part along the desired contour, the TCP displacement affects the machining geometric accuracy. To evaluate the TCP displacement, the contour errors are measured by the cross-grid encoder (KGM) in practice. However, it is difficult to install KGM as it is large and expensive. In this study, an optical measurement system (OMS) is constructed to measure the TCP displacement, named TCP-OMS. A Blu-ray pickup head was installed on the spindle as a tool, and a PSD was installed on the table as a workpiece. To enhance the measurement signal’s resolution and precision of TCP-OMS, the noise was reduced by an AC voltage stabilizer, a DC regulator, and a low-pass filter. The experimental results show that the resolution of displacement measurement was less than 1 , and the linearity regions of the X-orientation and Y-orientation were ±3 . The motion test on the circular paths were performed on an actual machine tool, and the repeatability tests of this measurement system were verified. The measurement data of circular paths were collected by TCP-OMS and KGM and the results were then compared. When the feed rate of the circular paths increased, the circular deviations were magnified, simultaneously. The axis reversal spikes were observed at the quadrants of a circular path. These measurement results of TCP-OMS matched with the measurement results of KGM. The TCP-OMS developed in this study is characterized by simple installation, compactness, and a low price. It is suitable for 2D contour measurement at the tool center point of machine tools.
In order to improve the volumetric efficiency of the axial piston pump, this paper proposes a novel stacked roller 2D piston pump. It utilizes the alternate communication between the distribution cylinder and the oil intake and discharge ports of the housing to realize the flow distribution. While removing the independent flow distribution mechanism of the traditional piston pump, the leakage loss at the distribution friction pair can be reduced to improve the volumetric efficiency. Based on the flow distribution principle, an analytical model of the volumetric efficiency of the stacked roller 2D piston pump was established. Then, a co-simulation model of the whole pump was built using both the Simulink and AMESim software. The variation curve of output flow and leakage flow under different load pressures and rotational speeds was obtained, as well as the influence of backflow, axial leakage, and circumferential leakage on the volumetric efficiency. On this basis, a prototype of the stacked roller 2D pump was designed and manufactured in order to measure the output flow under different load pressures and rotational speeds, and a dedicated test bench was established. The experimental results are consistent with the simulation results; when the rotational speed is 6000 rpm and the load pressure is 5 MPa, the volumetric efficiency of the prototype pump can reach 98.6%. The research work validates that the novel stacked roller 2D piston pump has high volumetric efficiency.
The automotive industry demands high quality at very low prices. To this end, it is necessary to constantly innovate, making processes increasingly competitive, while continuing to ensure high levels of quality. Model diversification has forced the automotive industry to make its manufacturing processes more flexible, without losing competitiveness. This has been the case for car seats, where the quantities to be produced per batch are significantly lowering due to the diversity of existing models. The objective of this work was to increase the production rate of bent wires used in car seat cushions and increase the flexibility of changing wire types in production. After benchmarking the existing solutions so far, it was verified that none are capable of complying with the required production rate, while also offering the desired flexibility. Thus, it is necessary to start with a new concept of conformation of the wires used in these seat cushions. The new concept developed and integrated some of the previously known solutions, developing other systems capable of providing the desired response in terms of productivity and flexibility. To this end, new mechanical solutions and automated systems were developed, which, together with other existing ones, made it possible to design equipment that complies with all the necessary requirements. The developed concept is innovative and can be employed to other types of products in which it can be applied. The new concept developed yields a production rate of 950 parts/hour (initial goal: 800 parts/hour), features a setup time of around 30 min, ensuring the desired flexibility, and the tool costs about 90% less than traditional tools. The payback period is around 5 months, given that the equipment cost was EUR 122.000 in terms of construction and assembly, and generated a gain of EUR 280.000 in the first year of service.