Journal of Translational Medicine

Published by Springer Nature
Online ISSN: 1479-5876
Learn more about this page
Recent publications
Summary Neoadjuvant Immunotherapy in Breast Cancer Studies
Article
After the success of immunotherapy in the treatment of advanced metastatic cancer, further evaluation in earlier settings, including high-risk, surgically-resectable disease is underway. Potential benefits of a neoadjuvant immunotherapeutic approach include presurgical tumor shrinkage, reduced surgical morbidity, early eradication of micrometastases and prevention of distant disease, and greater antigen-specific T cell response. For some cancers, pathologic response has been established as a surrogate measure for long-term outcomes, therefore offering the ability for early and objective assessment of treatment efficacy and the potential to inform and personalize adjuvant treatment clinical decision-making. Leveraging the neoadjuvant treatment setting offers the ability to deeply interrogate longitudinal tissue in order to gain translatable, pan-malignancy insights into response and mechanisms of resistance to immunotherapy. Neoadjuvant immunotherapy across cancers was a focus of discussion at the virtual Immunotherapy Bridge meeting (December 1–2, 2021). Clinical, biomarker, and pathologic insights from prostate, breast, colon, and non-small-cell lung cancers, melanoma and non-melanoma skin cancers were discussed and are summarized in this report.
 
Single-agent checkpoint inhibitor stuides in ovarian cancer. Levinson et al. ASCO Ed. Book (2019)
First line trials with combination strategies including PARPi + IO in ovarian cancer. Levinson et al. ASCO Ed. Book (2019)
Article
Over the past decade, immunotherapy has become an increasingly fundamental modality in the treatment of cancer. The positive impact of immune checkpoint inhibition, especially anti-programmed death (PD)-1/PD-ligand (L)1 blockade, in patients with different cancers has focused attention on the potential for other immunotherapeutic approaches. These include inhibitors of additional immune checkpoints, adoptive cell transfer (ACT), and therapeutic vaccines. Patients with advanced cancers who previously had limited treatment options available may now benefit from immunotherapies that can offer durable responses and improved survival outcomes. However, despite this, a significant proportion of patients fail to respond to immunotherapy, especially those with less immunoresponsive cancer types, and there remains a need for new treatment strategies. The virtual Immunotherapy Bridge (December 1st–2nd, 2021), organized by the Fondazione Melanoma Onlus, Naples, Italy in collaboration with the Society for Immunotherapy of Cancer addressed several areas of current research in immunotherapy, including lessons learned from cell therapies, drivers of immune response, and trends in immunotherapy across different cancers, and these are summarised here.
 
Article
Nicotinamide (NAM, a variant of vitamin B 3 ) has recently been shown to accelerate the activation of human CD4 ⁺ and CD8 ⁺ T cells exposed to repeated CD3/CD28 agonism in vitro. Here, we demonstrate that T cells infiltrating mouse mammary carcinomas that are therapeutically controlled by NAM also express multiple markers of late-stage activation. Taken together, these findings lend additional support to the notion that the antineoplastic effects of NAM involve at least some degree of restored cancer immunosurveillance.
 
Article
Harnessing the effector mechanisms of the immune system to combat brain tumors with antigen specificity and memory has been in research and clinical testing for many years. Government grant mechanisms and non-profit organizations have supported many innovative projects and trials while biotech companies have invested in the development of needed tools, assays and novel clinical approaches. The National Brain Tumor Society and the Parker Institute for Cancer Immunotherapy partnered to host a workshop to share recent data, ideas and identify both hurdles and new opportunities for harnessing immunotherapy against pediatric and adult brain tumors. Adoptively transferred cell therapies have recently shown promising early clinical results. Local cell delivery to the brain, new antigen targets and innovative engineering approaches are poised for testing in a new generation of clinical trials. Although several such advances have been made, several obstacles remain for the successful application of immunotherapies for brain tumors, including the need for more representative animal models that can better foreshadow human trial outcomes. Tumor and tumor microenvironment biopsies with multiomic analysis are critical to understand mechanisms of response and patient stratification, yet brain tumors are especially challenging for such biopsy collection. These workshop proceedings and commentary shed light on the status of immunotherapy in pediatric and adult brain tumor patients, including current research as well as opportunities for improving future efforts to bring immunotherapy to the forefront in the management of brain tumors.
 
Article
In 2010, November 16th, the Mediterranean diet was given the recognition of UNESCO as an “Intangible Heritage of Humanity” as this dietary pattern is rooted in the preservation of tradition, land, and biodiversity. In addition, mounting evidence supported the pivotal role of the Mediterranean diet in the prevention of non-communicable diseases. Nevertheless, the application of this dietary pattern in non-Mediterranean countries is still challenging. “Planeterranean” is an attempt of the UNESCO Chair of “Health Education and Sustainable Development” to prompt each country to rediscover its own heritage and develop healthier dietary patterns based on traditional and local foods.
 
Major obstacles and influence of scientific strategies in amyloid diseases
Driving force in clinical and basic science in amyloid diseases
Article
This paper is a report of recommendations for addressing translational challenges in amyloid disease research. They were developed during and following an international online workshop organized by the LINXS Institute of Advanced Neutron and X-Ray Science in March 2021. Key suggestions include improving cross-cultural communication between basic science and clinical research, increasing the influence of scientific societies and journals (vis-à-vis funding agencies and pharmaceutical companies), improving the dissemination of negative results, and strengthening the ethos of science.
 
MAPK inhibition versus immunotherapy in the adjuvant setting in melanoma. Audience response before and after debate
Could corticosteroids used for the management of side effects have an impact on the outcome of melanoma patients: Yes or No? Audience response before and after debate
PD-1 in combination with CTLA-4 or LAG-3: which one for which patient? Audience response before and after debate
Brain metastases: do you need radiation: Yes or No? Audience response before and after debate
Article
The Great Debate session at the 2021 Melanoma Bridge virtual congress (December 2–4) featured counterpoint views from experts on seven important issues in melanoma. The debates considered the use of adoptive cell therapy versus use of bispecific antibodies, mitogen-activated protein kinase (MAPK) inhibitors versus immunotherapy in the adjuvant setting, whether the use of corticosteroids for the management of side effects have an impact on outcomes, the choice of programmed death (PD)-1 combination therapy with cytotoxic T-lymphocyte-associated antigen (CTLA)-4 or lymphocyte-activation gene (LAG)-3, whether radiation is needed for brain metastases, when lymphadenectomy should be integrated into the treatment plan and then the last debate, telemedicine versus face-to-face. As with previous Bridge congresses, the debates were assigned by meeting Chairs and positions taken by experts during the debates may not have necessarily reflected their respective personal view. Audiences voted both before and after each debate.
 
Flow diagram of whole design
cisplatin-sensitivity related model. A, B. Establishment of the LASSO model; C Coefficient display of logistics regression equation model of cisplatin-sensitivity related genes
Silencing BATF3 significantly increases sensitivity to cisplatin, while silencing IRF5, ZBTB38 reduces. A, B qRT-PCR and Western blot showing BATF3, IRF5, ZBTB38 knockdown 3 and 4 days after transfection with BATF3-targeting, IRF5-targeting and ZBTB38-targeting siRNAs with cytotoxicity curves of the lung adenocarcinoma cell line A549 and H358 transfected with nontargeting (ctrl) or BATF3-targeting, IRF5-targeting and ZBTB38-targeting siRNAs and treated for 48 h with cisplatin. C Immunohistochemistry for NACT sensitive and insensitive LUAD patients' tumor tissue
Article
Objectives: Platinum-based chemotherapies are currently the first-line treatment of non-small cell lung cancer. This study will improve our understanding of the causes of resistance to cisplatin, especially in lung adenocarcinoma (LUAD) and provide a reference for therapeutic decisions in clinical practice. Methods: Cancer Cell Line Encyclopedia (CCLE), The Cancer Genome Atlas (TCGA) and Zhongshan hospital affiliated to Fudan University (zs-cohort) were used to identify the multi-omics differences related to platinum chemotherapy. Cisplatin-resistant mRNA and miRNA models were constructed by Logistic regression, classification and regression tree and C4.5 decision tree classification algorithm with previous feature selection performed via least absolute shrinkage and selection operator (LASSO). qRT-PCR and western-blotting of A549 and H358 cells, as well as single-cell Seq data of tumor samples were applied to verify the tendency of certain genes. Results: 661 cell lines were divided into three groups according to the IC50 value of cisplatin, and the top 1/3 (220) with a small IC50 value were defined as the sensitive group while the last 1/3 (220) were enrolled in the insensitive group. TP53 was the most common mutation in the insensitive group, in contrast to TTN in the sensitive group. 1348 mRNA, 80 miRNA, and 15 metabolites were differentially expressed between 2 groups (P < 0.05). According to the LASSO penalized logistic modeling, 6 of the 1348 mRNAs, FOXA2, BATF3, SIX1, HOXA1, ZBTB38, IRF5, were selected as the associated features with cisplatin resistance and for the contribution of predictive mRNA model (all of adjusted P-values < 0.001). Three of 6 (BATF3, IRF5, ZBTB38) genes were finally verified in cell level and patients in zs-cohort. Conclusions: Somatic mutations, mRNA expressions, miRNA expressions, metabolites and methylation were related to the resistance of cisplatin. The models we created could help in the prediction of the reaction and prognosis of patients given platinum-based chemotherapies.
 
Article
Background Oral squamous cell carcinoma (OSCC), as one of the commonest malignancies showing poor prognosis, has been increasingly suggested to be modulated by circular RNAs (circRNAs). Through GEO (Gene Expression Omnibus) database, a circRNA derived from ZDBF2 (circZDBF2) was uncovered to be with high expression in OSCC tissues, while how it may function in OSCC remains unclear. Methods CircZDBF2 expression was firstly verified in OSCC cells via qRT-PCR. CCK-8, along with colony formation, wound healing, transwell and western blot assays was performed to assess the malignant cell behaviors in OSCC cells. Further, RNA pull down assay, RIP assay, as well as luciferase reporter assay was performed to testify the interaction between circZDBF2 and RNAs. Results CircZDBF2 expressed at a high level in OSCC cells and it accelerated OSCC cell proliferation, migration, invasion as well as EMT (epithelial-mesenchymal transition) process. Further, circZDBF2 sponged miR-362-5p and miR-500b-5p in OSCC cells to release their target ring finger protein 145 (RNF145). RNF145 expressed at a high level in OSCC cells and circZDBF2 facilitated RNF145 transcription by recruiting the transcription factor CCAAT enhancer binding protein beta (CEBPB). Moreover, RNF145 activated NFκB (nuclear factor kappa B) signaling pathway and regulated IL-8 (C-X-C motif chemokine ligand 8) transcription. Conclusion CircZDBF2 up-regulated RNF145 expression by sponging miR-362-5p and miR-500b-5p and recruiting CEBPB, thereby promoting OSCC progression via NFκB signaling pathway. The findings recommend circZDBF2 as a probable therapeutic target for OSCC. Graphical Abstract
 
Article
Autoimmunity has emerged as a characteristic of the post-COVID syndrome (PCS), which may be related to sex. In order to further investigate the relationship between SARS-CoV-2 and autoimmunity in PCS, a clinical and serological assessment on 100 patients was done. Serum antibody profiles against self-antigens and infectious agents were evaluated by an antigen array chip for 116 IgG and 104 IgM antibodies. Thirty pre-pandemic healthy individuals were included as a control group. The median age of patients was 49 years (IQR: 37.8 to 55.3). There were 47 males. The median post-COVID time was 219 (IQR: 143 to 258) days. Latent autoimmunity and polyautoimmunity were found in 83% and 62% of patients, respectively. Three patients developed an overt autoimmune disease. IgG antibodies against IL-2, CD8B, and thyroglobulin were found in more than 10% of the patients. Other IgG autoantibodies, such as anti-interferons, were positive in 5–10% of patients. Anti-SARS-CoV-2 IgG antibodies were found in > 85% of patients and were positively correlated with autoantibodies, age, and body mass index (BMI). Few autoantibodies were influenced by age and BMI. There was no effect of gender on the over- or under-expression of autoantibodies. IgG anti-IFN-λ antibodies were associated with the persistence of respiratory symptoms. In summary, autoimmunity is characteristic of PCS, and latent autoimmunity correlates with humoral response to SARS-CoV-2.
 
Article
The use of cellular therapies to treat cancer, inherited immune deficiencies, hemoglobinopathies and viral infections is growing rapidly. The increased interest in cellular therapies has led to the development of reagents and closed-system automated instruments for the production of these therapies. For cellular therapy clinical trials involving multiple sites some people are advocating a decentralized model of manufacturing where patients are treated with cells produced using automated instruments at each participating center using a single, centrally held Investigational New Drug Application (IND). Many academic centers are purchasing these automated instruments for point-of-care manufacturing and participation in decentralized multiple center clinical trials. However, multiple site manufacturing requires harmonization of product testing and manufacturing in order to interpret the clinical trial results. Decentralized manufacturing is quite challenging since all centers should use the same manufacturing protocol, the same or comparable in-process and lot release assays and the quality programs from each center must work closely together. Consequently, manufacturing cellular therapies using a decentralized model is in many ways more difficult than manufacturing cells in a single centralized facility. Before an academic center decides to establish a point-of-care cell processing laboratory, they should consider all costs associated with such a program. For many academic cell processing centers, point-of-care manufacturing may not be a good investment.
 
Article
Purpose The purpose of this study was to observe the harm of circadian misalignment (CM), caused by an inverted photoperiod (IP), on the hearts of the adolescent Wistar rats, and to explore the mechanisms leading to harm. Methods An IP was used to create a CM model. A total of 174 Wistar rats were randomly divided into circadian alignment (CA) and CM groups (87 rats per group). The different activity rhythms of the two groups of rats were adjusted through different light/dark cycles for 90 days. We recorded the rhythmic activity trajectory and sleep time of the rats. After 90 days of modeling, we performed various analyses (i.e., blood pressure, weight, cardiac ultrasound tests, serological tests, cardiac tissue immunofluorescence, immunohistochemistry, transmission electron microscopy on myocardial mitochondria, western blotting, and quantitative polymerase chain reactions). Results (1) The IP protocol caused CM in rats. (2) CM rats showed significantly higher blood pressure during the day (resting phase). They also showed significantly higher serum levels of angiotensin II and epinephrine during the day compared to the CA rats. (3) CM caused up-regulation of gene expression of adrenergic receptors α1 ( α1-AR ) and β1 ( β1-AR ) and down-regulation of the glucocorticoid receptor ( Gr) gene expression in rat hearts. It also caused downregulation of Bmal1 expression. In addition, the changes in Bmal1 and Per2 correlated with the changes in β1-AR and α1-AR . (4) CM had adverse effects on multiple molecular proteins of the heart. (5) CM increased the collagen fibers in the rat heart and increased the destruction of mitochondria. (6) Eventually, CM caused a decrease in the pumping function of the heart and decreased the coronary blood flow rate. Conclusions (1) CM significantly affected the cardiac structure and function in the adolescent rats through a variety of mechanisms. (2) CM can regulate the expression of myocardial clock genes, and it is likely to have an impact on the heart through this pathway.
 
The effect of the IDO/Kyn pathway on cancer proliferation, apoptosis, and angiogenesis. MMP-2: Matrix metalloproteinase, NAD: Nicotinamide adenine dinucleotide
Drugs that stimulate the effect of the IDO/Kyn pathway. IDO: indoleamine 2,3-dioxygenase; Kyn: kynurenine (Kyn)
Article
Cancer is one of the leading causes of death in both men and women worldwide. One of the main changes associated with cancer progression, metastasis, recurrence, and chemoresistance is the change in the tumor immune microenvironment, especially immunosuppression. Cancer immunosuppression appears in multiple forms, such as inhibition of immuno-stimulant cells with downregulation of immuno-stimulant mediators or through stimulation of immuno-suppressive cells with upregulation of immunosuppressive mediators. One of the most immunosuppressive mediators that approved potency in lung cancer progression is indoleamine 2,3-dioxygenase (IDO) and its metabolite kynurenine (Kyn). The current review tries to elucidate the role of IDO/Kyn on cancer proliferation, apoptosis, angiogenesis, oxidative stress, and cancer stemness. Besides, our review investigates the new therapeutic modalities that target IDO/Kyn pathway and thus as drug candidates for targeting lung cancer and drugs that potentiate IDO/Kyn pathway and thus can be cancer-promoting agents.
 
Hypoxia leads to activation of angiogenic signaling in lung cancer. Hypoxia in the tumor microenvironment can regulate angiogenesis in lung cancer by affecting HIF-1 protein expression and regulating the transcription of the downstream target gene VEGF. Created with www.BioRender.com
NcRNAs affecting angiogenesis in lung cancer cells and tumor microenvironment cells. NcRNAs can directly or indirectly interact with angiogenesis-related genes in lung cancer cells or the tumor microenvironment, thereby affecting lung cancer angiogenesis. Created with www.BioRender.com
NcRNAs affecting angiogenesis in tumor endothelium cells. In tumor endothelial cells, ncRNAs can act on angiogenic or proliferation-related genes to induce angiogenesis. Created with www.BioRender.com
Article
Lung cancer is the second cancer and the leading cause of tumor-related mortality worldwide. Angiogenesis is a crucial hallmark of cancer development and a promising target in lung cancer. However, the anti-angiogenic drugs currently used in the clinic do not achieve long-term efficacy and are accompanied by severe adverse reactions. Therefore, the development of novel anti-angiogenic therapeutic approaches for lung cancer is urgently needed. Non-coding RNAs (ncRNAs) participate in multiple biological processes in cancers, including tumor angiogenesis. Many studies have demonstrated that ncRNAs play crucial roles in tumor angiogenesis. This review discusses the regulatory functions of different ncRNAs in lung cancer angiogenesis, focusing on the downstream targets and signaling pathways regulated by these ncRNAs. Additionally, given the recent trend towards utilizing ncRNAs as cancer therapeutics, we also discuss the tremendous potential applications of ncRNAs as biomarkers or novel anti-angiogenic tools in lung cancer.
 
Dose–response using restricted cubic spline model for the association between total fiber intake and mortality from all causes (A), cardiovascular disease (B) and cancer (C). Solid line represents point estimates and dashed lines represent 95% confidence intervals. Multivariable risk estimate was calculated by restricted cubic spline regression (using 3 knots at 10th, 50th, and 90th percentiles) adjusting for age, sex, race, body mass index, education, smoking status, marital status, alcohol drinking status, and total energy intake. The histograms show the percentage of participants (left y axis) consuming each level of fiber
Subgroup analyses by potential confounders including age (< 65 years vs. ≥ 65 years), sex (male vs. female), race (White, Non-Hispanic vs. Other), body mass index at the time of enrollment (< 25 kg/m² vs. ≥ 25 kg/m²), education (≤ high school vs. ≥ some college), smoking status (never vs. former vs. current), and drinking status (never vs. former vs. current). The HRs (95% CIs) of per SD increment in the total fiber intake were calculated and showed. HRs hazard ratios; CIs confidence intervals; SD standard deviation
Article
Objective Several studies suggest that dietary fiber intake may reduce mortality risk, but this might depend on the fiber types and the evidence regarding the role of soluble fiber or insoluble fiber on death risk remain limited and inconsistent. Therefore, this study aimed to comprehensively evaluate multiple types of dietary fiber intake on mortality from all causes, cardiovascular disease and cancer in the large-scale Prostate, Lung, Colorectal, and Ovarian Cancer (PLCO) Screening Trial. Methods A multivariate Cox proportional hazards model was used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). Results This study finally included 86,642 participants with 17,536 all-cause deaths, 4842 cardiovascular deaths and 5760 cancer deaths identified after a total of 1,444,068 follow-up years. After adjusting for potential confounders, dietary total fiber intake was statistically significantly inversely associated with all-cause death (Q5 vs Q1: HR 0.71, 95% CI 0.66–0.75; P for trend < 0.001), cardiovascular death (Q5 vs Q1: HR 0.73, 95% CI 0.65–0.83; P for trend < 0.001) and cancer mortality (Q5 vs Q1: HR 0.77, 95% CI 0.69–0.86; P for trend < 0.001). Similar results were observed for both insoluble and soluble fiber intake. Restricted cubic spline model analysis suggested that there was a nonlinear association of dietary fiber intake with mortality risk (all P for nonlinearity < 0.05). Conclusions In this large nationally representative sample of US adult population, intakes of total fiber, soluble fiber, and insoluble fiber were associated with lower risks of all-cause, cardiovascular and cancer mortality.
 
Article
Doxorubicin (Dox) is the standard treatment approach for osteosarcoma (OS), while acquired drug resistance seriously attenuates its treatment efficiency. The present study aimed to investigate the potential roles of metabolic reprogramming and the related regulatory mechanism in Dox-resistant OS cells. The results showed that the ATP levels, lactate generation, glucose consumption and oxygen consumption rate were significantly increased in Dox-resistant OS cells compared with parental cells. Furthermore, the results revealed that the increased expression of estrogen-related receptor alpha (ERRα) was involved in metabolic reprogramming in chemotherapy resistant OS cells, since targeted inhibition of ERRα restored the shifting of metabolic profiles. Mechanistic analysis indicated that the mRNA stability, rather than ERRα transcription was markedly increased in chemoresistant OS cells. Therefore, it was hypothesized that the 3ʹ-untranslated region of ERRα mRNA was methylated by N⁶-methyladenine, which could further recruit insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) to suppress mRNA decay and increase mRNA stability. IGF2BP1 knockdown downregulated ERRα and reversed the metabolic alteration of resistant OS cells. Additionally, the oncogenic effect of the IGF2BP1/ERRα axis on Dox-resistant OS cells was verified by in vitro and in vivo experiments. Clinical analysis also revealed that the expression levels of IGF2BP1 and ERRα were associated with the clinical progression of OS. Collectively, the current study suggested that the IGF2BP1/ERRα axis could regulate metabolic reprogramming to contribute to the chemoresistance of OS cells.
 
Article
Background Castration-resistant prostate cancer (CRPC) is a major cause of recurrence and mortality among prostate cancer (PCa) patients. Myeloid-derived suppressor cells (MDSCs) regulate castration resistance in PCa. Previously, it was shown that intercellular communication was efficiently mediated by exosomes (Exos), but the role and the mechanism of MDSC-derived Exos in CRPC progression was unclear. Methods In this study, the circRNA expression profiles in PC3 cells treated with MDSC-Exo and control cells were investigated using a circRNA microarray. Results The data showed that circMID1 (hsa_circ_0007718) expression was elevated in PC3 cells treated with MDSC-Exo. Moreover, high circMID1 expression was found in PCa compared with benign prostatic hyperplasia (BPH) tissues and in CRPC patients compared with hormone sensitive prostate cancer (HSPC) patients. Further studies showed that MDSC-Exo accelerated PCa cell proliferation, migration, and invasion, while circMID1 deficiency inhibited MDSC-Exo-regulated CRPC progression in vitro and in vivo. Mechanistically, MDSC-derived exosomal S100A9 increased circMID1 expression to sponge miR-506-3p, leading to increased MID1 expression and accelerated tumor progression. Conclusion Together, our results showed that a S100A9/circMID1/miR-506-3p/MID1 axis existed in MDSC-Exo-regulated CRPC progression, which provided novel insights into MDSC-Exo regulatory mechanisms in CRPC progression.
 
Size-selection NIPS can remarkably improve the detection of fetal chromosomal aneuploidy compared with standard NIPS. A Z-score according to fetal fraction between two different NIPS methods; B Z-score is increased in size-selection NIPS for samples with fetal chromosomal aneuploidy. Red dotted line indicates the Z-score cutoff between screen-negative and screen-positive results. FN: false negative
Association between different groups of average size of cfDNA (bp) and fold-change of FF
FF and test failures rate association with GA between two different NIPS methods. A Compared to the standard NIPS test, mean FF was increased across different GAs in total samples (6.5% vs 14.6%, 9.4% vs 16.4%, 8.9% vs 20.4%, and 10.2% vs 26.2%). B Compared to the standard NIPS test, test success rate was increased across different GAs in total samples (84.6% vs 92.3%, 85.1% vs 100%, 87.5% vs 100%, and 87.8% vs 100%). C Compared to the standard NIPS test, mean FF was increased across different GAs in pregnant women with male fetuses using size-selection NIPS (4.3% vs 8.1%, 5.9% vs 13.0%, 6.3% vs 17.7%, and 8.8% vs 25.8%). D Compared to the standard NIPS test, test success rate was increased across different GAs in pregnant women with male fetuses using size-selection enrichment (63.6% vs 81.8%, 72.7% vs 100%, 77.4% vs 100%, and 86.8% vs 100%)
Article
Objective We and others have previously demonstrated that the size-selection enrichment method could remarkably improve fetal fraction (FF) in the early gestational age (GA, 12–13 weeks), suggesting that 9 or 10 weeks should not be used as a threshold for GA in size-selection noninvasive prenatal screening (NIPS). Here, we assessed whether this method was reliable for detecting fetal chromosomal aneuploidy at the earliest GA (6–8 weeks). Methods Size-selection NIPS for fetal chromosomal aneuploidy was applied to 208 pregnancy plasma samples (102 male and 106 female fetuses), while the 169 pregnancy samples with male fetuses also underwent standard NIPS. Multivariable linear regression models were used to evaluate the association between fold-change of FF and experimental factors. Results The sensitivity of the cell-free DNA (cfDNA) test in detecting aneuploidy was 100% when screened with FF enrichment, whereas the sensitivity of the same patients was only 62.5% (5/8) without FF enrichment. In the 102 pregnancy samples with male fetuses, FF increased from 6.1% to 15.7%, and the median increase in FF was 2.8-fold with enrichment. Moreover, there was a trend toward an increasing success rate of the cfDNA test from 6 to 13 weeks of gestation, especially when the test success rate reached 100% after 7 weeks with FF enrichment. Multivariate linear regression analysis demonstrated that a lower initial FF, shorter cfDNA size, increased body mass index (BMI), and later GA were all independent predictors of a higher fold-change of FF. Compared with ≤ 120 bp cfDNA fragments, the mean fold-change of FF differences was 0.820 for 121–125 bp, 0.229 for 126–130 bp, − 0.154 for 131–135 bp, − 0.525 for 136–140 bp and − 0.934 for > 140 bp (Ptrend < 0.0001), suggesting that fold-change of FF significantly decreased with cfDNA fragments > 125 bp. These results were statistically significant after adjusting for confounding factors in the models for fold-change of FF. Conclusions The FF enrichment method is a reasonable strategy to detect fetal chromosomal aneuploidy in early pregnancy loss with reduced false negatives and increased test success rate after 7 weeks of GA and should be recommended for patients with early pregnancy loss.
 
Article
Background The resistance to radiotherapy remains a major obstacle that limits the efficacy of radiotherapy in non-small cell lung cancer (NSCLC). This study aims to illustrate the molecular mechanism underlying the role of LINC00665 in the radiosensitivity of NSCLC, which involves ubiquitin C-terminal hydrolase L3 (UCHL3). Methods and results The expression of UCHL3 was determined in clinical tissue samples collected from NSCLC patients and NSCLC cell lines. We found that UCHL3 overexpression occurred in both NSCLC tissues and cells, associated with poor prognosis in NSCLC patients. Mechanistically, UCHL3 stabilized aryl hydrocarbon receptor (AhR) protein through deubiquitination, thereby promoting PD-L1 expression. UCHL3 reduced the radiosensitivity of NSCLC cells by stabilizing AhR protein. Upstream microRNAs (miRNAs) and lncRNAs of UCHL3 were predicted by microarray profiling and validated by functional experiments. LINC00665 functioned as a sponge of miR-582-5p and thus up-regulated the expression of the miR-582-5p target UCHL3. Gain- and loss- of function assays were performed to assess the effects of LINC00665, UCHL3 and miR-582-5p on the in vitro cell malignant behaviors and immune escape as well as on the in vivo tumor growth. Silencing LINC00665 or overexpressing miR-582-5p enhanced the sensitivity of NSCLC cells to radiotherapy. LINC00665 augmented the immune escape of NSCLC cells in vitro and in vivo through stabilizing AhR protein via the miR-582-5p/UCHL3 axis. Conclusions Overall, LINC00665 reduced the radiosensitivity of NSCLC cells via stabilization of AhR through the miR-582-5p/UCHL3 axis.
 
Article
Background NAFLD and NASH are emerging as primary causes of chronic liver disease, indicating a need for an effective treatment. Mutaflor® probiotic, a microbial treatment of interest, was effective in sustaining remission in ulcerative colitis patients. Objective To construct a genetic-epigenetic network linked to HSC signaling as a modulator of NAFLD/NASH pathogenesis, then assess the effects of Mutaflor ® on this network. Methods First, in silico analysis was used to construct a genetic-epigenetic network linked to HSC signaling. Second, an investigation using rats, including HFHSD induced NASH and Mutaflor ® treated animals, was designed. Experimental procedures included biochemical and histopathologic analysis of rat blood and liver samples. At the molecular level, the expression of genetic (FOXA2, TEAD2, and LATS2 mRNAs) and epigenetic (miR-650, RPARP AS-1 LncRNA) network was measured by real-time PCR. PCR results were validated with immunohistochemistry (α-SMA and LATS2). Target effector proteins, IL-6 and TGF-β, were estimated by ELISA. Results Mutaflor ® administration minimized biochemical and histopathologic alterations caused by NAFLD/NASH. HSC activation and expression of profibrogenic IL-6 and TGF-β effector proteins were reduced via inhibition of hedgehog and hippo pathways. Pathways may have been inhibited through upregulation of RPARP AS-1 LncRNA which in turn downregulated the expression of miR-650, FOXA2 mRNA and TEAD2 mRNA and upregulated LATS2 mRNA expression. Conclusion Mutaflor ® may slow the progression of NAFLD/NASH by modulating a genetic-epigenetic network linked to HSC signaling. The probiotic may be a useful modality for the prevention and treatment of NAFLD/NASH.
 
Article
Objective Vascular endothelial growth factor B (VEGFB) was regarded to improve lipid metabolism and reduce obesity-related hyperlipidemia. Whether VEGFB participates in lipid metabolism in nonalcoholic fatty liver disease (NAFLD) has not been clear yet. This study investigated the involvement of VEGFB in lipid metabolism and insulin resistance via the AMPK signaling pathway in NAFLD. Methods We constructed the animal and cell model of NAFLD after VEGFB gene knockout to detect liver damage and metabolism in NAFLD. Bioinformatics analysis of VEGFB and the AMPK signaling pathway relative genes to verify the differential proteins. And mRNA levels of NAFLD fatty acid metabolism-related genes were detected. Results After the systemic VEGFB knockout mice were fed with high fat, the body fat, serum lipoprotein, NAFLD score, and insulin resistance were increased. Animal and cell experiments showed that the expression levels of phosphorylated proteins of CaMKK2 and AMPK decreased, the expression of proteins related to AMPK/ACC/CPT1 signaling pathway decreased, and the target genes CPT1α and Lcad decreased accordingly, reducing fatty acid oxidation in hepatocyte mitochondria; The expression of AMPK/SREBP1/Scd1 signaling pathway relative proteins increased, ACC1 and FAS increased correspondingly, which increased lipid synthesis in the endoplasmic reticulum. Conclusion VEGFB can participate in lipid metabolism and insulin resistance of NAFLD through the AMPK signaling pathway.
 
Article
Background PolyC-RNA-binding protein 1 (PCBP1) functions as a tumour suppressor and RNA regulator that is downregulated in human cancers. Here, we aimed to reveal the biological function of PCBP1 in lung adenocarcinoma (LUAD). Methods First, PCBP1 was identified as an important biomarker that maintains LUAD through The Cancer Genome Atlas (TCGA) project screening and confirmed by immunohistochemistry and qPCR. Via colony formation, CCK8, IncuCyte cell proliferation, wound healing and Transwell assays, we confirmed that PCBP1 was closely related to the proliferation and migration of LUAD cells. The downstream gene DKK1 was discovered by RNA sequencing of PCBP1 knockdown cells. The underlying mechanisms were further investigated using western blot, qPCR, RIP, RNA pulldown and mRNA stability assays. Results We demonstrate that PCBP1 is downregulated in LUAD tumour tissues. The reduction in PCBP1 promotes the proliferation, migration and invasion of LUAD in vitro and in vivo. Mechanistically, the RNA-binding protein PCBP1 represses LUAD by stabilizing DKK1 mRNA. Subsequently, decreased expression of the DKK1 protein relieves the inhibitory effect on the Wnt/β-catenin signalling pathway. Taken together, these results show that PCBP1 acts as a tumour suppressor gene, inhibiting the tumorigenesis of LUAD. Conclusions We found that PCBP1 inhibits LUAD development by upregulating DKK1 to inactivate the Wnt/β-catenin pathway. Our findings highlight the potential of PCBP1 as a promising therapeutic target.
 
Article
The aryl hydrocarbon receptor (AhR) is a well-known ligand-activated cytoplasmic transcription factor that contributes to cellular responses against environmental toxins and carcinogens. AhR is activated by a range of structurally diverse compounds from the environment, microbiome, natural products, and host metabolism, suggesting that AhR possesses a rather promiscuous ligand binding site. Increasing studies have indicated that AhR can be activated by a variety of endogenous ligands and induce the expression of a battery of genes. AhR regulates a variety of physi-opathological events, including cell proliferation, differentiation, apoptosis, adhesion and migration. These new roles have expanded our understanding of the AhR signalling pathways and endogenous metabolites interacting with AhR under homeostatic and pathological conditions. Recent studies have demonstrated that AhR is linked to car-diovascular disease (CVD), chronic kidney disease (CKD) and renal cell carcinoma (RCC). In this review, we summarize gut microbiota-derived ligands inducing AhR activity in patients with CKD, CVD, diabetic nephropathy and RCC that may provide a new diagnostic and prognostic approach for complex renal damage. We further highlight polyphenols from natural products as AhR agonists or antagonists that regulate AhR activity. A better understanding of structurally diverse polyphenols and AhR biological activities would allow us to illuminate their molecular mechanism and discover potential therapeutic strategies targeting AhR activation.
 
Kaplan–Meier and time-dependent receiver operating characteristic curves according to the radiomic signature. Kaplan–Meier estimates of overall survival in low and high risk groups in training cohort (A), internal validation cohort (B), and external validation cohort (C). P values were calculated using two-sided log-rank test. Area under the curves at 1 year, 3 years, and 5 years were calculated to assess the prognostic accuracy within the training cohort (D), internal validation cohort (E), and external validation cohort (F)
Nomogram, calibration curves, and decision curves to estimate overall survival. The radiomic nomogram for estimating overall survival (A). The calibration curves for the radiomic nomogram in the training and validation cohorts (B: the training cohort with n = 287; C: internal validation cohort with n = 122; D: external validation cohort with n = 65). The error bars were defined as s.e.m., which represent the 95% CI. The decision curves for the nomogram in the training and validation cohorts (E: the training cohort with n = 287; F: internal validation cohort with n = 122; G: external validation cohort with n = 65)
Kaplan–Meier curves according to treatment. Predictive capacity for OS is stratified by treatment with ACT vs. non-ACT in patients with low or high risk in stage I (A), stage IB (B), and stage IA (C). ACT, adjuvant chemotherapy
Article
Background The overall survival (OS) of stage I operable lung cancer is relatively low, and not all patients can benefit from adjuvant chemotherapy. This study aimed to develop and validate a radiomic signature (RS) for prediction of OS and adjuvant chemotherapy candidates in stage I lung adenocarcinoma. Methods A total of 474 patients from 2 centers were divided into 1 training (n = 287), 1 internal validation (n = 122), and 1 external validation (n = 65) cohorts. We extracted 1218 radiomic features from preoperative CT images and constructed RS. We further investigated the prognostic value of the RS in survival analysis. Interaction between treatment and RS was assessed to evaluate its predictive value. Propensity score matching (PSM) was conducted. Results Overall, 474 eligible patients with stage I lung adenocarcinoma (214 men [45.1%]; median age, 60 years) were identified. The RS was significantly associated with OS in the training and two validation cohorts (hazard ratios [HRs] > = 3.22). In multivariable analysis, the RS remained an independent prognostic factor adjusting for clinicopathologic variables (adjusted HRs > = 2.63). The prognostic value of RS was also confirmed in PSM analysis. In stage I patients, the interaction between RS status and adjuvant chemotherapy was significant (interaction P = 0.020). Within the stratified analysis, good chemotherapy efficacy was only observed for patients with stage IB disease (interaction P < 0.001). Conclusions Our results suggested that the radiomic signature was associated with overall survival in patients with stage I lung adenocarcinoma and might predict adjuvant chemotherapy benefit, especially in stage IB patients. The potential of radiomic signature as a noninvasive predictor needed to be confirmed in future studies.
 
PFKFB4 gene is gradually up-regulated with the development of cytokine release syndrome in CAR T-cell therapy. A–C Volcano plot of CRS grade-related differentially expressed genes between the different groups. Fold Change > 1.5 and p-value < 0.05 were set as screening criteria. Genes that have both a significant p-value (lower than 0.05) and a fold change (higher than 1.5) are represented as red dots. Genes that either have a significant p-value (lower than 0.05) or a fold change (higher than 1.5) are represented as blue and green dots. Gray dots mean genes neither have a significant p-value nor fold change. PFKFB4 gene expression in CD22 CAR T-cell (D) and CD19 CAR T-cell products (E) based on different CRS grade group
Glycolytic pathway activity is enhanced in groups with higher CRS grades. A–C Relative signaling pathway activity score was calculated based on GSVA analysis. JAK-STAT, Interleukin, and glycolysis signaling pathways showed higher activity in the high CRS grade group. The x-axis represents different CRS grades. D Correlation between PFKFB4 gene expression and genes involved in glycolysis signaling pathway. Correlation coefficient and p-values are listed at the up-left corner. The x-axis represents relative PFKFB4 gene expression. The y-axis shows the expression of genes that are involved in the glycolysis pathway
PFKFB4 expression and glycolytic pathway activity is also enhanced in some human diseases associated with cytokine release syndrome. PFKFB4 gene expression profile in COVID-19 patients vs healthy donor (A), COVID-19 patients with severe symptoms vs moderate symptoms (B), healthy donors vs asymptomatic vs recovered vs re-infected COVID-19 patients (C). Glycolytic activity score in COVID-19 patients vs healthy donors (D), COVID-19 patients with severe symptoms vs moderate symptoms (E), healthy donors vs asymptomatic vs recovered vs re-infection COVID-19 patients (F). PFKFB4 gene expression in people infected with influenza based on early and late stage infection (G–I). PFKFB4 gene expression in different stages of SLE (J) and SJIA (K). HD healthy donor, As asymptomatic, SLE systemic lupus erythematosus, SJIA systemic juvenile idiopathic arthritis
The relationship between the level of PFKFB4 expression and clinicopathological stages in cancer. A Overview of PFKFB4 gene expression in all cancers. Red represents tumor tissue, blue represent adjacent normal tissue. B, C Upregulation of the PFKFB4 gene in higher pathological stage of liver hepatocellular carcinoma and renal cancer. D, E Enhanced activity of glycolysis in different pathological stage in liver hepatocellular carcinoma and renal cancer. The x-axis represents different pathological stages of the tumors
Association between PFKFB4 expression and tumor immunity several types of cancer. A Correlations of PFKFB4 gene expression with CD8 + T cells, hematological stem cells, and M2 macrophages. B Correlations of PFKFB4 gene expression with neutrophil, cancer associated fibroblast, myeloid-derived suppressor cells, and M0 macrophages. Purple and red colors represent negative and positive correlations
Article
Background Cytokine release syndrome (CRS) is a strong immune system response that can occur as a result of the reaction of a cellular immunotherapy with malignant cells. While the frequency and management of CRS in CAR T-cell therapy has been well documented, there is emerging interest in pre-emptive treatment to reduce CRS severity and improve overall outcomes. Accordingly, identification of genomic determinants that contribute to cytokine release may lead to the development of targeted therapies to prevent or abrogate the severity of CRS. Methods Forty three clinical CD22 CAR T-cell products were collected for RNA extraction. 100 ng of mRNA was used for Nanostring assay analysis which is based on the nCounter platform. Several public datasets were used for validation purposes. Results We found the expression of the PFKFB4 gene and glycolytic pathway activity were upregulated in CD22 CAR T-cells given to patients who developed CRS compared to those who did not experience CRS. Moreover, these results were further validated in cohorts with COVID-19, influenza infections and autoimmune diseases, and in tumor tissues. The findings were similar, except that glycolytic pathway activity was not increased in patients with influenza infections and systemic lupus erythematosus (SLE). Conclusion Our data strongly suggests that PFKFB4 acts as a driving factor in mediating cytokine release in vivo by regulating glycolytic activity. Our results suggest that it would beneficial to develop drugs targeting PFKFB4 and the glycolytic pathway for the treatment of CRS.
 
Article
Background Endometrial cancer (EC) is the most common gynecological malignancy in developed countries. Efficacy of the bromodomain 4 (BRD4) inhibitor JQ1 has been reported for the treatment of various human cancers, but its potential impact on EC remains unclear. We therefore aimed to elucidate the function of BRD4 and the effects of JQ1 in EC in vivo and in vitro. Methods The mRNA expression of BRD4 was evaluated using datasets from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). BRD4 protein expression in EC tissues was measured using immunohistochemistry (IHC) assays. The effects of JQ1 on EC were determined by using MTT and colony formation assays, flow cytometry and xenograft mouse models. The underlying mechanism was also examined by western blot and small interfering RNA (siRNA) transfection. Results BRD4 was overexpressed in EC tissues, and the level of BRD4 expression was strongly related to poor prognosis. The BRD4-specific inhibitor JQ1 suppressed cell proliferation and colony formation and triggered cell apoptosis, cell cycle arrest, and changes in the expression of proteins in related signaling pathways. Moreover, JQ1 decreased the protein expression of BRD4 and c-Myc, and knockdown of BRD4 or c-Myc reduced the viability of EC cells. Intraperitoneal administration of JQ1 (50 mg/kg) significantly suppressed the tumorigenicity of EC cells in a xenograft mouse model. Conclusion Our results demonstrate that BRD4 is a potential marker of EC and that the BRD4 inhibitor JQ1 is a promising chemotherapeutic agent for the treatment of EC.
 
Article
Background Physical independence is crucial for overall health in the elderly individuals. The life expectancy of women has been shown to be higher than that of men, which is also known as the “male–female health-survival paradox”. Sex hormones may be one of the explanations. However, the relationships between sex hormones and physical function remain unclear in the elderly females. This study was designed to explore these relationships among the Chinese oldest-old and centenarian women. Methods Data from 1226 women were obtained from the China Hainan Centenarian Cohort Study. Home interviews, physical examinations and blood analyses were conducted using standardized procedures. Variables including age, Han ethnicity, illiteracy, smoker, drinker, estradiol (E2), testosterone (T), follicle-stimulating hormone, and luteinizing hormone were used in the multivariate logistic and linear regression analyses. Results In all the participants, age [beta (95% confidence interval): − 0.84 (− 0.98, − 0.71)] and E2 levels [beta (95% confidence interval): − 0.22 (− 0.28, − 0.17)] were negatively associated with activities of daily living (ADLs) in the multivariate linear regression analyses (P < 0.05 for all). We also observed significantly negative associations of age [odds ratio (95% confidence interval): 0.90 (0.88, 0.91)] and E2 levels [odds ratio (95% confidence interval): 0.98 (0.98, 0.99)] with physical normality in the multivariate logistic regression analyses (P < 0.05 for all). Age and E2 levels gradually decreased with increases in the ADL quartiles across all the participants (P < 0.05 for all). Conclusions This study demonstrated that E2 levels were negatively associated with physical function among the Chinese oldest-old and centenarian women.
 
Article
Background Asprosin, a newly discovered adipokine, is a C-terminal cleavage product of profibrillin. Asprosin has been reported to participate in lipid metabolism and cardiovascular disease, but its role in atherogenesis remains elusive. Methods Asprosin was overexpressed in THP-1 macrophage-derived foam cells and apoE −/− mice using the lentiviral vector. The expression of relevant molecules was determined by qRT-PCR and/or western blot. The intracellular lipid accumulation was evaluated by high-performance liquid chromatography and Oil red O staining. HE and Oil red O staining was employed to assess plaque burden in vivo. Reverse cholesterol transport (RCT) efficiency was measured using [ ³ H]-labeled cholesterol. Results Exposure of THP-1 macrophages to oxidized low-density lipoprotein down-regulated asprosin expression. Lentivirus-mediated overexpression of asprosin promoted cholesterol efflux and inhibited lipid accumulation in THP-1 macrophage-derived foam cells. Mechanistic analysis revealed that asprosin overexpression activated p38 and stimulated the phosphorylation of ETS-like transcription factor (Elk-1) at Ser383, leading to Elk-1 nuclear translocation and the transcriptional activation of ATP binding cassette transporters A1 (ABCA1) and ABCG1. Injection of lentiviral vector expressing asprosin diminished atherosclerotic lesion area, increased plaque stability, improved plasma lipid profiles and facilitated RCT in apoE −/− mice. Asprosin overexpression also increased the phosphorylation of p38 and Elk-1 as well as up-regulated the expression of ABCA1 and ABCG1 in the aortas. Conclusion Asprosin inhibits lipid accumulation in macrophages and decreases atherosclerotic burden in apoE −/− mice by up-regulating ABCA1 and ABCG1 expression via activation of the p38/Elk-1 signaling pathway.
 
Article
Background Glioma is the most common cancer in the central nervous system, and low grade gliomas are notorious for many types of tumors and heterogeneity. PROS1 not only plays an important role in the blood coagulation system, and recent studies have found that it was correlated with the development of tumors, especially related to tumor immune infiltration. However, the study of underlying role and mechanism of PROS1 in gliomas, especially in low-grade gliomas, is almost absent. Methods We integrated the information of patients with LGG in The Cancer Genome Atlas (TCGA) cohort and Chinese Glioma Genome Atlas (CGGA) cohort. Then, we systematically demonstrated the differences and prognostic prognosis value of PROS1 based on multi-omics analyses. In addition, Cell counting kit-8 (CCK-8) assay, colony formation assay, 5-Ethynyl-2’-deoxyuridine (EdU) incorporation assay, and Transwell assays were performed to evaluate cell proliferation and invasion. qRT-PCR and immunohistochemistry were used to evaluate the expression of PROS1 in LGG. Results Various bioinformatics approaches revealed that PROS1 was a valuable prognostic marker and may influence tumour development via distinct mechanisms, including expression of DNA methyltransferase, RNA modification, and DNA mismatch repair system genes, copy number variation, single nucleotide variation frequency, genomic heterogeneity, cancer stemness, DNA methylation, and alternative PROS1 splicing. Our analyses indicated that the long non-coding RNA RP3-525N10.2 may “decoy” or “guide” the transcription factor NFKB1 and prevent its association with PROS1, thereby reducing PROS1 expression and improving poor LGG prognosis. PROS1 expression was also closely associated with tumour infiltration by immune cells, especially tumour-associated macrophages, as well as the expression of various immune checkpoint inhibitors, immunomodulators, and immune cell markers. Conclusion long non-coding RNA RP3-525N10.2-NFKB1-PROS1 triplet-mediated PROS1 expression could serve as a biomarker for cancer diagnosis, prognosis, therapy selection, and follow-up in LGG patients.
 
Article
Background Hyperkalemia is a common and potentially life-threatening electrolyte disorder in maintenance hemodialysis (MHD) patients. This study aimed to evaluate the efficacy and safety of potassium-lowering regimens during treatment of acute hyperkalemia in MHD patients. Methods This retrospective real-world study (RWS) was conducted among 139 MHD patients. They were given different potassium-lowering regimens, viz. the insulin and glucose (IG) intravenous administration group (IG, 46 patients), the sodium polystyrene sulfonate group (SPS, 33 patients), the sodium zirconium cyclosilicate group (SZC, 38 patients), the IG + SZC group (22 patients). The primary efficacy end point was the rate of serum potassium decline at 2 h. The rates of adverse events were also compared. Results At 2 h, the mean ± SE change of serum potassium level was − 0.71 ± 0.32 mmol per liter (mmol/L) in IG group, − 0.43 ± 0.38 mmol/L in SPS group, − 0.64 ± 0.36 mmol/L in SZC group, − 1.43 ± 0.38 mmol/L in IG + SZC group ( P < 0.01). The serum potassium level in IG + SZC group decreased more than that in the other three groups ( P < 0.01), while the serum potassium level in SPS group decreased less than that in the other three groups ( P < 0.05). There was no significant difference on the decrease of the serum potassium level between IG group and the SZC group ( P = 0.374). The IG group and the IG + SZC group had higher rates of symptomatic hypoglycemia. The SPS group had significant decreases of serum calcium and serum magnesium after treatment. Conclusions Among MHD patients with acute hyperkalemia, SZC had similar potassium-lowering efficacy with IG intravenous administration at 2 h and superior on convenience and side-effects.
 
Article
Background Effective treatment is needed for advanced, inoperable, or chemotherapy-resistant cervical cancer patients. Immunotherapy has become a new treatment modality for cervical cancer patients, and there is an urgent need to identify additional targets for cervical cancer immunotherapy. Methods In this study the core gene, RGS1, which affects immune status and the FIGO stage of cervical cancer patients was identified by WGCNA analysis and differential analysis using TCGA database. 10 related genes interacting with RGS1 were identified using PPI network, and the functional and immune correlations were analyzed. Based on the expression of RGS1 and related genes, the consensus clustering method was used to divide CESC patients into two groups (group 1, high expression of RGS1; group 2, low expression of RGS1). Then, the functional enrichment analysis was used to search for the functional differences in differentially expressed genes (DEGs) between group 1 and group 2. Immune infiltration analysis was performed using ESTIMATE, CIBERSORT, and ssGSEA, and the differences in expression of immune checkpoint inhibitors (ICIs) targets were assessed between the two groups. We investigated the effect of RGS1 on the clinical relevance of CESC patients, and experimentally verified the differences in RGS1 expression between cervical cancer patient tissues and normal cervical tissues, the role of RGS1 in cell function, and the effect on tumor growth in tumor-bearing mice. Results We found that RGS1 was associated with CD4, GNAI3, RGS2, GNAO1, GNAI2, RGS20, GNAZ, GNAI1, HLA-DRA and HLA-DRB1, especially CD4 and RGS2. Functional enrichment of DEGs was associated with T cell activation. Compared with group 2, group 1 had stronger immune infiltration and higher ICI target expression. RGS1 had higher expression in cervical cancer tissues than normal tissues, especially in HPV-E6 positive cancer tissues. In cervical cancer cell lines, knockdown of RGS1 can inhibited cell proliferation, migration, invasion, and tumor growth in nude mice and promoted apoptosis. Conclusions RGS1, as an oncogenic gene of cervical cancer, affects the immune microenvironment of patients with cervical cancer and may be a target of immunotherapy.
 
Article
Background The effectiveness of MAPK pathway inhibitors (MAPKi) used to treat patients with BRAF-mutant melanoma is limited by a range of resistance mechanisms, including soluble TNF (solTNF)-mediated NF-kB signaling. solTNF preferentially signals through type-1 TNF receptor (TNFR1), however, it can also bind to TNFR2, a receptor that is primarily expressed on leukocytes. Here, we investigate the TNFR2 expression pattern on human BRAF V600E+ melanomas and its role in solTNF-driven resistance reprogramming to MAPKi. Methods Flow cytometry was used to test TNFR1, TNFR2 and CD271 expression on, as well as NF-kB phosphorylation in human BRAF-mutant melanoma. The ability of melanoma cell lines to acquire MAPKi resistance in response to recombinant or macrophage-derived TNF was evaluated using the MTT cytotoxicity assay. Gene editing was implemented to knock out or knock in TNF receptors in melanoma cell lines. Knockout and knock-in cell line variants were employed to assess the intrinsic roles of these receptors in TNF-induced resistance to MAPKi. Multicolor immunofluorescence microscopy was utilized to test TNFR2 expression by melanoma in patients receiving MAPKi therapy. Results TNFR1 and TNFR2 are co-expressed at various levels on 4/7 BRAF V600E+ melanoma cell lines evaluated in this study. In vitro treatments with solTNF induce MAPKi resistance solely in TNFR2-expressing BRAF V600E+ melanoma cell lines. TNFR1 and TNFR2 knockout and knock-in studies indicate that solTNF-mediated MAPKi resistance in BRAF V600E+ melanomas is predicated on TNFR1 and TNFR2 co-expression, where TNFR1 is the central mediator of NF-kB signaling, while TNFR2 plays an auxiliary role. solTNF-mediated effects are transient and can be abrogated with biologics. Evaluation of patient specimens indicates that TNFR2 is expressed on 50% of primary BRAF V600E+ melanoma cells and that MAPKi therapy may lead to the enrichment of TNFR2-expressing tumor cells. Conclusions Our data suggest that TNFR2 is essential to solTNF-induced MAPKi resistance and a possible biomarker to identify melanoma patients that can benefit from solTNF-targeting therapies.
 
Article
Background Except for B7-CD28 family members, more novel immune checkpoints are being discovered. They are closely associated with tumor immune microenvironment and regulate the function of many immune cells. Various cancer therapeutic studies targeting these novel immune checkpoints are currently in full swing. However, studies concerning novel immune checkpoints phenotypes and clinical significance in lung adenocarcinoma (LUAD) are still limited. Methods We enrolled 1883 LUAD cases from nine different cohorts. The samples from The Cancer Genome Atlas (TCGA) were used as a training set, whereas seven microarray data cohorts and an independent cohort with 102 qPCR data were used for validation. The immune profiles and potential mechanism of the system were also explored. Results After univariate Cox proportional hazards regression and stepwise multivariable Cox analysis, a novel immune checkpoints-based system (LTA, CD160, and CD40LG) were identified from the training set, which significantly stratified patients into high- and low-risk groups with different survivals. Furthermore, this system has been well validated in different clinical subgroups and multiple validation cohorts. It also acted as an independent prognostic factor for patients with LAUD in different cohorts. Further exploration suggested that high-risk patients exhibited distinctive immune cells infiltration and suffered an immunosuppressive state. Additionally, this system is closely linked to various classical immunotherapy biomarkers. Conclusion we constructed a novel immune checkpoints-based system for LUAD, which predicts prognosis and immunotherapeutic implications. We believe that these findings will not only aid in clinical management but will also shed some light on screening appropriate patients for immunotherapy.
 
The prognostic significance of serum glutamine evaluated by Kaplan–Meier analysis. The OS (A) and DFS (B) of patients with low serum glutamine level were significantly shorter than that of patients with high level. C DFS nomogram based on the multivariate model. Depth of invasion: 0 (Tis–T2) vs. 1 (T3) vs. 2 (T4), Lymph node metastasis: 0 (no) vs. 1 (yes), serum glutamine: 0 (> 392.83 μM) vs. 1 (≤ 392.83 μM)
Glutamine deprivation promotes migration and invasion in CRC cells. A Glutamine depletion significantly increased the wound healing rate compared with normal glutamine concentration in DLD1 cells. B Glutamine depletion significantly increased the wound healing rate compared with normal glutamine concentration in SW480 cells at 24 h. C Glutamine depletion enhanced both the migration and invasion capacities of SW480 cells
Glutamine depletion inhibited E-cadherin expression in CRC cells. A Western blot analysis showed that the protein levels in 1.0 mM and 0.5 mM glutamine groups decreased compared with normal glutamine groups in SW480 and DLD1 cells. The relative integrated density was 0.71 ± 0.04 in SW480 1.0 mM, 0.83 ± 0.05 in SW480 0.5 mM glutamine group; 0.79 ± 0.03 in DLD1 1.0 mM glutamine group, 0.52 ± 0.12 in DLD1 0.5 mM glutamine group, *P < 0.05; B immunostaining results showed that E-cadherin expression was decreased in 1.0 mM glutamine group compared with normal glutamine group in SW480 cells (×200)
The different mRNA and protein expression of TFs in CRC cells treated with different glutamine concentration. A The mRNA expression of zeb1 and snail 2 were increased in 0.5mM glutamine defiency group in SW480 cells. B The results showed that the zeb1 mRNA expression in the 0.5 mM and 1.0 mM glutamine deficiency groups were significantly increased compared with the normal glutamine group in DLD1 cells. Zeb2 mRNA expression was also upregulated in the 0.5 mM glutamine deficiency group in DLD1 cells. C Protein expression of TFs in CRC cells treated with different glutamine concentration. D The results of western blot showed that zeb1 and Zeb2 in glutamine deficiency groups were significantly increased compared with the normal glutamine group in SW480 cells. Zeb2 in glutamine deficiency groups were significantly increased compared with the normal glutamine group in DLD1 cells. *P < 0.05, compared with control group
Article
Background Glutamine is the most abundant amino acid in the body and plays a vital role in colorectal cancer (CRC) cell metabolism. However, limited studies have investigated the clinical and prognostic significance of preoperative serum glutamine levels in patients with colorectal cancer, and the underlying mechanism has not been explored. Methods A total of 121 newly diagnosed CRC patients between 2012 and 2016 were enrolled in this study. Serum glutamine levels were detected, and their associations with clinicopathological characteristics, systemic inflammation markers, carcinoembryonic antigen (CEA) and prognosis were analysed. In addition, the effect of glutamine depletion on recurrence and metastasis was examined in SW480 and DLD1 human CRC cell lines, and epithelial–mesenchymal transition (EMT)-related markers were detected to reveal the possible mechanism. Results A decreased preoperative serum level of glutamine was associated with a higher T-class and lymph node metastasis (P < 0.05). A higher serum level of glutamine correlated with a lower CEA level (r = − 0.25, P = 0.02). Low glutamine levels were correlated with shorter overall survival (OS) and disease-free survival (DFS). Multivariate Cox regression analysis showed that serum glutamine was an independent prognostic factor for DFS (P = 0.018), and a nomogram predicting the probability of 1-, 3- and 5-year DFS after radical surgery was built. In addition, glutamine deficiency promoted the migration and invasion of CRC cells. E-cadherin, a vital marker of EMT, was decreased, and EMT transcription factors, including zeb1and zeb2, were upregulated in this process. Conclusions This study elucidated that preoperative serum glutamine is an independent prognostic biomarker to predict CRC progression and suggested that glutamine deprivation might promote migration and invasion in CRC cells by inducing the EMT process.
 
Article
Background A piglet model for peritoneal metastasis (PM) of ovarian cancer was developed. It will contribute to establishing innovative chemotherapeutical and surgical strategies without any limitation on rodent models. Methods A total of 12 four- to five-week-old piglets of 7 to 8 kg were used. Two phases of ovarian cancer cell injections were performed with laparoscopic surgery. In phase I trial, 5.0 × 10⁶ SK-OV-3 cells in 0.1 ml suspension were inoculated into the omentum, peritoneum, and uterine horns of two piglets twice with a one-week interval. In the phase II trial, 5.0 × 10⁶ SNU-008 cells in 0.1 ml suspension were injected only into uterine horns within the same time frame because tumor implantation after inoculation of SK-OV-3 cells was not observed at the omentum or peritoneum in the phase I trial. Modified peritoneal cancer index (PCI) score was used to monitor tumorigenesis up to 4 weeks after inoculation. Tumor tissues disseminated in the peritoneum 4 weeks after injection were used for histological examination with hematoxylin and eosin (H&E) and paired-box gene 8 (PAX-8) staining. Results In the phase I trial, two piglets showed PM with modified PCI scores of 5 and 4 at 3 weeks after the first inoculation, which increased to 14 and 15 after 4 weeks, respectively. In the phase II trial, PM was detected in eight of ten piglets, which showed modified PCI scores of 6 to 12 at 4 weeks after the first inoculation. The overall incidence of PM from the total of 12 piglets after inoculation was 75%. Immunohistochemical H&E and PAX-8 staining confirmed metastatic tumors. Conclusions This study provides strong evidence that piglets can be employed as a model for PM by inoculating ovarian cancer cell lines from humans. Using two cell lines, the PM rate is 75%.
 
Article
Background: Recent studies have shown that the fox family plays a vital role in tumorigenesis and progression. Forkhead Box S1 (FOXS1), as a newly identified subfamily of the FOX family, is overexpressed in certain types of malignant tumors and closely associated with patient's prognosis. However, the role and mechanism of the FOXS1 in colorectal cancer (CRC) remain unclear. Method: FOXS1 level in CRC tissues and cell lines was analyzed by western blot and quantitative real-time polymerase chain reaction (qRT-PCR). Immunohistochemistry (IHC) was used to detect the relationship between FOXS1 expression and clinicopathological features in 136 patients in our unit. The expression of FOXS1 was knocked down in CRC cells using small interfering RNA (siRNA) technology. Cell proliferation was assessed by CCK8 assay, colony formation, and 5-Ethynyl-20-deoxyuridine (EdU) incorporation assay. Flow cytometry detected apoptosis and wound healing, and Transwell assays determined cell migration and invasion. Western blotting was used to detect the levels of proteins associated with the Wnt/β-catenin signaling pathway. Then, we used short hairpin RNA (shRNA) to knock down FOXS1 to see the effect of FOXS1 on the proliferation, migration, invasion, and metastasis of CRC cells in vivo. Finally, we investigated the impact of Wnt activator LiCl on the proliferation, migration, invasion, and metastasis of CRC cells after FOXS1 knockdown. Result: Compared to those in normal groups, FOXS1 overexpressed in CRC tissues and CRC cells (P < 0.05). Upregulation of FOXS1 association with poor prognosis of CRC patients. si-FOXS1 induced apoptosis and inhibited proliferation, migration, invasion, the epithelial-mesenchymal transition (EMT), and the Wnt/β-catenin signaling pathway in vitro; sh-FOXS1 inhibited the volume and weight of subcutaneous xenografts and the number of lung metastases in vivo. LiCl, an activator of Wnt signaling, partially reversed the effect of FOXS1 overexpression on CRC cells. Conclusion: FOXS1 could function as an oncogene and promote CRC cell proliferation, migration, invasion and metastasis through the Wnt/βcatenin signaling pathway, FOXS1 may be a potential target for CRC treatment.
 
Article
Background The immune system plays a vital role in the pathophysiology of acute myocardial infarction (AMI). However, the exact immune related mechanism is still unclear. This research study aimed to identify key immune-related genes involved in AMI. Methods CIBERSORT, a deconvolution algorithm, was used to determine the proportions of 22 subsets of immune cells in blood samples. The weighted gene co-expression network analysis (WGCNA) was used to identify key modules that are significantly associated with AMI. Then, CIBERSORT combined with WGCNA were used to identify key immune-modules. The protein–protein interaction (PPI) network was constructed and Molecular Complex Detection (MCODE) combined with cytoHubba plugins were used to identify key immune-related genes that may play an important role in the occurrence and progression of AMI. Results The CIBERSORT results suggested that there was a decrease in the infiltration of CD8 + T cells, gamma delta (γδ) T cells, and resting mast cells, along with an increase in the infiltration of neutrophils and M0 macrophages in AMI patients. Then, two modules (midnightblue and lightyellow) that were significantly correlated with AMI were identified, and the salmon module was found to be significantly associated with memory B cells. Gene enrichment analysis indicated that the 1,171 genes included in the salmon module are mainly involved in immune-related biological processes. MCODE analysis was used to identify four different MCODE complexes in the salmon module, while four hub genes (EEF1B2, RAC2, SPI1, and ITGAM) were found to be significantly correlated with AMI. The correlation analysis between the key genes and infiltrating immune cells showed that SPI1 and ITGAM were positively associated with neutrophils and M0 macrophages, while they were negatively associated with CD8 + T cells, γδ T cells, regulatory T cells (Tregs), and resting mast cells. The RT-qPCR validation results found that the expression of the ITGAM and SPI1 genes were significantly elevated in the AMI samples compared with the samples from healthy individuals, and the ROC curve analysis showed that ITGAM and SPI1 had a high diagnostic efficiency for the recognition of AMI. Conclusions Immune cell infiltration plays a crucial role in the occurrence and development of AMI. ITGAM and SPI1 are key immune-related genes that are potential novel targets for the prevention and treatment of AMI.
 
Article
Background NCAPG, non-SMC subunit in the concentrate I complex, might promote the proliferation of hepatocellular carcinoma (HCC), but the mechanism is unclear. The aim of this study was to explore how NCAPG affects PTEN to influence the proliferation of HCC. Methods Western blotting, qRT-PCR and immunohistochemistry were used to detect NCAPG expression in HCC tissues. The effect of NCAPG on the proliferation of HCC cell lines was evaluated using an EdU incorporation assay, a Cell Counting Kit-8 assay and Fluorescence in situ hybridization (FISH). BALB/c-nu/nu mice were used for the in vivo proliferation experiment. Transcriptome sequencing was used to determine the relationship between NCAPG and PTEN. Immunocoprecipitation-mass spectrometry (IP-MS), proteomic sequencing and Co-immunoprecipitation (CO-IP) were used to identify and examine the interaction between the NCAPG and CKII proteins. Results We confirmed that NCAPG was abnormally overexpressed in HCC and promoted the proliferation of HCC cells. Transcriptome sequencing revealed that NCAPG inhibited the transcription of PTEN and promoted the activation of the PI3K-AKT pathway. We found a close association between NCAPG and CKII through proteomic sequencing; their interaction was confirmed by Co-IP. There was a positive correlation between NCAPG and CKII that promoted the phosphorylation of PTEN and thus inhibited its transcription and functions. We also proved that CKII was the key factor in the induction of proliferation by NCAPG. Conclusion We revealed the mechanism by which NCAPG regulates the proliferation of HCC: NCAPG inhibits PTEN through its interaction with CKII, and then activates the PI3K-AKT pathway to promote the proliferation of HCC.
 
Top-cited authors
Francesco M Marincola
  • Refuge Biotechnologies Inc. Menlo Park, CA
Paolo Antonio Ascierto
  • Istituto Nazionale Tumori "Fondazione Pascale"
Ena Wang
  • Sidra Medicine
Neil H Riordan
  • Medistem Panama Inc.
Bernard A Fox
  • Earle A Chiles Research Institute, Portland, Oregon, USA