Journal of Sports Science and Medicine

Published by Journal of Sports Science and Medicine

Online ISSN: 1303-2968

Articles


Mechanisms of the Anterior Cruciate Ligament Injury in Sports Activities: A Twenty-Year Clinical Research of 1,700 Athletes
  • Article
  • Full-text available

December 2010

·

6,639 Reads

Hirokazu Kobayashi

·

·

·

[...]

·

The mechanisms of anterior cruciate ligament (ACL) injuries are still inconclusive from an epidemiological standpoint. An epidemiological approach in a large sample group over an appropriate period of years will be necessary to enhance the current knowledge of the ACL injury mechanism. The objective of the study was to investigate the ACL injury occurrence in a large sample over twenty years and demonstrate the relationships between the ACL injury occurrence and the dynamic knee alignment at the time of the injury. We investigated the activity, the injury mechanism, and the dynamic knee alignment at the time of the injury in 1,718 patients diagnosed as having the ACL injuries. Regarding the activity at the time of the injury, "competition "was the most common, accounting for about half of all the injuries. The current result also showed that the noncontact injury was the most common, which was observed especially in many female athletes. Finally, the dynamic alignment of "Knee-in & Toe- out "(i.e. dynamic knee valgus) was the most common, accounting for about half. These results enhance our understanding of the ACL injury mechanism and may be used to guide future injury prevention strategies. Key pointsWe investigated the situation of ACL injury occurrence, especially dynamic alignments at the time of injury, in 1,718 patients who had visited our institution for surgery and physical therapy for twenty years.Our epidemiological study of the large patient group revealed that "knee-in & toe-out "alignment was the most frequently seen at the time of the ACL injury.From an epidemiological standpoint, we need to pay much attention to avoiding "Knee-in & Toe-out "alignment during sports activities.
Download
Share

Table 1 . 
Backstroke Technical Characterization of 11-13 Year-Old Swimmers

December 2013

·

1,005 Reads

The aim of this study was to characterize the backstroke swimming technique of 11-13 year-old swimmers when performing at very high intensity. A sample of 114 swimmers was divided into four groups regarding maturational and gender effect, who performed 25-m backstroke swimming at 50-m pace. Using two underwater cameras the general biomechanical parameters (speed, stroke rate, stroke length and stroke index), the arm stroke phases and two indexes of arm coordination (Index of Coordination 1, which characterizes the continuity between propulsive phases of each arm and Index of Coordination 2 that evaluates the simultaneity between the beginning of the pull of one arm and of the recovery of the other arm) were measured. Post-pubertal swimmers achieved higher values of speed (1.06 ± 0.14 and 1.18 ± 0.14 m·s-1 for pubertal and 1.13 ± 0.14 and 1.24 ± 0.12 m·s-1 for post-pubertal girl and boy swimmers, respectively), stroke length (1.64 ± 0.26 and 1.68 ± 0.25 m·cycle-1 for pubertal and 1.79 ± 0.22 and 1.75 ± 0.27 m·cycle-1 for postpubertal girls and boys, respectively) and stroke index. Regarding genders, male were faster than female swimmers. Boys also showed a higher stroke rate and stroke index than girls, who achieved higher results in the ratio between stroke length and arm span. As it was expected, no hand lag time was noticed in young swimmers. Although no differences were noticed between genders, the Index of Coordination 1 was in catch-up mode (-9.89 ± 3.16 and -10.16 ± 3.60 % for girls and -9.77 ± 2.93 and -10.39 ± 2.44 % for boys pubertal and post-pubertal, respectively) and the Index of Coordination 2 was in superposition mode (1.86 ± 4.39 and 2.25 ± 2.25 % from girls and 1.72 ± 2.62 and 1.95 ± 2.95 % for boys, pubertal and post-pubertal, respectively).

Daily Physical Activity and Physical Fitness in 11-to 15-year-old Trained and Untrained Turkish Boys

September 2011

·

604 Reads

The aims of this study were to assess levels and patterns of physical activity (PA) in relation to age and regular sport activity, and to examine its relationship to physical fitness in trained and untrained boys. One hundred forty-seven 11-to 15-year-old boys (73 trained and 74 untrained) participated in this study. Trained boys, comprised of 26 soccer, 25 handball and 22 volleyball players, had been training regularly for at least one year. The intensity, duration and frequency of PA were assessed from four complete days of heart rate monitoring with 15-seconds sampling intervals. Aerobic fitness was assessed by determining peakVO2 with a portable breath-by-breath gas analyzer (Cosmed K4b2) and the running speeds at fixed lactate concentrations during an incremental running test. Anaerobic fitness was evaluated with the Wingate Anaerobic Test. Skin fold thicknesses from eight sites and Tanner stages of pubic hair were also obtained. Based on 15-s heart rate data, instead of continuous activity, multiple short bouts of moderate and vigorous PA, lasting up to one minute, were characteristic of daily PA patterns of both trained and untrained boys. PA levels of trained boys were higher than untrained boys (p < 0.01) and the levels of PA decreased with age and maturation in both groups (p < 0.05). Daily PA variables were related to body fatness in both groups (p < 0.05), but the relationships were not consistent in the trained group. Daily PA variables were also related to aerobic fitness in the untrained group (p < 0.05) and these relationships were somewhat better with vigorous PA, whereas in the trained group, none of the PA variables were related to any of the aerobic fitness indices (p > 0.05). No relationship was observed between PA variables and anaerobic fitness in either group (p> 0.05). It seems that such relationships may somewhat depend on the fitness level of the subjects.

Effects and Sustainability of a 13-Day High-Intensity Shock Microcycle in Soccer

May 2014

·

345 Reads

The preseason in soccer is a short period of 6-8 weeks where conditional abilities, technical and tactical elements need to be trained. Therefore, time is lacking to perform long term preparation periods for different abilities, especially endurance training. There is evidence that the implementation of high-intensity shock microcycles in preseason training could be one way to improve physical performance in a short period of time. Therefore, the purpose of the present study was to examine the effects and the sustainability of a high-intensity shock microcycle on soccer specific performance. Over 2 weeks, 12 male soccer players (26.1 ± 4.5 years) performed 12 high-intensity training (HIT) sessions in addition to their usual training. Before (pre), 6 days (6d) and 25 days (25d) after training, subjects performed Counter Movement Jump (CMJ), Repeated-Sprint Ability (RSA) test and Yo-Yo Intermittent Recovery Test Level 2 (YYIR2). Mean sprint time (RSAMean) (cohen's d = -1.15), percentage decrement score (RSAIndex) (cohen's d = -1.99) and YYIR2 (cohen's d = +1.92) improved significantly from pre to 6d. 25d after, values showed a significant reduction for YYIR2 (cohen's d = -0.81) and small to moderate but not significant increase for RSAMean (cohen's d = +0.37) and RSAIndex (cohen's d = +0.7) compared to 6d values. Small but no significant increases were found for CMJ (cohen's d = +0.33) and no significant and substantial changes were found for RSABest (cohen's d = -0.07) from pre to 6d. For competitive soccer players, block periodization of HIT offers a promising way to largely improve RSA and YYIR2 in a short period of time. Despite moderate to large decreases in RSAIndex and YYIR2 performance in the 19 day period without HIT, values still remained significantly higher 25d after the last HIT session compared to pre-values. However, it might be necessary to include isolated high-intensity sessions after a HIT training block in order to maintain the higher level of YYIR2 and RSAIndex performance. Key pointsHIT shock microcycle increases performance in semi-professional soccer players in a short period of time.Despite moderate to large decreases in performance in the 19 day period without HIT, values still remained significantly higher 25d after the last HIT session compared to pre-values.This kind of training block increases YYIR2 performance and the ability to repeated sprints, based on the RSAIndex.

Figure 2. Blood glucose concentration under different treatments (mean ± SD).
Table 4. 
The Effects of Sodium Citrate Ingestion on Metabolism and 1500-m Racing Time in Trained Female Runners

March 2008

·

335 Reads

The purpose of the study was to assess the effects of sodium citrate ingestion on the metabolic response to exercise and performance in a 1500-m competitive run in trained female middle-distance runners in field conditions. Seventeen athletes (mean (± SD) aged 18.6 ± 2.5 years, VO 2max 55.2 ± 7.6 ml·kg-1·min -1) competed in two 1500-m races following ingestion of 0.4 g·kg-1 body mass of sodium citrate (CIT) and placebo (PLC - 1.0% solution of NaCl). The two substances, CIT and PLC were administered in 800 ml of solution in a randomly assigned double-blind crossover manner. Capillary blood samples were analysed for lactate, glucose, haemoglobin and haematocrit before administering the solutions (baseline) as well as before and after both 1500-m races. The athletes' times for trials CIT and PLC were 321.4 ± 26.4 and 317.4 ± 22.5 s, respectively (p > 0.05). A greater relative increase in plasma volume after administering the experimental solution, an increased body mass (by 0.4 kg; p = 0.006) immediately before the race and a restrained increase in blood glucose concentration (by 2.5 ± 1.2 mmol·l-1 vs 3.4 ± 0.8 mmol·l-1; p = 0.002) during the race were observed in the CIT trial compared to the PLC. A significant relationship was observed between body mass of the subjects immediately before the race and performance time (r = 0.374; p = 0.029). There were no between-treatment differences in heart rate in any stage of the run or in blood lactate accumulation during the race (final concentration of lactate was 14.4 ± 3.0 mmol·l-1 and 13.4 ± 2.5 mmol·l-1 (p > 0.05) in the CIT and PLC trials, respectively). The results suggest that sodium citrate induces an increase in water retention before exercise and may modify carbohydrate metabolism in high intensity running, but does not improve performance in 1500-m competitive run in female middle-distance runners.

Figure 2. Number of world records per year and gender. Solid line is 4 year-smoothing mean for men's world records and dotted line for women's world records.  
Figure 3. Annual Cumulative Proportions of world records, by major contributing country, illustrating the geographical dispersion of world records for each gender in A. Athletics Men B. Athletics Women C. Swimming Men D. Swimming Women (0,1 = 10%). USA: United States of America. RUS: USSR and Russia, FRG: Germany, Federal Republic of Germany and reunited  
Figure 5. Global GG evolution in percentage for A. Track and field WR. B. Swimming WR C. Track and field TBP D. Swimming TBP (missing data in 1964 and 1974). The peak after 1960 is due to the introduction of female marathon WR.  
Women and Men in Sport Performance: The Gender Gap has not Evolved since 1983

June 2010

·

5,500 Reads

Sex is a major factor influencing best performances and world records. Here the evolution of the difference between men and women's best performances is characterized through the analysis of 82 quantifiable events since the beginning of the Olympic era. For each event in swimming, athletics, track cycling, weightlifting and speed skating the gender gap is fitted to compare male and female records. It is also studied through the best performance of the top 10 performers in each gender for swimming and athletics. A stabilization of the gender gap in world records is observed after 1983, at a mean difference of 10.0% ± 2.94 between men and women for all events. The gender gap ranges from 5.5% (800-m freestyle, swimming) to 18.8% (long jump). The mean gap is 10.7% for running performances, 17.5% for jumps, 8.9% for swimming races, 7.0% for speed skating and 8.7% in cycling. The top ten performers' analysis reveals a similar gender gap trend with a stabilization in 1982 at 11.7%, despite the large growth in participation of women from eastern and western countries, that coincided with later- published evidence of state-institutionalized or individual doping. These results suggest that women will not run, jump, swim or ride as fast as men. Key pointsSex is a major factor influencing best performances and world records.A stabilization of the gender gap in world records is observed after 1983, at a mean difference of 10.0% ± 2.94 between men and women for all events.The gender gap ranges from 5.5% (800-m freestyle, swimming) to 36.8% (weight lifting).The top ten performers' analysis reveals a similar gender gap trend with a stabilization in 1982 at 11.7%.Results suggest that women will not run, jump, swim or ride as fast as men.

Neuromuscular Fatigue During 200 M Breaststroke

March 2014

·

486 Reads

The aims of this study were: i) to analyze activation patterns of four upper limb muscles (duration of the active and non-active phase) in each lap of 200m breaststroke, ii) quantify neuromuscular fatigue, with kinematics and physiologic assessment. Surface electromyogram was collected for the biceps brachii, deltoid anterior, pectoralis major and triceps brachii of nine male swimmers performing a maximal 200m breaststroke trial. Swimming speed, SL, SR, SI decreased from the 1(st) to the 3(rd) lap. SR increased on the 4(th) lap (35.91 ± 2.99 stroke·min(-1)). Peak blood lactate was 13.02 ± 1.72 mmol·l(-1) three minutes after the maximal trial. The EMG average rectified value (ARV) increased at the end of the race for all selected muscles, but the deltoid anterior and pectoralis major in the 1(st) lap and for biceps brachii, deltoid anterior and triceps brachii in the 4(th) lap. The mean frequency of the power spectral density (MNF) decreased at the 4(th) lap for all muscles. These findings suggest the occurrence of fatigue at the beginning of the 2(nd) lap in the 200m breaststroke trial, characterized by changes in kinematic parameters and selective changes in upper limb muscle action. There was a trend towards a non-linear fatigue state. Key PointsFatigue in the upper limbs occurs in different way as it described by 100m swimming events.Neuromuscular fatigue was estimated by analyzing the physiological changes (high blood lactate concentrations), biomechanical changes in the swimming stroke characteristics (decreased in swimming velocity), and by the changes in the EMG amplitude and frequency parameters at the end of the swimming bout.The amplitude signal of EMG provided by the ARV demonstrated an increase at the end with the respect to the beginning for all muscles under study, excepted for the muscle deltoid anterior.The mean frequency (MNF) in our study decrease at the end of the swimming in the 4(th) lap relative to the 1(st) lap for all muscles under observation, along the 200m breaststroke.

Figure 2. 15 m turn time (s) evolution in the 200 m backstroke event for the national and regional level swimmers relative to the first turn. * p < 0.05 (Figure 3). On the other hand, "distance in" showed no significant differences (p > 0.05) throughout the race for both national and regional groups. National level swimmers presented faster "underwater velocity" values between the last (seventh) and the first and second (p < 0.05), and the fourth turns (p < 0.01). No differences in "underwater velocity" were found throughout the race for the regional level swimmers (Figure 4). Finally, for both national and regional swimmers, "stroking velocity" dropped (p < 0.01) during the first three laps of the race. After that, national level swimmers maintained (p > 0.05) "stroking velocity" until the end of the race, whereas regional level slowed down (p <0.05) during the fourth lap and then maintained (p > 0.05) their "stroking velocity" on the second half of the race. Decrement in "stroking velocity" between the first and last lap of the race were 6.96% and 10.45% for national and regional level swimmers, respectively. Maximal "stroking velocity" was obtained during the first lap of the race (1.60 ± 0.05 m·s-1 for national and 1.48 ± 0.05 for regional level) whereas minimum "stroking velocity" was achieved during the fourth lap for both levels (1.44 ± 0.04 m·s-1 for national and 1.29 ± 0.04 m·s-1 for regional
Figure 3. " Underwater distance " (m) evolution in the 200 m backstroke event for the national and regional level groups relative to the first turn. * p < 0.05; ** p < 0.01; *** p < 0.001.  
Figure 4. " Underwater velocity " (m/s) evolution in the 200 meter backstroke event for the national and regional level groups relative to the last turn. * p < 0.05; ** p < 0.01.  
Figure 2. 15 m turn time (s) evolution in the 200 m backstroke event for the national and regional level swimmers relative to the first turn. * p < 0.05  
Kinematical Comparison of the 200 m Backstroke Turns between National and Regional Level Swimmers

December 2013

·

283 Reads

The aims of this investigation were to determine the evolution of selected turn variables during competitive backstroke races and to compare these kinematic variables between two different levels of swimmers. Sixteen national and regional level male swimmers participant in the 200 m backstroke event at the Spanish Swimming Championships in short course (25 m) were selected to analyze their turn performances. The individual distances method with two-dimensional Direct Linear Transformation (2D-DLT) algorithms was used to perform race analyses. National level swimmers presented a shorter "turn time", a longer "distance in", a faster "underwater velocity" and "normalized underwater velocity", and a faster "stroking velocity" than regional level swimmers, whereas no significant differences were detected between levels for the "underwater distance". National level swimmers maintained similar "turn times" over the event and increased "underwater velocity" and "normalized underwater velocity" in the last (seventh) turn segment, whereas regional level swimmers increased "turn time" in the last half of the race. For both national and regional level swimmers, turn "underwater distance" during the last three turns of the race was significantly shorter while no significant differences in distance into the wall occurred throughout the race. The skill level of the swimmers has an impact on the competitive backstroke turn segments. In a 200 m event, the underwater velocity should be maximized to maintain turn proficiency, whereas turn distance must be subordinated to the average velocity.

A Comparison of Wakeboard-, Water Skiing-, and Tubing-Related Injuries in The United States, 2000-2007

March 2010

·

185 Reads

The purpose of the study was to compare tubing-related injuries to wakeboarding- and water skiing-related injuries. Data was collected from the 2000-2007 National Electronic Injury Surveillance Survey for 1,761 individuals seeking care at an emergency department due to a tubing-, wakeboarding, or water skiing-related injury. Data included patient age and sex, as well as injury characteristics including body region injured (i.e., head and neck, trunk, shoulder and upper extremity, and hip and lower extremity) and diagnosis of injury (e.g., contusion, laceration, or fracture). Case narratives were reviewed to ensure that a tubing-, wakeboarding-, or water skiing-related injury occurred while the individual was being towed behind a boat. Severe injury (defined as an injury resulting in the individual being hospitalized, transferred, held for observation) was compared among the groups using logistic regression. Wakeboard- and tubing-related injuries more commonly involved the head and neck, while water skiing-related injuries were likely to involve the hip and lower extremity. Tubing-related injuries, compared to water skiing-related injuries, were more likely to be severe (OR 2.31, 95% CI 1.23-4.33). Like wakeboarding and water skiing, tubing has inherent risks that must be understood by the participant. While tubing is generally considered a safer alternative to wakeboarding and water skiing, the results of the current study suggest otherwise. Both the number and severity of tubing-related injuries could be prevented through means such as advocating the use of protective wear such as helmets while riding a tube or having recommended safe towing speeds promi-nently placed on inner tubes.

Table 3 . Injury rates and pair-wise comparison chi square statistic for boxing, wrestling, and martial arts. 
Boxing, Wrestling, and Martial Arts Related Injuries Treated in Emergency Departments in the United States, 2002-2005

October 2007

·

528 Reads

The incidence of injury in combat sports has not been adequately reported although it is important to identify the nature and frequency of injuries prior to the implementation of prevention programs. This study compared injury rates treated in Hospital Emergency Departments between different combat sports of boxing, wrestling, and martial arts. A secondary objective described anatomic region and diagnosis of these injuries. Data were obtained on all boxing, wrestling, and martial arts-related injuries that were in the National Electronic Injury Surveillance System database and resulted in Emergency Department visits between 2002 and 2005. Pearson's chi-square statistics were calculated to compare injury rates for each activity accounting for complex sample design. Martial arts had lower injury rates compared to boxing and wrestling for all diagnoses (p<0.001). Boxing had lower injury rates compared to wrestling for strains/sprains and dislocations. Boxing and wrestling had similar injury rates for concussions. Injury prevention efforts should consider the distribution of injuries and concentrate on preventing strains/sprains in wrestling, concussions in boxing and wrestling, and fractures for all three activities. The findings of the present study do not provide evidence that combat sports have alarmingly high rates of injuries resulting in emergency department visits. Key pointsMartial arts have lower emergency department injury rates compared to boxing and wrestling.Wrestling has higher strains/sprains and dislocation injury rates compared to boxing.Combat sports do not appear to have higher injury rates compared to non-combat sports.

Injury Profile in Women Shotokan Karate Championships in Iran (2004-2005)

October 2007

·

152 Reads

The aims of this paper were to record injury rates among Iranian women competitive Shotokan karate athletes and propose possible predisposing factors. A prospective recording of the injuries resulting from all matches in 6 consecutive women national Shotokan Karate Championships in all age groups in Iran (season 2004-2005) was performed. Data recorded included demographic characteristics (Age and Weight), athletic background (rank, years of experience, time spent training and previous injuries), type, location and reason for the injury, and the result of the match. Results indicate 186 recorded injuries from a total of 1139 bouts involving 1019 athletes, therefore there were 0.163 injury per bout [C.I. 95%: 0.142-0.184] and 183 injuries per 1000 athletes [C.I. 95%: 159-205]. Injuries were most commonly located in the head and neck (55.4%) followed by the lower limb (21%), upper limb (12.9%) and trunk (10.8%). Punches (48. 4%) were associated with more injuries than kicks (33.3%). The injuries consisted of muscle strain and contusion (81, 43.6%), hematoma and epistaxis (49, 26.3%), lacerations and abrasions (28, 15. 1%), concussion (13, 7%), tooth avulsion or subluxation (3, 1.6%), joint dislocation (3, 1.6%) and fractures (3, 1.6%). In conclusion, as the majority of injuries are minor, and severe or longstanding injuries are uncommon, it can be argued that shotokan karate is a relatively safe for females, despite its image as a combat sport, where ostensibly the aim appears to injure your opponent. Further research is needed to evaluate the effective strategies to minimize the risk of injuries. Key points186 injuries were recorded during women competitions.Incidence rates of 0.163 injury per bout and 183 injuries per 1000 athletes were calculated.The injuries were most commonly located in the head and neck.Muscle strain and contusion, hematoma and epistaxis constitute the majority of injuries.

Running 338 Kilometres within Five Days has no Effect on Body Mass and Body Fat But Reduces Skeletal Muscle Mass - the Isarrun 2006

December 2007

·

117 Reads

We investigated the change of body composition in ultra- endurance runners during a multi-stage ultra-endurance run, the Isarrun 2006 in Bavaria, Germany, where athletes had to run 338 km within 5 days. Body mass, skin fold thicknesses and circumferences of extremities were measured in 21 well-experienced extreme endurance male runners (mean ± SD, 41.5 ± 6.9 years, 72.6 ± 6.4 kg, 178 ± 5 cm, BMI 23.0 ± 2.0 kg·m(-2)), who finished mainly within the first half of the ranking, in order to calculate skeletal muscle mass and body fat mass to prove changes after the race. Body mass and calculated fat mass did not change significantly (p>0.05), but, calculated skeletal muscle mass decreased significantly (p<0.05) by 0.63 ± 0.79 kg by the end of the race. The most apparent decline (p<0.01) of the calculated skeletal muscle mass was during the first stage, and no changes were observed during the last 4 stages. We conclude, that a multi- stage ultra-endurance run over 338 km within 5 days leads to no changes of body mass or body fat mass, but a statistically significant decrease of skeletal muscle mass of 0.63 ± 0.79 kg by the end of the race in well-trained and well-experienced ultra-endurance runners. The change of skeletal muscle mass has to be evaluated in further studies at ultra-endurance races with suitable methods to detect changes in hydration status and water metabolism. Key pointsUltra-runners at the Isarrun 2006 suffered no loss of body mass.Skeletal muscle mass decreased highly significantly during the first stage but no significant changes of skeletal muscle mass were observed during the following 4 stages of the Isarrun 2006.Body fat mass remained stable during the Isarrun 2006.


Figure 1 The applicator for the hyperthermia system positioned on a human thigh. Informed consent was obtained for publication of this figure. 
Figure 1 James Moriarity.
Table 1 Physical characteristics of the subjects
Table 2 Peak temperatures at the skin surface and in muscle induced by microwave hyperthermia
Effects of Microwave Hyperthermia at Two Different Frequencies (434 and 2450 MHz) on Human Muscle Temperature

March 2008

·

536 Reads

Heat therapy is commonly used to treat injured muscles, and recently, hyperthermia which has been used in oncology was introduced as a modality for use in sports medicine. The important physiological response which produces most of the beneficial effects of hyperthermia is increased blood flow (Sekins et al., 1984). Effective clinical response occurs when the temperature reaches 41 to 45 °C (Lehmann and de Lateur, 1982), increasing blood flow up to 15 times (Song, 1984). Sekins et al., 1984 reported that to produce observable variations in blood perfusion, temperature must rise above 41.5 °C as fast as possible. While there are several heating modalities, studies have shown that electromagnetic waves are more effective than other thermal modalities for treating injured muscles at depth of 1-4cm (Giombini et al., 2007). However, because of lack of research-based evidence of the microwave hyperthermia treatment, clinical and research studies need to be completed to confirm the therapeutic effectiveness of hyperthermia. We recently reported that hyperthermia treatment with a 434-MHz microwave and direct- contact applicator increased and maintained the muscle temperature locally by 6.3-11.4°C without causing muscle damage (Ichinoseki-Sekine et al., 2007). This system has also been found to be a highly innovative and reliable modality for treating acute muscle injuries (Giombini et al., 2001). However, most of the hyperthermia systems commonly used in clinical situations is equipped with a 2450-MHz microwave generator and a non-contact applicator. The possibility exists that the muscle temperature is influenced by the frequency and applicator style. Thus, the aim of this study was to investigate the changes in human muscle temperature induced by two different types of microwave hyperthermia systems. Our results could assist to solve the lack of research-based evidence for the clinical effectiveness of hyperthermia treatment. In this study two different microwave hyperthermia systems were used. One was a direct- contact microwave hyperthermia device (ALBA Hyperthermia System, Restek SRL, Rome, Italy) equipped with a 434-MHz microwave generator having a curve-shaped microstrip antenna applicator, and a silicon bolus filled with thermostatic water. The skin temperature was automatically controlled by a decrease/increase in the power output to maintain the skin pilot temperature. The microwave power source was set to turn on/off periodically as the default setting, and the temperature data were measured during the power-off phase. The other device was a non-contact microwave device (Microtizer, MT-SDi, Minato Medical Co. Ltd., Osaka, Japan) equipped with a 2450-MHz microwave applicator including a helical antenna. This system does not contain any temperature measurement system, and the skin temperature was maintained manually by reducing the power output or varying the distance between the applicator and skin surface. The settings of both hyperthermia systems were established in accordance with the manufacturers' instructions. The 434-MHz system was set with a power of 60 W, a skin baseline temperature of 40°C, and a bolus water temperature of 38°C. The applicator was placed on the lateral side of one thigh, and the center of the applicator position was adjusted to the position of the thermocouple. The 2450-MHz system was set with a power of 150 W, and the distance between the skin surface and applicator was approximately 15 cm. The skin and muscle temperatures were measured using a digital thermometer (PTW-301, Unique Medical, Tokyo, Japan) every 3 min for 10 s during the power-off phase, and the center of the applicator position was adjusted to the position of the thermocouple.Eleven healthy adult males (24.3 ± 2.2 years, 1.74 ± 0.06 m, 70.0 ± 5.3 kg; mean ± SD) participated in this study. The subjects were placed in the supine position and underwent 30 min of hyperthermia treatment with either the 434 or 2450-MHz system on different days. At least 1 week elapsed between the two measurements. All procedures described in this study were performed with the approval of the Juntendo University Human Ethics Committee and complied with the Declaration of Helsinki. All subjects gave written informed consent. The thermocouple for determining the skin temperature was placed on the belly of the vastus lateralis muscle. After anesthesia with a 60% lidocaine tape (Penles, Wyeth K.K., Tokyo, Japan), a 23-G thermocouple (IT-23, Physitemp Instruments, Clifton, NJ) was inserted into the muscle, and its temperature at a depth of 2.0 ± 0.2 cm was measured. The room temperature and humidity were controlled at 24.5 ± 0.3°C and 51.6 ± 8.9%, respectively. In addition, to determine the depth of the maximum heating point, we evaluated the vertical heating pattern using a muscle equivalent phantom (Okano, et al., 2000). After microwaves were applied, the temperature distribution on the vertical cutting surface of the phantom was recorded immediately using a thermal camera (Thermo Tracer TH71000, NEC San-ei Instruments, Tokyo, Japan).As results, the muscle temperature with the 434-MHz system showed a single peak at approximately 10 min. Significant differences were detected between the systems in peak muscle temperature, temperature rise, and time to peak temperature (p < 0.001; Table 1). The maximum heating point using the 434-MHz system (approximately 2 cm) was deeper than that of the 2450-MHz system (approximately 1 cm). The peak skin temperatures were not significantly different between the two systems.However, the changes in muscle temperature did show different patterns; a single peak at 10 min was seen with the 434-MHz system, whereas a slope was observed with the 2450-MHz system. This behaviour with the 2450-MHz system caused the substantial variation in the time to peak temperature.In general, the therapeutic range for heat treatment in sports medicine is assumed to be from 41 to 45ºC (Lehmann and de Lateur, 1982). When the local muscle temperature first exceeds a threshold of 42 to 45ºC, a rapid perfusion of cooling blood flow is induced in the high-temperature region (Sekins et al., 1982). This thermal washout reduces the temperature to prevent the muscle from overheating. Our results suggest that the 434-MHz system increased the muscle temperature to this therapeutic range and caused thermal washout. However, some subjects could not reach the therapeutic range with the 2450-MHz system, and thermal washout might not have occurred because a large temperature reduction was not observed. We showed that the radiation frequency and applicator type of a microwave hyperthermia system influence the change in human muscle temperature, but not skin temperature. According to the phantom experiment results, the maximum heating point was shallow in the 2450-MHz system; thus, the actual maximum temperature induced by the 2450-MHz system might have been higher by 1ºC than our results. Even so, the muscle temperature in some subjects may not have reached the temperature necessary to cause thermal washout. There are some studies that showed the benefits of hyperthermia at 434-MHz system. Hyperthermia has benefits in acute muscle injuries, chronic overuse tendinopathies and pain reduction (Giombini et al., 2002), with short-term clinical improvement, good safety and no side effects. The important physiological response which produces most of the beneficial effects of hyperthermia is increased blood flow, and the effective clinical response occurs when the temperature reaches 41 to 45ºC. Hyperthermia produces an increase in nutrients and oxygen in the heated region, and both two events are necessary to affect tissue repair. Our result showed that 434-MHz hyperthermia system rapidly increases muscle temperature to above 41ºC, and it support the previous reports. To obtain the effect of hyperthermia treatment efficiently, both time and temperature of application must be controlled. However, to our knowledge, no study measured the changes in human muscle temperature induced by different types of microwave hyperthermia systems. We believe that our results provided research-based evidence for the clinical effectiveness of hyperthermia treatment.

In Vivo Kinematics of the Anterior Cruciate Ligament Deficient Knee During Wide-Based Squat Using a 2D/3D Registration Technique

December 2012

·

166 Reads

Anterior cruciate ligament (ACL) deficiency increases the risk of early osteoarthritis (OA). Studies of ACL deficient knee kinematics would be important to reveal the disease process and therefore to find mechanisms which would potentially slow OA progression. The purpose of this study was to determine if in vivo kinematics of the anterior cruciate ligament deficient (ACLD) knee during a wide-based squat activity differ from kinematics of the contralateral intact knee. Thirty-three patients with a unilateral ACLD knee consented to participate in this institutional review board approved study with the contralateral intact knee serving as the control. In vivo knee kinematics during the wide-based squat were analyzed using a 2D/3D registration technique utilizing CT-based bone models and lateral fluoroscopy. Comparisons were performed using values between 0 and 100° flexion both in flexion and extension phases of the squat activity. Both the ACLD and intact knees demonstrated increasing tibial internal rotation with knee flexion, and no difference was observed in tibial rotation between the groups. The tibia in the ACLD knee was more anterior than that of the contralateral knees at 0 and 5° flexion in both phases (p < 0.05). Tibiofemoral medial contact points of the ACLD knees were more posterior than that of the contralateral knees at 5, 10 and 15° of knee flexion in the extension phase of the squat activity (p < 0.05). Tibiofemoral lateral contact points of the ACLD knees were more posterior than that of the contralateral knees at 0° flexion in the both phases (p < 0.05). The kinematics of the ACLD and contralateral intact knees were similar during the wide-based squat except at the low flexion angles. Therefore, we conclude the wide-based squat may be recommended for the ACLD knee by avoiding terminal extension.

Table 1 . Free intracellular Magnesium ([Mg 2+ ]) and Phosphomonoester (PME) concentration and 
Compression Garments and Recovery from Eccentric Exercise: A (31)P-MRS Study

March 2006

·

1,752 Reads

The low oxidative demand and muscular adaptations accompanying eccentric exercise hold benefits for both healthy and clinical populations. Compression garments have been suggested to reduce muscle damage and maintain muscle function. This study investigated whether compression garments could benefit metabolic recovery from eccentric exercise. Following 30-min of downhill walking participants wore compression garments on one leg (COMP), the other leg was used as an internal, untreated control (CONT). The muscle metabolites phosphomonoester (PME), phosphodiester (PDE), phosphocreatine (PCr), inorganic phosphate (Pi) and adenosine triphosphate (ATP) were evaluated at baseline, 1-h and 48-h after eccentric exercise using 31P-magnetic resonance spectroscopy. Subjective reports of muscle soreness were recorded at all time points. The pressure of the garment against the thigh was assessed at 1-h and 48-h following exercise. There was a significant increase in perceived muscle soreness from baseline in both the control (CONT) and compression (COMP) leg at 1-h and 48-h following eccentric exercise (p < 0.05). Relative to baseline, both CONT and COMP showed reduced pH at 1-h (p < 0.05). There was no difference between CONT and COMP pH at 1-h. COMP legs exhibited significantly (p < 0.05) elevated skeletal muscle PDE 1-h following exercise. There was no significant change in PCr/Pi, Mg2+ or PME at any time point or between CONT and COMP legs. Eccentric exercise causes disruption of pH control in skeletal muscle but does not cause disruption to cellular control of free energy. Compression garments may alter potential indices of the repair processes accompanying structural damage to the skeletal muscle following eccentric exercise allowing a faster cellular repair.

Figure 3. Kinematic data for elbow (3a), wrist (3b), scapular (3c) and shoulder (3d) markers in the coronal plane. Data presented as group mean marker displacement (mm) at each 2% interval of stroke cycle, separate lines represent kinematic data for tensions investigated. The 10% timepoints in the stroke cycle are marked (black dot) and numbered on each trace. In addition, the spatial orientation of the kayaker is graphically depicted. axis); the wrist marker moved to a significantly more anterior position during the 10 to 40% and 60 to 100% phases of the cycle as tension increased (T4 vs. T1, p < 0.05). This effect was also observed in elbow marker position during the 10 to 20% (T4 vs. T1, p < 0.01; T4 vs. T2, p < 0.05) and 70 to 100% phases of the cycle as tension increased (T4 vs. T1, p < 0.05). As tension increased, shoulder and scapular marker positions were all in a significantly more anterior position during the 10 to 30% (T4 vs. T1, p < 0.01; T4 vs. T2, p < 0.05), 50 to 70% (T4 vs. T1, p < 0.05) and 90 to 100% phases of the cycle (T4 vs T1, p < 0.05). With respect to the vertical plane (Z-axis), no significant differences in kinematic data were observed for the wrist marker. Elbow marker positions were significantly higher during the 60, 70 and 100% phases of the cycle and shoulder marker position was significantly higher during the 40 to 100% phase of the cycle as  
Figure 4. Elbow joint angles during the on-ergometer kayak stroke cycle. Data presented as group mean ± SEM (˚) at each 2% interval of the stroke cycle during kayaking at tension level 1 (T1). The approximate phases of the stroke cycle are represented as A (draw), B (transition), C (opposite draw) and D (opposite transition).  
Effect of Kayak Ergometer Elastic Tension on Upper Limb EMG Activity and 3D Kinematics

September 2012

·

596 Reads

Despite the prevalence of shoulder injury in kayakers, limited published research examining associated upper limb kinematics and recruitment patterns exists. Altered muscle recruitment patterns on-ergometer vs. on-water kayaking were recently reported, however, mechanisms underlying changes remain to be elucidated. The current study assessed the effect of ergometer recoil tension on upper limb recruitment and kinematics during the kayak stroke. Male kayakers (n = 10) performed 4 by 1 min on-ergometer exercise bouts at 85%VO 2max at varying elastic recoil tension; EMG, stroke force and three-dimensional 3D kinematic data were recorded. While stationary recoil forces significantly increased across investigated tensions (125% increase, p < 0.001), no significant differences were detected in assessed force variables during the stroke cycle. In contrast, increasing tension induced significantly higher Anterior Deltoid (AD) activity in the latter stages (70 to 90%) of the cycle (p < 0.05). No significant differences were observed across tension levels for Triceps Brachii or Latissimus Dorsi. Kinematic analysis revealed that overhead arm movements accounted for 39 ± 16% of the cycle. Elbow angle at stroke cycle onset was 144 ± 10°; maximal elbow angle (151 ± 7°) occurred at 78 ± 10% into the cycle. All kinematic markers moved to a more anterior position as tension increased. No significant change in wrist marker elevation was observed, while elbow and shoulder marker elevations significantly increased across tension levels (p < 0.05). In conclusion, data suggested that kayakers maintained normal upper limb kinematics via additional AD recruitment despite ergometer induced recoil forces.

3D Reconstruction of Phalangeal and Metacarpal Bones of Male Judo Players and Sedentary Men by MDCT Images

December 2008

·

70 Reads

This study has been performed to reveal hand bone peculiarities of elite male judoists by comparing their phalangeal and metacarpal bones with those of sedentary men on the basis of biometric ratio of the bones by means of three-dimensional (3D) reconstruction of multidetector computed tomography (MDCT) images. For this purpose, the axial images of the right and left hands of 8 elite male judo players (mean age: 22.0 ± 2.9 years, mean weight: 64.0 ± 4.9 kg) and 8 sedentary men (mean age: 26.0 ± 2.8 years, mean weight: 69.0 ± 3.6 kg) were obtained from MDCT. After semi-automatic segmentation and manual editing, the tracings of bone surfaces were stacked and overlaid to be reconstructed as the 3D images by the 3D program. All biometrical measurements of the reconstructed images of the bones were automatically calculated by this program to analyze statistically. This study showed that the differences between biometric ratios of judoist and sedentary men's hand bones were significant contrary to null hypothesis which was established as there is no difference between biometric hand bone ratios of these men of both groups. Therefore null hypothesis was rejected. Author suggests that intense clutching actions practised in judo sports can most probably lead to some hand bone proliferations. 3D reconstructed results belonging to the judo players and sedentary men help orthopaedists to diagnose pathological formations related to hand bones of judoists and may be used for anatomical education in medicine faculties, respectively. We hope that the results from the biometric and reconstructive techniques carried out in this work will contribute to the present knowledge on judoist and shed light on the future studies on sports medicine related to skeletal structure of other sportsmen.

Figure 2. Swimming speed (solid line) and its coefficient of variation (dashed line) of each length. Values are expressed as means and vertical bars represent standard deviations.
Figure 3. Graphical representation of the relationship between forward and lateral speeds. The mean forward speed of each length (numbers within circles) is scattered versus the ratio between the mean LF speed and mean forward speed, which could be regarded as an "index" of speed wastage. The relevant regression line is also shown.
Figure 4. Graphical representation of the trends of the spectral windows values of LF (%) due to breathings (□), voluntary adjustments (◊), and strokes (∆), in relation to swimming speeds (dashed line) of each length. Voluntary adjustments and strokes are significantly and inversely correlated with speed. Percentages were obtained as follows: firstly, 100% was assigned to the higher forward speed value of the 1 st length and to the lower LF amplitude of each spectral window (which were all achieved in the 1 st length). Then, speed values and spectral window amplitudes of the remaining 7 lengths were transformed in percentage according to their reduction or increase compared to the 100% value.
Figure 5. Area chart representing the relative contributions (%) of the 3 causes of the LF in each length. The trends of the 3 spectral windows of LF obtained from DFT analysis are plotted against average swimming speeds of each length in Figure 4. Results show a clear increasing linear trend with the progressing of the race. In order to test the predictivity of spectral windows, multiple linear regression with enter method was performed. The amplitude of the spectral windows resulted significantly correlated with swimming speed (F = 5.23, d.f. = 3;91, p < 0.05). Two over three predictor variables were correlated with speed: voluntary adjustments (unstandardized slope = -0.58; p < 0.05) and strokes (unstandardized slope = -0.20; p < 0.05). Multiple determination coefficient was R 2 = 0.147. Stroke (1.30 ±  
Figure 4. Graphical representation of the trends of the spectral windows values of LF (%) due to breathings (□), voluntary adjustments (◊), and strokes (∆), in relation to swimming speeds (dashed line) of each length. Voluntary adjustments  
Path Linearity of Elite Swimmers in a 400 m Front Crawl Competition

March 2015

·

128 Reads

In the frontal crawl, the propulsive action of the limbs causes lateral fluctuations from the straight path, which can be theoretically seen as the best time saving path of the race. The purpose of the present work was to analyze the head trajectory of 10 elite athletes, during a competition of 400 m front crawl, in order to give information regarding the path linearity of elite swimmers. The kinematic analysis of the head trajectories was performed by means of stereo-photogrammetry. Results showed that the forward speed and lateral fluctuations speed are linearly related. Multiple regression analysis of discrete Fourier transformation allowed to distinguish 3 spectral windows identifying 3 specific features: strokes (0.7-5 Hz), breathings (0.4-0.7 Hz), and voluntary adjustments (0-0.4 Hz), which contributed to the energy wasting for 55%, 10%, and 35%, respectively. Both elite swimmers race speed and speed wastage increase while progressing from the 1(st) to the 8(th) length during a 400 m front crawl official competition. The main sources of the lateral fluctuations that lead to the increasing speed wastage could be significantly attributed to strokes and voluntary adjustments, while breathings contribution did not reach statistical significance. In conclusion, both strokes and voluntary adjustments are the main energy consuming events that affect path linearity. Key pointsThe lateral fluctuations (LF) represent indexes of elite performance swimmers during 400 m competitions.The voluntary adjustments needed to go back to the ideal trajectory are more energy consuming than the movements of the swimmer for maintaining the path linearity.The diverge from the ideal swimming trajectory during a high level competition explain about 14.7% of the variations of the average forward velocity during the race.

Figure 1. Hypothesised power output profile for a placebo responsive subject. Note: although vertical lines represent zones for each condition, to be classified as placebo responsive, subjects would be expected to produce greatest power output in condition A, less power in conditions B and C, and less power again in condition D.  
Table 1. Mean oxygen uptake for subjective placebo responders (n = 3) and percentage difference from mean oxygen uptake for placebo non-responders (n = 9) in informed caffeine/received caffeine and informed caffeine/received placebo conditions. 
Figure 3. Mean percent differences in power between experimental conditions in all participants (n = 14) and in objective placebo responders (n = 2).  
Figure 2. Hypothesised effects in the caffeine (inform caffeine/receive caffeine) condition when the pharmacological effect of caffeine is negative, but the placebo effect is positive.  
Identification of Placebo Responsive Participants in 40km Laboratory Cycling Performance

March 2008

·

185 Reads

The placebo effect, a positive outcome resulting from the belief that a beneficial treatment has been received, is widely acknowledged but little understood. It has been suggested that placebo responsiveness, the degree to which an individual will respond to a placebo, might vary in the population. The study aimed to identify placebo-responsive participants from a previously published paper that examined the effects of caffeine and placebos on cycling performance. A quantitative model of placebo responsiveness was defined. 14 male participants were subsequently classified as either placebo responsive or non-responsive. Interviews were conducted to corroborate these classifications. Secondary quantitative analyses of performance data were conducted to identify further placebo responses. Finally, the five factor model of personality was used to explore relationships between personality and placebo responsiveness. Overall, 5 of 14 participants were classified as placebo responsive. Performance data suggested that 2 participants were placebo responsive whilst 12 were not. Interview data corroborated experimental data for these participants and for 9 of the remainder, however it suggested that the remaining 3 had experienced placebo effects. Secondary quantitative analysis revealed that performance for these 3 participants, whilst no better than for non-responsive participants, was associated with substantially increased oxygen uptake in the 2 conditions in which participants believed caffeine had been administered (7.0% ± 15.1; 95% confidence intervals -2.6 to 16.7, and 6.0% ± 15.4; -3.9 to 15.9 respectively). Finally, data suggested that the personality factors of extroversion, agreeableness, openness and neuroticism may relate to placebo responding. Placebo effects such as pain tolerance and fatigue resistance might be experienced by a percentage of participants but might not always be manifest in objective measures of performance.

Figure 2. Percentage of assessment in either an Functional and Dysfunctional emotional states experienced during the RAAM. 
Challenges in Maintaining Emotion Regulation in a Sleep and Energy Deprived State Induced by the 4800Km Ultra-Endurance Bicycle Race; The Race Across AMerica (RAAM)

September 2013

·

344 Reads

Multiday ultra-endurance races present athletes with a significant number of physiological and psychological challenges. We examined emotions, the perceived functionality (optimal-dysfunctional) of emotions, strategies to regulate emotions, sleep quality, and energy intakeexpenditure in a four-man team participating in the Race Across AMerica (RAAM); a 4856km continuous cycle race. Cyclists reported experiencing an optimal emotional state for less than 50% of total competition, with emotional states differing significantly between each cyclist over time. Coupled with this emotional disturbance, each cyclist experienced progressively worsening sleep deprivation and daily negative energy balances throughout the RAAM. Cyclists managed less than one hour of continuous sleep per sleep episode, high sleep latency and high percentage moving time. Of note, actual sleep and sleep efficiency were better maintained during longer rest periods, highlighting the importance of a race strategy that seeks to optimise the balance between average cycling velocity and sleep time. Our data suggests that future RAAM cyclists and crew should: 1) identify beliefs on the perceived functionality of emotions in relation to best (functional-optimal) and worst (dysfunctional) performance as the starting point to intervention work; 2) create a plan for support sufficient sleep and recovery; 3) create nutritional strategies that maintain energy intake and thus reduce energy deficits; and 4) prepare for the deleterious effects of sleep deprivation so that they are able to appropriately respond to unexpected stressors and foster functional working interpersonal relationships.

Table 2 . Comparison of dynamic balance, flexibility, reaction time, muscle strength and number of falls between control and exercise groups. Data are means (±SD). 
Integrating Pilates Exercise into an Exercise Program for 65+ Year-Old Women to Reduce Falls

March 2011

·

2,437 Reads

The purpose of this study was to determine if Pilates exercise could improve dynamic balance, flexibility, reaction time and muscle strength in order to reduce the number of falls among older women. 60 female volunteers over the age of 65 from a residential home in Ankara participated in this study. Participants joined a 12-week series of 1-hour Pilates sessions three times per week. Dynamic balance, flexibility, reaction time and muscle strength were measured before and after the program. The number of falls before and during the 12-week period was also recorded. Dynamic balance, flexibility, reaction time and muscle strength improved (p < 0. 05) in the exercise group when compared to the non-exercise group. In conclusion, Pilates exercises are effective in improving dynamic balance, flexibility, reaction time, and muscle strength as well as decreasing the propensity to fall in older women. Key pointsPilates-based exercises improve dynamic balance, reaction time and muscle strength in the elderly.Pilates exercise may reduce the number of falls in elderly women by increasing these fitness parameters.

Assessment of Movement Skill Performance in Preschool Children: Convergent Validity Between MOT 4-6 and M-ABC

December 2010

·

1,067 Reads

The purpose was to determine the level of agreement between the Motoriktest für Vier- bis Sechsjährige Kinder [MOT 4-6] and the Movement Assessment Battery for Children [M-ABC]. 48 preschool children participated in the study (Mean age = 5 years, 6 months, SD = 3 months). There was high classification agreement (90%) between both tests. A Kappa correlation coefficient (0.67) provided moderately strong support for convergent validity. Less agreement was shown in identification of motor difficulties (58%). This was reflected by lower correlation coefficients on the fine movement cluster and test item level. The MOT 4-6 showed values within the range of similar movement skill performance assessment protocols. Because of its specific focus it may be of meaningful value to assess movement skill competence in typically developing preschool children (ages 4 to 6). Key pointsThe Motoriktest für Vier- bis Sechsjährige Kinder (MOT 4-6) showed values within the range of similar motor performance tests. Because of its specific focus it may be of great value to assess movement skill competence in typically developing preschool children (ages 4 to 6).Children's movement skill competence can be expressed as a single composite score. The results from this study also support the use of composite scores that include functional categorization (e.g. locomotion, object control and stability).


Trunk Muscle Activities During Abdominal Bracing: Comparison Among Muscles and Exercises

October 2013

·

12,464 Reads

Abdominal bracing is often adopted in fitness and sports conditioning programs. However, there is little information on how muscular activities during the task differ among the muscle groups located in the trunk and from those during other trunk exercises. The present study aimed to quantify muscular activity levels during abdominal bracing with respect to muscle- and exercise-related differences. Ten healthy young adult men performed five static (abdominal bracing, abdominal hollowing, prone, side, and supine plank) and five dynamic (V-sits, curlups, sit-ups, and back extensions on the floor and on a bench) exercises. Surface electromyogram (EMG) activities of the rectus abdominis (RA), external oblique (EO), internal oblique (IO), and erector spinae (ES) muscles were recorded in each of the exercises. The EMG data were normalized to those obtained during maximal voluntary contraction of each muscle (% EMGmax). The % EMGmax value during abdominal bracing was significantly higher in IO (60%) than in the other muscles (RA: 18%, EO: 27%, ES: 19%). The % EMGmax values for RA, EO, and ES were significantly lower in the abdominal bracing than in some of the other exercises such as V-sits and sit-ups for RA and EO and back extensions for ES muscle. However, the % EMGmax value for IO during the abdominal bracing was significantly higher than those in most of the other exercises including dynamic ones such as curl-ups and sit-ups. These results suggest that abdominal bracing is one of the most effective techniques for inducing a higher activation in deep abdominal muscles, such as IO muscle, even compared to dynamic exercises involving trunk flexion/extension movements.

Figure 1. Sample of a flexion-relaxation response with the flexion relaxation response of the ULES (first EMG channel) and LSES (second EMG channel). An example of a lower abdominals (LA) EMG burst is illustrated in the fourth EMG or bottom channel (row).
Figure 2. Sample of a biceps femoris quiescent period with the flexion relaxation response of the ULES and LSES on the first and second EMG channels. Biceps femoris (BF) EMG recordings are exhibited in the third EMG channel (row).
An Unstable Base Alters Limb and Abdominal Activation Strategies During the Flexionrelaxation Response

June 2006

·

135 Reads

The flexion-relaxation phenomenon consisting of an erector spinae silent period occurring with trunk flexion can place considerable stress upon tissues. Since individuals often flex their trunks while unstable, the purpose of the study was to examine the effect of an unstable base on the flexion-relaxation response. Fourteen participants flexed at the hips and back while standing on a stable floor or an unstable dyna-disc. Hip and trunk flexion were repeated four times each with one-minute rest. Electromyographic (EMG) electrodes were placed over the right lumbo-sacral erector spinae (LSES), upper lumbar erector spinae (ULES), lower abdominals (LA), biceps femoris and soleus. In addition to the flexion-relaxation phenomenon of the ES, a quiescence of biceps femoris and a burst of LA EMG activity was observed with the majority of stable trials. There was no effect of instability on the flexion-relaxation phenomenon of the ULES or LSES. The incidence of a biceps femoris silent period while stable was diminished with an unstable base. Similarly, the incidence of a LA EMG burst was curtailed with instability. Soleus EMG activity increased 29.5% with an unstable platform. An unstable base did not significantly affect LSES and ULES EMG flexion-relaxation, but did result in more persistent lower limb and LA activity. Key PointsAn unstable base did not affect the flexion relaxation response of the erector spinae.An unstable base decreased the incidence of biceps femoris quiescent period.An unstable base diminished the incidence of the lower abdominals EMG burst.

Figure 1. Illustration of the apparatus employed to measure the EMG activity during the curl up and leg raise exercises having the subject’'s force (measured by a load cell attached to the subjects’' leg or chest) given as visual biofeedback in a monitor. Note that the subject’'s posture was never changed despite the exercise type.  
Figure 2. Mean and standard deviation of the ratio between the root-mean square (RMS) values (A) and of the crosscorrelation value (B) of the upper and lower portions EMG data during the Curl Up and Leg Raise tasks (* p = 0.02). The ratio between the RMS values of the upper and lower portions of the EMG data during the curl up exercise was significantly larger than during the leg raise exercise (mean ± SD for the curl up:1.25 ± 0.68 ; mean ± SD for the leg raise: 0.68 ± 0.15; t(10) = 2.7; p = 0.02), see Figure 2. The peak values of the cross-correlation function between the EMG signals of the upper and lower portions were high and indicated that the signals were statistically correlated and this correlation was not different between tasks (mean ± SD for the curl up: 0.6 ± 0.2; mean ± SD for the leg raise: 0.4 ± 0.4; t(10) = 1.7; p = 0.12).  
Figure 4. Mean and standard deviation of the root-mean square (RMS) fatigue index (A) and of the median frequency fatigue index (B) during the Curl Up and Leg Raise exercises for the two rectus abdominis portions (* p < 0.025).  
Figures 3. Exemplary time-series from one subject during the Curl Up and Leg Raise abdominal exercises. The force signals (A), the moving RMS (B), and the EMG median frequencies (C) of the EMGs of the two rectus abdominis portions.  
Selective Activation of the Rectus Abdominis Muscle During Low-Intensity and Fatiguing Tasks

June 2011

·

411 Reads

In order to understand the potential selective activation of the rectus abdominis muscle, we conducted two experiments. In the first, subjects performed two controlled isometric exercises: the curl up (supine trunk raise) and the leg raise (supine bent leg raise) at low intensity (in which only a few motor units are recruited). In the second experiment, subjects performed the same exercises, but they were required to maintain a certain force level in order to induce fatigue. We recorded the electromyographic (EMG) activities of the lower and upper portions of the rectus abdominis muscle during the exercises and used spatial-temporal and frequency analyses to describe muscle activation patterns. At low-intensity contractions, the ratio between the EMG intensities of the upper and lower portions during the curl up exercise was significantly larger than during the leg raise exercise (p = 0.02). A cross-correlation analysis indicated that the signals of the abdominal portions were related to each other and this relation did not differ between the tasks (p = 0.12). In the fatiguing condition, fatigue for the upper portion was higher than for the lower portion during the curl up exercise (p = 0.008). We conclude that different exercises evoked, to a certain degree, individualized activation of each part of the rectus abdominis muscle, but different portions of the rectus abdominis muscle contributed to the same task, acting like a functional unit. These results corroborate the relevance of varying exercise to modify activation patterns of the rectus abdominis muscle.

Figure 2. Mean ensembles for bilateral knee angle, moment, and power for an individual with a small leg-length inequality (0.0 cm) and high degree of gait symmetry (A-C), and an individual with a relatively large leg-length inequality (2.3 cm) and low degree of gait symmetry (D-F). These two subjects were representative of general trends in the data: bilateral asymmetry for the observed measures was generally greater for subjects with greater limb-length inequalities.  
The Relation Between Mild Leg-Length Inequality and Able-Bodied Gait Asymmetry

December 2010

·

174 Reads

The causes of able-bodied gait asymmetries are unclear. Mild (< 3 cm) leg-length inequality (LLI) may be one cause of these asymmetries; however, this idea has not been thoroughly investigated. The purpose of this study was to investigate the nature of the relationship between LLI and able-bodied gait asymmetries. We hypothesized that subjects (n = 26) with relatively large LLI, quantified radiographically, would display less symmetrical gait than subjects with relatively small LLI. Gait asymmetries for joint kinematics and joint kinetics were determined using standard gait analysis procedures. Symmetry coefficients were used to quantify bilateral gait symmetry for sagittal-plane hip, knee, and ankle joint angles, moments, and powers. A Pearson product-moment correlation coefficient (r) was used to evaluate the relationship between LLI and the aforementioned symmetry coefficients. Also, these symmetry coefficients were compared between subjects with relatively small LLI (LLI < 1 cm; n = 19) and relatively large LLI (LLI ≥ 1 cm; n = 7). Statistically significant relationships were observed between LLI and the symmetry coefficient for knee joint moment (r = -0.48) and power (r = -0.51), and ankle joint moment (r = -0.41) and power (r = -0.42). Similarly, subjects with relatively large LLI exhibited significantly lower symmetry coefficients for knee joint moment (p = 0.40) and power (p = 0.35), and ankle joint moment (p = 0.40) and power (p = 0.22) than subjects with relatively small LLI. Degree of bilateral symmetry for knee and ankle joint kinetics appears to be related to LLI in able-bodied gait. This finding supports the idea that LLI is one cause of ablebodied gait asymmetries. Other factors, however, are also likely to contribute to these gait asymmetries; these may include other morphological asymmetries as well as asymmetrical neuromuscular input to the lower limb muscles.

Post-Exercise Muscle Glycogen Repletion in the Extreme: Effect of Food Absence and Active Recovery

September 2004

·

866 Reads

Glycogen plays a major role in supporting the energy demands of skeletal muscles during high intensity exercise. Despite its importance, the amount of glycogen stored in skeletal muscles is so small that a large fraction of it can be depleted in response to a single bout of high intensity exercise. For this reason, it is generally recommended to ingest food after exercise to replenish rapidly muscle glycogen stores, otherwise one's ability to engage in high intensity activity might be compromised. But what if food is not available? It is now well established that, even in the absence of food intake, skeletal muscles have the capacity to replenish some of their glycogen at the expense of endogenous carbon sources such as lactate. This is facilitated, in part, by the transient dephosphorylation-mediated activation of glycogen synthase and inhibition of glycogen phosphorylase. There is also evidence that muscle glycogen synthesis occurs even under conditions conducive to an increased oxidation of lactate post-exercise, such as during active recovery from high intensity exercise. Indeed, although during active recovery glycogen resynthesis is impaired in skeletal muscle as a whole because of increased lactate oxidation, muscle glycogen stores are replenished in Type IIa and IIb fibers while being broken down in Type I fibers of active muscles. This unique ability of Type II fibers to replenish their glycogen stores during exercise should not come as a surprise given the advantages in maintaining adequate muscle glycogen stores in those fibers that play a major role in fight or flight responses.

Figure 2. Change in forearm muscle force after 2 min of intermittent handgrip contractions and at task failure. a) Absolute MVC force was higher in men than women at 2 min and at task failure. b) No gender difference was present in forearm muscle force expressed relative to resting MVC force. The strength-matched gender comparison showed similar changes in muscle force production at 2 min and task failure when expressed in c) absolute or d) relative terms. * significant gender difference (p ≤ 0.05). 
Figure 3. Comparison of forearm muscle fatigue rates between women and men during intermittent handgrip contractions. a) The absolute rate of fatigue was slower for women than men, b) but no gender difference was present for the rate of fatigue relative to resting MVC force. The strength-matched gender comparison showed similar c) absolute and d) relative changes in the rate of forearm muscle fatigue. * significant gender difference (p ≤ 0.05). 
Figure 4. Relationship between rate of forearm muscle fatigue and time to task failure during intermittent handgrip contractions. The similar fatigue response between women (•) and men (○) unmatched for muscle strength was well described by an exponential decay (y = 1.8 + 20.7-0.0037x , r = 0.96). 
Absence of Gender Differences in the Fatigability of the Forearm Muscles During Intermittent Isometric Handgrip Exercise

March 2007

·

1,834 Reads

Previous studies have reported women to have a greater resistance to fatigue than men during sustained handgrip exercise, however, observed gender differences in fatigue has been shown to be a function of contraction type. The purpose of the present study was to determine if gender differences exist in forearm muscle fatigue during intermittent handgrip contractions. Women [n = 11, 23.5 ± 1.5 (SE) yr] and men (n = 11, 24.1 ± 1.5 yr) performed intermittent isometric handgrip contractions at a target force of 50% of maximal voluntary contraction (MVC) for 5 s followed by 5 s rest until task failure. Rate of fatigue was calculated from MVCs taken every 2 min during exercise, and recovery of muscle strength was measured in 5 min increments until 45 min post-task failure. Forearm muscle strength was less for women than men (W: 341.5 ± 11.9 N; M: 480.2 ± 28.0 N; p ≤ 0.05). No gender difference was present in time to task failure (W: 793.3 ± 92.5 s; M: 684.8 ± 76.3 s) or in the decrease in muscle force generating capacity at task failure (W: -47.6 ± 1.0%; M: -49.9 ± 1.3%). Rate of muscle fatigue was found to be similar between women and men (W: -3.6 ± 0.5 %·min-1; M: - 4.3 ± 0.6 %·min-1) and no gender difference was found in the recovery of muscle strength following task failure. In summary, no gender difference was found in the fatigability of the forearm muscles during intermittent submaximal handgrip contractions, independent of muscle strength.

Correct, Fake and Absent Pre-Information Does Not Affect the Occurrence and Magnitude of the Bilateral Force Deficit

May 2014

·

91 Reads

The present study examined whether different pre-information conditions could lead to a volitional modulation of the occurrence and magnitude of the bilateral force deficit (BFD) during isometric leg press. Twenty trained male adults (age: 24.5 ± 1.7 years; weight: 77.5 ± 7.1 kg; height: 1.81 ± 0.05 m) were examined on three days within a week. Isometric leg press was performed on a negatively inclined leg press slide. Each participant completed three maximal isometric strength test sessions with different pre-information conditions given in a graphical chart: no pre-information (NPI; first day), false pre-information (FPI; bilateral force > sum of unilateral forces; second or third day) and correct pre-information (CPI; bilateral force < sum of unilateral forces; second or third day) during bilateral, unilateral-left and unilateral-right leg-press. The sum of left- and right-sided force values were calculated for bilateral (FBL = FBL_left + FBL_right) and unilateral (FUL = FUL_left + FUL_right) analyses. Force data for NPI revealed: Mean (SD): FUL_NPI = 3023 N (435) vs. FBL_NPI = 2812 (453); FPI showed FUL_FPI = 3013 N (459) vs. FBL_FPI = 2843 (446) and the CPI revealed FUL_CPI = 3035 (425) vs. FBL_CPI = 2844 (385). The three (no, false, correct) x 2 (FUL, FBL) rANOVA revealed a high significant main effect of Force (F = 61.82, p < 0.001). No significant main effect of the factor Condition and no significant interaction between Force x Condition was observed. The BFD does not rely on the trueness of the given pre-information (no, false, correct). Cognition-based volitional influences on the BFD on supra-spinal level seem negligible. Key pointsBFD is reliable occurring phenomenonAvailable theoretical knowledge does not affect the BFDAlternating sport should include alternating strength exercises.

Shock-Absorbing Effects of Various Padding Conditions in Improving Efficacy of Wrist Guards

March 2004

·

116 Reads

The use of wrist guards has limited efficacy in preventing wrist injuries during falling in many sports activities. The objectives of this study were to measure the ground reaction force of the hand under simulated impact of the forearm and hand complex with different padding conditions of wrist guards and to analyze their impact force attenuation and maximum energy absorption for improved functional efficiency. A total of 15 subjects, wearing a commercial wrist guard, participated in a cable-released hand impact experiment to test four different conditions on the volar aspect of the hand, which include a wrist guard without a volar splint (bare hand), with a volar splint (normal use), with a volar splint and additional viscoelastic polymeric padding, and a volar splint and additional air cell padding. The ground reaction force and acceleration of the hand were measured using a force platform mounted on an anti-vibration table and a miniature accelerometer, respectively. Additional padding on the bare hand could substantially improve the maximum energy absorption by more than 39%, with no differences with each other. However, only the air cell padding could simultaneously improve the impact force attenuation by 32% compared with the bare hand impact without compromising the maximum energy absorption. It is recommended that common wrist guard design should provide more compliant padding in the volar aspect to improve the impact force attenuation through optimal material selection and design.

Figure 1. Raw mean number of goals scored in each season for the three Aspire cohort and their Opposition teams. Lines show adjusted means and 90% confident limits for the Aspire and Opposition teams, for the six seasons between 04/05 though to 09/10. 
Modelling the Progression of Competitive Performance of an Academy's Soccer Teams

September 2012

·

270 Reads

Progression of a team's performance is a key issue in competitive sport, but there appears to have been no published research on team progression for periods longer than a season. In this study we report the game-score progression of three teams of a youth talent-development academy over five seasons using a novel analytic approach based on generalised mixed modelling. The teams consisted of players born in 1991, 1992 and 1993; they played totals of 115, 107 and 122 games in Asia and Europe between 2005 and 2010 against teams differing in age by up to 3 years. Game scores predicted by the mixed model were assumed to have an over-dispersed Poisson distribution. The fixed effects in the model estimated an annual linear pro-gression for Aspire and for the other teams (grouped as a single opponent) with adjustment for home-ground advantage and for a linear effect of age difference between competing teams. A random effect allowed for different mean scores for Aspire and opposition teams. All effects were estimated as factors via log-transformation and presented as percent differences in scores. Inferences were based on the span of 90% confidence intervals in relation to thresholds for small factor effects of x/÷1.10 (+10%/-9%). Most effects were clear only when data for the three teams were combined. Older teams showed a small 27% increase in goals scored per year of age difference (90% confidence interval 13 to 42%). Aspire experienced a small home-ground advantage of 16% (-5 to 41%), whereas opposition teams experienced 31% (7 to 60%) on their own ground. After adjustment for these effects, the Aspire teams scored on average 1.5 goals per match, with little change in the five years of their existence, whereas their opponents' scores fell from 1.4 in their first year to 1.0 in their last. The difference in progression was trivial over one year (7%, -4 to 20%), small over two years (15%, -8 to 44%), but unclear over >2 years. In conclusion, the generalized mixed model has marginal utility for estimating progression of soccer scores, owing to the uncertainty arising from low game scores. The estimates are likely to be more precise and useful in sports with higher game scores. Key pointsA generalized linear mixed model is the approach for tracking game scores, key performance indicators or other measures of performance based on counts in sports where changes within and/or between games/seasons have to be considered.Game scores in soccer could be useful to track performance progression of teams, but hundreds of games are needed.Fewer games will be needed for tracking performance represented by counts with high scores, such as game scores in rugby or key performance indicators based on frequent events or player actions in any team sport.

Figure 1. Vertical jump assessments performed 
Table 1 . Means ± standard deviations, minimums and maximums for sprint performance, anthropometric, and jump performance measures.
Jump Kinetic Determinants of Sprint Acceleration Performance from Starting Blocks in Male Sprinters

June 2006

·

1,445 Reads

The purpose of this research was to identify the jump kinetic determinants of sprint acceleration performance from a block start. Ten male (mean ± SD: age 20 ± 3 years; height 1.82 ± 0.06 m; weight 76.7 ± 7.9 kg; 100 m personal best: 10.87 + 0.36 s {10.37 - 11.42}) track sprinters at a national and regional competitive level performed 10 m sprints from a block start. Anthropometric dimensions along with squat jump (SJ), countermovement jump (CMJ), continuous straight legged jump (SLJ), single leg hop for distance, and single leg triple hop for distance measures of power were also tested. Stepwise multiple regression analysis identified CMJ average power (W/kg) as a predictor of 10 m sprint performance from a block start (r = 0.79, r(2) = 0.63, p<0.01, SEE = 0.04 (s), %SEE = 2.0). Pearson correlation analysis revealed CMJ force and power (r = -0.70 to -0.79; p = 0.011 - 0.035) and SJ power (r = -0.72 to -0.73; p = 0.026 - 0.028) generating capabilities to be strongly related to sprint performance. Further linear regression analysis predicted an increase in CMJ average and peak take-off power of 1 W/kg (3% & 1.5% respectively) to both result in a decrease of 0.01 s (0.5%) in 10 m sprint performance. Further, an increase in SJ average and peak take-off power of 1 W/kg (3.5% & 1.5% respectively) was predicted to result in a 0.01 s (0.5%) reduction in 10 m sprint time. The results of this study seem to suggest that the ability to generate power both elastically during a CMJ and concentrically during a SJ to be good indicators of predicting sprint performance over 10 m from a block start. Key PointsThe relative explosive ability of the hip and knee extensors during a countermovement jump can predict 10 m sprint performance from a block start.The relative power outputs of male competitive sprinters during a squat jump can predict 10 m sprint performance from a block start.

Figure 2. Calibration of load cell with a ratio of 1.6.
Figure 3. Analyses indicating difference in force at impact. 
Figure 4. Analyses indicating differences in arm acceleration at impact. 
The Effects of Height and Distance on the Force Production and Acceleration in Martial Arts Strikes

November 2009

·

647 Reads

Almost all cultures have roots in some sort of self defence system and yet there is relatively little research in this area, outside of a sports related environment. This project investigated different applications of strikes from Kung Fu practitioners that have not been addressed before in the literature. Punch and palm strikes were directly compared from different heights and distances, with the use of a load cell, accelerometers, and high speed video. The data indicated that the arm accelerations of both strikes were similar, although the force and resulting acceleration of the target were significantly greater for the palm strikes. Additionally, the relative height at which the strike was delivered was also investigated. The overall conclusion is that the palm strike is a more effective strike for transferring force to an object. It can also be concluded that an attack to the chest would be ideal for maximizing impact force and moving an opponent off balance. Key PointsIt has been determined that the palm strike is more effective than the punch for developing force and for transferring momentum, most likely the result of a reduced number of rigid links and joints.A strike at head level is less effective than a strike at chest level for developing force and transferring momentum.Distance plays an effect on the overall force and momentum changes, and most likely is dependent on the velocity of the limb and alignment of the bones prior to impact.The teaching of self defence for novices and law enforcement would benefit from including the palm strike as a high priority technique.

Figure 1. Illinois agility run dimensions and completion route. m = meters.  
Figure 2. Change-of-direction and acceleration test dimensions and completion route. m = meters.  
Reliability and Validity of a New Test of Change-of-Direction Speed for Field-Based Sports: the Change-of-Direction and Acceleration Test (CODAT)

October 2013

·

6,003 Reads

Field sport coaches must use reliable and valid tests to assess change-of-direction speed in their athletes. Few tests feature linear sprinting with acute change- of-direction maneuvers. The Change-of-Direction and Acceleration Test (CODAT) was designed to assess field sport change-of-direction speed, and includes a linear 5-meter (m) sprint, 45° and 90° cuts, 3- m sprints to the left and right, and a linear 10-m sprint. This study analyzed the reliability and validity of this test, through comparisons to 20-m sprint (0-5, 0-10, 0-20 m intervals) and Illinois agility run (IAR) performance. Eighteen Australian footballers (age = 23.83 ± 7.04 yrs; height = 1.79 ± 0.06 m; mass = 85.36 ± 13.21 kg) were recruited. Following familiarization, subjects completed the 20-m sprint, CODAT, and IAR in 2 sessions, 48 hours apart. Intra-class correlation coefficients (ICC) assessed relative reliability. Absolute reliability was analyzed through paired samples t-tests (p ≤ 0.05) determining between-session differences. Typical error (TE), coefficient of variation (CV), and differences between the TE and smallest worthwhile change (SWC), also assessed absolute reliability and test usefulness. For the validity analysis, Pearson's correlations (p ≤ 0.05) analyzed between-test relationships. Results showed no between-session differences for any test (p = 0.19-0.86). CODAT time averaged ~6 s, and the ICC and CV equaled 0.84 and 3.0%, respectively. The homogeneous sample of Australian footballers meant that the CODAT's TE (0.19 s) exceeded the usual 0.2 x standard deviation (SD) SWC (0.10 s). However, the CODAT is capable of detecting moderate performance changes (SWC calculated as 0.5 x SD = 0.25 s). There was a near perfect correlation between the CODAT and IAR (r = 0.92), and very large correlations with the 20-m sprint (r = 0.75-0.76), suggesting that the CODAT was a valid change-of-direction speed test. Due to movement specificity, the CODAT has value for field sport assessment. Key pointsThe change-of-direction and acceleration test (CODAT) was designed specifically for field sport athletes from specific speed research, and data derived from time-motion analyses of sports such as rugby union, soccer, and Australian football. The CODAT features a linear 5-meter (m) sprint, 45° and 90° cuts and 3-m sprints to the left and right, and a linear 10-m sprint.The CODAT was found to be a reliable change-of-direction speed assessment when considering intra-class correlations between two testing sessions, and the coefficient of variation between trials. A homogeneous sample of Australian footballers resulted in absolute reliability limitations when considering differences between the typical error and smallest worthwhile change. However, the CODAT will detect moderate (0.5 times the test's standard deviation) changes in performance.The CODAT correlated with the Illinois agility run, highlighting that it does assess change-of-direction speed. There were also significant relationships with short sprint performance (i.e. 0-5 m and 0-10 m), demonstrating that linear acceleration is assessed within the CODAT, without the extended duration and therefore metabolic limitations of the IAR. Indeed, the average duration of the test (~6 seconds) is field sport-specific. Therefore, the CODAT could be used as an assessment of change-of-direction speed in field sport athletes.

Figure 1. A standard cricket field.  
Figure 2. The anatomical landmark positions of the 59 reflective markers used for motion capture, as demonstrated in the T-pose static calibration position (A: anterior; B: posterior).  
Acceleration Kinematics in Cricketers: Implications for Performance in the Field

February 2014

·

7,398 Reads

Cricket fielding often involves maximal acceleration to retrieve the ball. There has been no analysis of acceleration specific to cricketers, or for players who field primarily in the infield (closer to the pitch) or outfield (closer to the boundary). This study analyzed the first two steps of a 10-m sprint in experienced cricketers. Eighteen males (age = 24.06 ± 4.87 years; height = 1.81 ± 0.06 m; mass = 79.67 ± 10.37 kg) were defined as primarily infielders (n = 10) or outfielders (n = 8). Timing lights recorded 0-5 and 0-10 m time. Motion capture measured first and second step kinematics, including: step length; step frequency; contact time; shoulder motion; lead and rear arm elbow angle; drive leg hip and knee extension, and ankle plantar flexion; swing leg hip and knee flexion, and ankle dorsi flexion. A one-way analysis of variance (p < 0.05) determined betweengroup differences. Data was pooled for a Pearson's correlation analysis (p < 0.05) to analyze kinematic relationships. There were no differences in sprint times, and few variables differentiated infielders and outfielders. Left shoulder range of motion related to second step length (r = 0.471). First step hip flexion correlated with both step lengths (r = 0.570-0.598), and frequencies (r = -0.504--0.606). First step knee flexion related to both step lengths (r = 0.528-0.682), and first step frequency (r = - 0.669). First step ankle plantar flexion correlated with second step length (r = -0.692) and frequency (r = 0.726). Greater joint motion ranges related to longer steps. Cricketers display similar sprint kinematics regardless of fielding position, likely because players may field in the infield or outfield depending on match situation. Due to relationships with shoulder and leg motion, and the importance and trainability of step length, cricketers should target this variable to enhance acceleration.

Figure 1. Joint angle conventions-right hand side of body only (H = hip, K = knee). 
Table 2 . Kinematic joint variables for early acceleration. Data are means (SD). 
Kinematic Determinants of Early Acceleration in Field Sport Athletes

December 2003

·

2,266 Reads

Acceleration performance is important for field sport athletes that require a high level of repeat sprint ability. Although acceleration is widely trained for, there is little evidence outlining which kinematic factors delineate between good and poor acceleration. The aim of this study was to investigate the kinematic differences between individuals with fast and slow acceleration. Twenty field sport athletes were tested for sprint ability over the first three steps of a 15m sprint. Subjects were filmed at high speed to determine a range of lower body kinematic measures. For data analysis, subjects were then divided into relatively fast (n = 10) and slow (n = 10) groups based on their horizontal velocity. Groups were then compared across kinematic measures, including stride length and frequency, to determine whether they accounted for observed differences in sprint velocity. The results showed the fast group had significantly lower (~11-13%) left and right foot contact times (p < .05), and an increased stride frequency (~9%), as compared to the slow group. Knee extension was also significantly different between groups (p < .05). There was no difference found in stride length. It was concluded that those subjects who are relatively fast in early acceleration achieve this through reduced ground contact times resulting in an improved stride frequency. Training for improved acceleration should be directed towards using coaching instructions and drills that specifically train such movement adaptations.


Figure 2. Paired t-tests showing differences between mean daily wear-time on weekdays and weekend days. ***p < 0.001 After observing the systematic variation in weartime, the pattern of higher wear-time during weekdays was further explored. Figure 2 depicts a highly consistent and statistically significant pattern of higher wear-time during weekdays in comparison with weekend days across all age groups as tested by paired t-tests ─ [t (330) = 11.74, p < 0.001]; 10 years [t (69) = 3.82, p < 0.001]; 11 years [t (90) = 6.90, p < 0.001]; 12 years [t (84) = 6.35, p < 0.001]; 13 years[t (63) = 4.76, p < 0.001]; 14 years [t (20) = 4.38, p < 0.001].This observation provided the rationale for testing measurement of activity accumulation pre-and post-standardization between weekdays and weekend days using paired t-tests. Figure 3a shows the comparison of prestandardized mean SED during weekdays and weekend days. Consistent with the pattern depicted in figure 2, weekdays have higher values than weekend days across all age groups, with statistically significant differences observed in the total sample [t (330) = 3.41, p < 0.001] and in the age groups of 12 years [t (84) = 2.16, p < 0.05], 13 
Figure 3. Paired t-tests showing the influence of wear-time on weekday and weekend SED estimates. 3a: Paired t-tests showing differences between mean daily Pre-standardized SED on weekdays and weekend days. 3b: Paired t-tests showing differences between mean daily post-standardized SED on weekdays and weekend days. *p < 0.05; ***p < 0.001 
Towards Uniform Accelerometry Analysis: A Standardization Methodology to Minimize Measurement Bias Due to Systematic Accelerometer Wear-Time Variation

May 2014

·

400 Reads

Accelerometers are predominantly used to objectively measure the entire range of activity intensities - sedentary behaviour (SED), light physical activity (LPA) and moderate to vigorous physical activity (MVPA). However, studies consistently report results without accounting for systematic accelerometer wear-time variation (within and between participants), jeopardizing the validity of these results. This study describes the development of a standardization methodology to understand and minimize measurement bias due to wear-time variation. Accelerometry is generally conducted over seven consecutive days, with participants' data being commonly considered 'valid' only if wear-time is at least 10 hours/day. However, even within 'valid' data, there could be systematic wear-time variation. To explore this variation, accelerometer data of Smart Cities, Healthy Kids study (www.smartcitieshealthykids.com) were analyzed descriptively and with repeated measures multivariate analysis of variance (MANOVA). Subsequently, a standardization method was developed, where case-specific observed wear-time is controlled to an analyst specified time period. Next, case-specific accelerometer data are interpolated to this controlled wear-time to produce standardized variables. To understand discrepancies owing to wear-time variation, all analyses were conducted pre- and post-standardization. Descriptive analyses revealed systematic wear-time variation, both between and within participants. Pre- and post-standardized descriptive analyses of SED, LPA and MVPA revealed a persistent and often significant trend of wear-time's influence on activity. SED was consistently higher on weekdays before standardization; however, this trend was reversed post-standardization. Even though MVPA was significantly higher on weekdays both pre- and post-standardization, the magnitude of this difference decreased post-standardization. Multivariable analyses with standardized SED, LPA and MVPA as outcome variables yielded more stable results with narrower confidence intervals and smaller standard errors. Standardization of accelerometer data is effective in not only minimizing measurement bias due to systematic wear-time variation, but also to provide a uniform platform to compare results within and between populations and studies. Key pointsSystematic variation in accelerometer wear-time both, within and between participants results in measurement bias.Standardization of data after controlling for wear-time produces stable outcome variables.Descriptive and multivariate analyses conducted with standardized outcome variables minimize measurement bias.

Effect of Pre-Cooling on Repeat-Sprint Performance in Seasonally Acclimatised Males During an Outdoor Simulated Team-Sport Protocol in Warm Conditions

September 2013

·

191 Reads

Whether precooling is beneficial for exercise performance in warm climates when heat acclimatised is unclear. The purpose of this study was to determine the effect of precooling on repeatsprint performance during a simulated team-sport circuit performed outdoors in warm, dry field conditions in seasonally acclimatised males (n = 10). They performed two trials, one with precooling (PC; ice slushy and cooling jacket) and another without (CONT). Trials began with a 30-min baseline/cooling period followed by an 80 min repeat-sprint protocol, comprising 4 x 20-min quarters, with 2 x 5-min quarter breaks and a 10-min half-time recovery/cooling period. A clear and substantial (negative; PC slower) effect was recorded for first quarter circuit time. Clear and trivial effects were recorded for overall circuit time, third and fourth quarter sprint times and fourth quarter best sprint time, otherwise unclear and trivial effects were recorded for remaining performance variables. Core temperature was moderately lower (Cohen's d=0.67; 90% CL=-1.27, 0.23) in PC at the end of the precooling period and quarter 1. No differences were found for mean skin temperature, heart rate, thermal sensation, or rating of perceived exertion, however, moderate Cohen's d effect sizes suggested a greater sweat loss in PC compared with CONT. In conclusion, repeat-sprint performance was neither clearly nor substantially improved in seasonally acclimatised players by using a combination of internal and external cooling methods prior to and during exercise performed in the field in warm, dry conditions. Of practical importance, precooling appears unnecessary for repeat-sprint performance if athletes are seasonally acclimatised or artificially acclimated to heat, as it provides no additional benefit.

Reliability and Accuracy of Six Hand-Held Blood Lactate Analysers

March 2015

·

1,467 Reads

The reliability and accuracy of five portable blood lactate (BLa) analysers (Lactate Pro, Lactate Pro2, Lactate Scout+, Xpress™, and Edge) and one handheld point-of-care analyser (i-STAT) were compared to a criterion (Radiometer ABL90). Two devices of each brand of analyser were assessed using 22 x 6 mL blood samples taken from five subjects at rest and during exercise who generated lactate ranging ~1-23 mM. Each sample was measured simultaneously ~6 times on each device. Reliability was assessed as the within-sample standard deviation (wsSD) of the six replicates; accuracy as the bias compared with the ABL90; and overall error (the root mean squared error (√MSE)) was calculated as the square root of (wsSD(2) and bias(2)). The √MSE indicated that both the Edge and Xpress had low total error (~0-2 mM) for lactate concentrations <15 mM, whereas the Edge and Lactate Pro2 were the better of the portable analysers for concentrations >15 mM. In all cases, bias (negative) was the major contribution to the √MSE. In conclusion, in a clinical setting where BLa is generally <15 mM the Edge and Xpress devices are relevant, but for athlete testing where peak BLa is important for training prescription the Edge and Lactate Pro2 are preferred. Key pointsThe reliability of five common portable blood lactate analysers were generally <0.5 mM for concentrations in the range of ~1.0-10 mM.For all five portable analysers, the analytical error within a brand was much smaller than the biological variation in blood lactate (BLa).Compared with a criterion blood lactate analyser, there was a tendency for all portable analysers to under-read (i.e. a negative bias), which was particularly evident at the highest concentrations (BLa ~15-23 mM).The practical application of these negative biases would overestimate the ability of the athlete and prescribe a training intensity that would be too high.

Accuracy of the Polar S810i(TM) Heart Rate Monitor and the Sensewear Pro Armband(TM) to Estimate Energy Expenditure of Indoor Rowing Exercise in Overweight and Obese Individuals

September 2010

·

199 Reads

Accurately assessing the energy expenditure (EE) of different types of physical activity is important for exercise prescription in obese individuals. The aim of this study was to examine the accuracy of the Polar S810i Heart Rate Monitor and SenseWear Pro Armband (SWA) for estimating energy expenditure (EE) during indoor rowing versus indirect calorimetry (IC). 43 overweight and obese adults (16 men, 27 women, BMI = 31.2 ± 3.7) participated in the study. Within a week after a maximal incremental test on a rowing ergometer, EE was assessed with Polar S810i, SWA and IC during two different intensities of rowing exercises (at 50% VO2max and 70% VO2max) on a Concept II ergometer. Data were analyzed with Pearson's product moment correlations and repeated measures ANOVA. Post hoc multiple comparisons were performed using the Bonferroni test. Bland-Altman plots were created to assess the agreement between the EE estimates and IC measurements. At 50% VO2max, Polar S810i and SWA significantly overestimated EE by 0.5 ± 0.50 kcal·min(-1) (p < 0.001) and by 0.9 ± 0.92 kcal·min(-1) (p < 0.001), respectively. At 70% VO2max, no significant differences were found between the SWA and IC, and between Polar S810i and IC measurements. Bland-Altman plots showed good agreements between the measured EE and estimates by Polar S810i and SWA at 70% VO2max. At 50% VO2max, there was a poor agreement between SWA and IC measurements. There were high correlations among three methods at both intensities (r = 0.82 to r = 0.95). In conclusion, Polar S810i and SWA showed reasonable concordance with IC for measuring EE of the moderate intensity exercise but not the lower intensity exercise on indoor rowing in the participants of this study. Polar S810i and SWA might be useful to assess EE during indoor rowing for overweight and obese individuals who try to manage their body weight, but it is necessary to develop exercise and population specific algorithms to enhance the accuracy of SWA to estimate energy expenditure during various intensities of physical exercises. Key pointsPolar S810i and SWA when compared to the indirect calorimetry, provide reasonable estimates of energy expenditure on rowing ergometer at the moderate exercise intensity, but not at the low exercise intensity.The monitor of the Concept II Model D rowing ergometer significantly overestimated the energy expenditure during low and moderate intensity exercises. However there was a moderate correlation between EE estimates of this device and indirect calorimetry measurements.

Figure 1. Diagrammatic representation of the mLTST  
Figure 2. Diagrammatic representation of the maximal Tennis Hitting Sprint Test.  
Figure 3. Loughborough Intermittent Tennis Test  
Figure 7. Percentage of 'in' shots across fatigue intensities in male and female tennis players.  
The Effect of Moderate and High-Intensity Fatigue on Groundstroke Accuracy in Expert and Non-Expert Tennis Players

October 2013

·

1,281 Reads

Exploring the effects of fatigue on skilled performance in tennis presents a significant challenge to the researcher with respect to ecological validity. This study examined the effects of moderate and high-intensity fatigue on groundstroke accuracy in expert and non-expert tennis players. The research also explored whether the effects of fatigue are the same regardless of gender and player's achievement motivation characteristics. 13 expert (7 male, 6 female) and 17 non-expert (13 male, 4 female) tennis players participated in the study. Groundstroke accuracy was assessed using the modified Loughborough Tennis Skills Test. Fatigue was induced using the Loughborough Intermittent Tennis Test with moderate (70%) and high-intensities (90%) set as a percentage of peak heart rate (attained during a tennis-specific maximal hitting sprint test). Ratings of perceived exertion were used as an adjunct to the monitoring of heart rate. Achievement goal indicators for each player were assessed using the 2 x 2 Achievement Goals Questionnaire for Sport in an effort to examine if this personality characteristic provides insight into how players perform under moderate and high-intensity fatigue conditions. A series of mixed ANOVA's revealed significant fatigue effects on groundstroke accuracy regardless of expertise. The expert players however, maintained better groundstroke accuracy across all conditions compared to the novice players. Nevertheless, in both groups, performance following high-intensity fatigue deteriorated compared to performance at rest and performance while moderately fatigued. Groundstroke accuracy under moderate levels of fatigue was equivalent to that at rest. Fatigue effects were also similar regardless of gender. No fatigue by expertise, or fatigue by gender interactions were found. Fatigue effects were also equivalent regardless of player's achievement goal indicators. Future research is required to explore the effects of fatigue on performance in tennis using ecologically valid designs that mimic more closely the demands of match play. Key PointsGroundstroke accuracy under moderate-intensity fatigue is equivalent to performance at rest.Groundstroke accuracy declines significantly in both expert (40.3% decline) and non-expert (49.6%) tennis players following high-intensity fatigue.Expert players are more consistent, hit more accurate shots and fewer out shots across all fatigue intensities.The effects of fatigue on groundstroke accuracy are the same regardless of gender and player's achievement goal indicators.

Figure 1. Coefficient of variation (CV) for each of the GPS devices in sprints of 15 m and 30 m.
Average distances in m recorded by each of the GPS devices in sprints of 15 m and 30 m, and the dif- ferent statistics used to quantify reliability and accuracy.
Reliability and Accuracy of 10 Hz GPS Devices for Short-Distance Exercise

March 2011

·

1,669 Reads

The use of GPS technology for training and research purposes requires a study of the reliability, validity and accuracy of the data generated (Petersen et al., 2009). To date, studies have focused on devices with a logging rate of 1 Hz and 5 Hz (Coutts and Duffield, 2010; Duffield et al., 2010; Jennings et al., 2010; MacLeod et al., 2009; Petersen et al., 2009; Portas et al., 2010), although it seems that more frequent sampling can increase the accuracy of the information provided by these devices (Jennings et al., 2010; MacLeod et al., 2009, Portas et al., 2010). However, we are unaware of any study of the reliability and accuracy of GPS devices using a sampling frequency of 10 Hz. Thus, the aim of the present research was to determine the reliability and accuracy of GPS devices operating at a sampling frequency of 10 Hz, in relation here to sprints of 15 m and 30 m and using both video and photoelectric cells.Nine trained male athletes participated in the study. Each participant completed 7 and 6 linear runs of 15 m and 30 m, respectively (n = 117), with only one GPS device being used per participant. Each repetition required them to complete the route as quickly as possible, with 1 min recovery between sets. Distance was monitored through the use of GPS devices (MinimaxX v4.0, Catapult Innovations, Melbourne, Australia) operating at the above mentioned sampling frequency of 10 Hz. In addition, all tests were filmed with a video camera operating at a sampling frequency of 25 frames. Data were collected during what were considered to be good GPS conditions in terms of the weather and satellite conditions (number of satellites = 10.0 ± 0.2 and 10.3 ± 0.4 for sprints of 15 m and 30 m, respectively).Distance was measured using a tape measure. Electronic timing gates (TAG- Heuer, CP 520 Training model, Switzerland) were used to obtain a criterion sprint time accurate to 0.01 s, with gates being placed at the beginning and end of the route (Petersen et al., 2009). Logan Plus v.4.0 software was used to synchronize the GPS files with the video, establishing the beginning of action when the participant crossed the initial photocell; this was then added to the duration obtained through the photoelectric cells.The accuracy of data within and between devices is shown in Table 1. The average values are close to those established in tests of 15 m and 30 m, with errors getting smaller when the devices were used over 30 m.The intra-device reliability is depicted in Figure 1, showing greater stability over 30 m than 15 m. The inter-device reliability yielded a CV = 1.3% and CV = 0.7% for sprints over 15 m and 30 m, respectively.To our knowledge this is the first study to assess the reliability and accuracy of GPS devices operating at a sampling frequency of 10 Hz. A further point of note is that studies of intra- and inter-device reliability for the same model of device (and therefore the same sampling rate) have traditionally used only two devices (Duffield et al., 2010; Petersen et al., 2009), whereas here a total of nine devices were studied.The distance data were found to be highly accurate and only slightly underestimated by the GPS devices. Furthermore, high intra- and inter-device reliability was observed. Accuracy improved with increased distance, and the mean SEM of 10.9% when running 15 m was reduced by half over 30 m (Table 1). Using similar statistics and methodology, Petersen et al., 2009 found SEM values of between 5% and 24% for MinimaxX devices, and between 3% and 11% with SPI-Pro devices, both at a sampling frequency of 5 Hz. Here, only one device (number 1) produced values above 6% in the 15 m test, while another device (number 2) did so for runs of 30 m. We conclude that the increase in sampling frequency led to increased accuracy of the devices.As regards intra-device reliability, high values were obtained in all cases, and increased when used over 30 m (Figure 1). Some studies have reported differences between devices, even of the same model, suggesting that a player must always be monitored with the same device (Coutts and Duffield, 2010; Duffield et al., 2010). However, we only found small variations between devices, with a CV of 1.3% and 0.7% in runs of 15 m and 30 m, respectively. Therefore, we conclude that it is not always necessary to monitor players with the same device.

The Effects of Approach Angle on Penalty Kicking Accuracy and Kick Kinematics with Recreational Soccer Players

June 2009

·

2,462 Reads

Kicking accuracy is an important component of successful penalty kicks, which may be influenced by the approach angle. The purpose of this study was to examine the effects of approach angle on kicking accuracy and three-dimensional kinematics of penalty kicks. Seven male amateur recreational soccer players aged (mean ± s) 26 ± 3 years, body mass 74.0 ± 6.8 kg, stature 1.74 ± 0.06 m, who were right foot dominant, kicked penalties at a 0.6 x 0.6 m target in a full size goal from their self-selected approach angle, 30°, 45° and 60° (direction of the kick was 0°). Kicking accuracy and three-dimensional kinematics were recorded. Results revealed that there was no significant difference in kicking accuracy (p = 0.27) or ball velocity (p = 0.59) between the approach angles. Pelvic rotation was significantly greater under the 45° and the 60° approach angles than during the self-selected approach angle (p < 0.05). Thigh abduction of the kicking leg at impact using the 60° approach angle was significantly greater than during the self- selected approach (p = 0.01) and the 30° approach (p = 0.04). It was concluded that altering an individual's self-selected approach angle at recreational level did not improve kicking accuracy or ball velocity, despite altering aspects of underlying technique. Key pointsPenalty kicking accuracy and ball velocity were not improved by altering recreational soccer players' natural approach angle.However, widening the approach angle produced greater pelvic rotation and thigh abduction.Wider approach angles increased the range of motion of the pelvis, opening up the hips before ball contact, creating a greater arc of movement during the backswing and the follow-through.Wider approach angles also led to an increase in thigh abduction at impact, enabling the kicking foot to be placed further under the ball, which may improve ball contact.

Figure 3. Bland-Altman Plots for three pedometers during stair climbing and bench stepping.  
Figure 1. Pedometer accuracy during stair ascending and descending. Two illustrations show pedometer accuracy during stair ascending (a) and descending (b), respectively. KZ; Lifecorder: YM; DW-800: OM; HJ-700IT. #, ## Significantly underestimated the number of steps (# p < 0.05, ## p < 0.01).  
Pedometer accuracy during stair climbing and bench stepping exercises

June 2008

·

893 Reads

The purpose of the present investigation was to examine pedometer accuracy during stair climbing and descending as well as during the performance of a bench stepping exercise. Ten healthy men participated in the present investigation. All subjects ascended and descended an 18 cm high public staircase, and performed a bench stepping exercise by using a 10, 20 and 30 cm high platforms, while wearing three different commercial pedometers (DW-800, YM, HJ- 700IT; OM, Lifecorder; KZ). In both situations, the stepping rate was controlled at 40, 50, 80, 100 and 120 steps·min(-1). The pedometer scores tended to underestimate the actual number of steps during stair climbing with a slower stepping rate and/or the lower height of a platform. During the stair ascending and descending and the bench stepping exercise using 20 to 30 cm high platforms at 80 to 120 steps·min(-1), the magnitude of the measurement error was -3.8 ± 10. 8 % for KZ, -2.1 ± 9.8 % for YM and -11.0 ± 18.9 % for OM. These results indicate that the KZ and the YM can accurately assess the number of steps during stair climbing using 20 to 30 cm high platforms at 80 to 120 steps·min(-1). Key pointsPedometers can assess the number of step accurately within an acceptable range of measurement error during the stair climbing activities at a stepping rate of 80 step·min(-1) or faster with 18 cm or higher stairs.

Improved Motor-Timing: Effects of Synchronized Metro-Nome Training on Golf Shot Accuracy

December 2009

·

290 Reads

This study investigates the effect of synchronized metronome training (SMT) on motor timing and how this training might affect golf shot accuracy. Twenty-six experienced male golfers participated (mean age 27 years; mean golf handicap 12.6) in this study. Pre- and post-test investigations of golf shots made by three different clubs were conducted by use of a golf simulator. The golfers were randomized into two groups: a SMT group and a Control group. After the pre-test, the golfers in the SMT group completed a 4-week SMT program designed to improve their motor timing, the golfers in the Control group were merely training their golf-swings during the same time period. No differences between the two groups were found from the pre-test outcomes, either for motor timing scores or for golf shot accuracy. However, the post-test results after the 4-weeks SMT showed evident motor timing improvements. Additionally, significant improvements for golf shot accuracy were found for the SMT group and with less variability in their performance. No such improvements were found for the golfers in the Control group. As with previous studies that used a SMT program, this study's results provide further evidence that motor timing can be improved by SMT and that such timing improvement also improves golf accuracy. Key pointsThis study investigates the effect of synchronized metronome training (SMT) on motor timing and how this training might affect golf shot accuracy.A randomized control group design was used.The 4 week SMT intervention showed significant improvements in motor timing, golf shot accuracy, and lead to less variability.We conclude that this study's results provide further evidence that motor timing can be improved by SMT training and that such timing improvement also improves golf accuracy.

Figure 1. Example ground reaction force-time history and the five discrete dependent variables. F1 = first peak ground reaction force; F2 = second peak ground reaction force; F1LR = average loading rate from the instant of ground contact to the instant of F1; F2LR = average loading rate from the instant of the minimum force between F1 and F2 to the instant of F2. IMP = impulse (total force) calculated from 0-100 ms following initial ground contact.  
Table 1 . Ground reaction force 20-trial mean and (standard deviation) values for all subjects.
Number of Trials Necessary to Achieve Performance Stability of Selected Ground Reaction Force Variables During Landing

March 2007

·

569 Reads

The objectives were to determine the number of trials necessary to achieve performance stability of selected ground reaction force (GRF) variables during landing and to compare two methods of determining stability. Ten subjects divided into two groups each completed a minimum of 20 drop or step-off landings from 0.60 or 0.61 m onto a force platform (1000 Hz). Five vertical GRF variables (first and second peaks, average loading rates to these peaks, and impulse) were quantified during the initial 100 ms post-contact period. Test-retest reliability (stability) was determined using two methods: (1) intra-class correlation coefficient (ICC) analysis, and (2) sequential averaging analysis. Results of the ICC analysis indicated that an average of four trials (mean 3.8 ± 2.7 Group 1; 3.6 ± 1.7 Group 2) were necessary to achieve maximum ICC values. Maximum ICC values ranged from 0.55 to 0.99 and all were significantly (p < 0. 05) different from zero. Results of the sequential averaging analysis revealed that an average of 12 trials (mean 11.7 ± 3.1 Group 1; 11.5 ± 4.5 Group 2) were necessary to achieve performance stability using criteria previously reported in the literature. Using 10 reference trials, the sequential averaging technique required standard deviation criterion values of 0.60 and 0.49 for Groups 1 and 2, respectively, in order to approximate the ICC results. The results of the study suggest that the ICC might be a less conservative, but more objective method for determining stability, especially when compared to previous applications of the sequential averaging technique. Moreover, criteria for implementing the sequential averaging technique can be adjusted so that results closely approximate the results from ICC. In conclusion, subjects in landing experiments should perform a minimum of four and possibly as many as eight trials to achieve performance stability of selected GRF variables. Researchers should use this information to plan future studies and to report the stability of GRF data in landing experiments. Key pointsThe number of trials obtained from a subject in an experiment influences the stability (test-retest reli-ability) and thus validity of the data.One trial might not be representative of a subject's more general performance.Multiple-trial protocols have been recommended by several researchers for a variety of activities, but the number of trials necessary to achieve stabil-ity of ground reaction force variables during land-ing has not been examined.Researchers have used different criteria and meth-odologies for determining stability, making com-parisons among studies and activities difficult.In the current study, test-retest intra-class correla-tion coefficient revealed that on average four trials were necessary for stability, while the more con-servative sequential averaging analysis suggested that 12 trials were necessary for stability.Researchers should be aware of the stability of landing data and collect enough trials from each subject within a single testing session to maximize reliability of their data.

Figure 2. technical quality notation of the tested and the control groups before and after the training program, for the two judo throwing techniques.  
The Progress Achieved By Judokas After Strength Training With A Judo-Specific Machine

July 2006

·

665 Reads

For judo players, as in many sports activities, strength development has become an important element of performance. However, this should not be done separately from the development of technique. Specific strength training is thus used for the controlled strengthening of specific muscles or muscle groups, corresponding to the movement in a competitive situation. In line with this, the use of a judo specific apparatus is proposed. The aim of this study is to analyze the progress of a group of judokas after a training program with the apparatus. The results have shown that, using the apparatus, the heaviest weight achieved using the throwing technique is greater. In addition, the judokas' technique improves as a consequence of this training program. This judo specific apparatus could therefore be used to complement traditional judo training. Key PointsJudo, strength training, machine, technical progress.

Top-cited authors