Multiple sclerosis (MS) is associated with pathogenic autoimmunity primarily focused on major CNS-myelin target antigens including myelin basic protein (MBP), proteolipidprotein (PLP), myelin oligodendrocyte protein (MOG). MS is a complex trait whereby the HLA genes, particularly class-II genes of HLA-DR15 haplotype, dominate the genetic contribution to disease-risk. Due to strong linkage disequilibrium in HLA-II region, it has been hard to establish precisely whether the functionally relevant effect derives from the DRB1*1501, DQA1*0102-DQB1*0602, or DRB5*0101 loci of HLA-DR15 haplotype, their combinations, or their epistatic interactions. Nevertheless, most genetic studies have indicated DRB1*1501 as a primary risk factor in MS. Here, we used 'HLA-humanized' mice to discern the potential relative contribution of DRB1*1501 and DQB1*0602 alleles to susceptibility to "humanized" MS-like disease induced by PLP, one of the most prominent and encephalitogenic target-antigens implicated in human MS.
The HLA-DRB1*1501- and HLA-DQB1*0602-Tg mice (MHC-II(-/-)), and control non-HLA-DR15-relevant-Tg mice were immunized with a set of overlapping PLP peptides or with recombinant soluble PLP for induction of "humanized" MS-like disease, as well as for ex-vivo analysis of immunogenic/immunodominant HLA-restricted T-cell epitopes and associated cytokine secretion profile.
PLP autoimmunity in both HLA-DR15-Tg mice was focused on 139-151 and 175-194 epitopes. Strikingly, however, the HLA-DRB1*1501-transgenics were refractory to disease induction by any of the overlapping PLP peptides, while HLA-DQB1*0602 transgenics were susceptible to disease induction by PLP139-151 and PLP175-194 peptides. Although both transgenics responded to both peptides, the PLP139-151- and PLP175-194-reactive T-cells were directed to Th1/Th17 phenotype in DQB1*0602-Tg mice and towards Th2 in DRB1*1501-Tg mice.
While genome studies map a strong MS susceptibility effect to the region of DRB1*1501, our findings offer a rationale for potential involvement of pathogenic DQ6-associated autoimmunity in MS. Moreover, that DQB1*0602, but not DRB1*1501, determines disease-susceptibility to PLP in HLA-transgenics, suggests a potential differential, functional role for DQB1*0602 as a predisposing allele in MS. This, together with previously demonstrated disease-susceptibility to MBP and MOG in DRB1*1501-transgenics, also suggests a differential role for DRB1*1501 and DQB1*0602 depending on target antigen and imply a potential complex 'genotype/target antigen/phenotype' relationship in MS heterogeneity.
Current evidence suggests a role of neuroinflammation in the pathogenesis of Parkinson's disease (PD) and in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of basal ganglia injury. Reportedly, nonsteroidal anti-inflammatory drugs (NSAIDs) mitigate DAergic neurotoxicity in rodent models of PD. Consistent with these findings, epidemiological analysis indicated that certain NSAIDs may prevent or delay the progression of PD. However, a serious impediment of chronic NSAID therapy, particularly in the elderly, is gastric, renal and cardiac toxicity. Nitric oxide (NO)-donating NSAIDs, have a safer profile while maintaining anti-inflammatory activity of parent compounds. We have investigated the oral activity of the NO-donating derivative of flurbiprofen, [2-fluoro-α-methyl (1,1'-biphenyl)-4-acetic-4-(nitrooxy)butyl ester], HCT1026 (30 mg kg(-1) daily in rodent chow) in mice exposed to the parkinsonian neurotoxin MPTP.
Ageing mice were fed with a control, flurbiprofen, or HCT1026 diet starting ten days before MPTP administration and continuing for all the experimental period. Striatal high affinity synaptosomal dopamine up-take, motor coordination assessed with the rotarod, tyrosine hydroxylase (TH)- and dopamine transporter (DAT) fiber staining, stereological cell counts, immunoblotting and gene expression analyses were used to assess MPTP-induced nigrostriatal DAergic toxicity and glial activation 1-40 days post-MPTP.
HCT1026 was well tolerated and did not cause any measurable toxic effect, whereas flurbiprofen fed mice showed severe gastrointestinal side-effects. HCT1026 efficiently counteracted motor impairment and reversed MPTP-induced decreased synaptosomal [3H]dopamine uptake, TH- and DAT-stained fibers in striatum and TH+ neuron loss in substantia nigra pars compacta (SNpc), as opposed to age-matched mice fed with a control diet. These effects were associated to a significant decrease in reactive macrophage antigen-1 (Mac-1)-positive microglial cells within the striatum and ventral midbrain, decreased expression of iNOS, Mac-1 and NADPH oxidase (PHOX), and downregulation of 3-Nitrotyrosine, a peroxynitrite finger print, in SNpc DAergic neurons.
Oral treatment with HCT1026 has a safe profile and a significant efficacy in counteracting MPTP-induced dopaminergic (DAergic) neurotoxicity, motor impairment and microglia activation in ageing mice. HCT1026 provides a novel promising approach towards the development of effective pharmacological neuroprotective strategies against PD.
We report on a serum autoantibody associated with cerebellar ataxia. Immunohistochemical studies of sera from four patients referred for autoantibody testing revealed binding of high-titer (up to 1:5,000) IgG antibodies, mainly IgG1, to the molecular layer, Purkinje cell layer, and white matter on mouse, rat, porcine, and monkey cerebellum sections. The antibody bound to PC somata, dendrites, and axons, resulting in a binding pattern similar to that reported for anti-Ca/anti-ARHGAP26, but did not react with recombinant ARHGAP26. Extensive control studies were performed to rule out a broad panel of previously described paraneoplastic and non-paraneoplastic anti-neural autoantibodies. The characteristic binding pattern as well as double staining experiments suggested inositol 1,4,5-trisphosphate receptor type 1 (ITPR1) as the target antigen. Verification of the antigen included specific neutralization of the tissue reaction following preadsorption with ITPR1 (but not ARHGAP26) and a dot-blot assay with purified ITPR1 protein. By contrast, anti-ARHGAP26-positive sera did not bind to ITPR1. In a parallel approach, a combination of histoimmunoprecipitation and mass spectrometry also identified ITPR1 as the target antigen. Finally, a recombinant cell-based immunofluorescence assay using HEK293 cells expressing ITPR1 and ARHGAP26, respectively, confirmed the identification of ITPR1. Mutations of ITPR1 have previously been implicated in spinocerebellar ataxia with and without cognitive decline. Our findings suggest a role of autoimmunity against ITPR1 in the pathogenesis of autoimmune cerebellitis and extend the panel of diagnostic markers for this disease.
The Figure 2, X-axis description of each sample was inverted in the original publication [1]. Figure 2 The mRNA expression profiles of differentially expressed genes. Both the upregulated (A) and downregulated (B) genes were selected randomly. Gel images on top show the polymerase chain reaction (PCR) product bands stained with ethidium bromide; the band intensities are also presented graphically below for clarity. Lane numbers 1 to 8 indicate sham control (lanes 1, 2, 5, and 6) and permanent middle cerebral artery occlusion (PMCAO) treatment (lanes 3, 4, 7, and 8), respectively. P indicates pituitary adenylate cyclase-activating polypeptide (PACAP) treatment; C is the control (minus PACAP). GAPDH and beta-actin genes were used a positive control (C). Semi-quantitative RT-PCR was performed as described in Methods, and the specific 3'-UTR primers are detailed in Additional file 2: Table S2 With reference to corrected Figure 2, we have the following revised text. On Page 9, left column: lines 19-24 should read as - "Similarly, Il6, S100a5, Il22, Il1b, Igf1, and Ccl2 were highly expressed at 6 h in the PACAP-treated ischemic brain, whereas their expression level decreased at 24 h compared to the PMCAO effect alone (Figure 2). Fgf21, Pitpnc1, and Epha3 genes showed an increase in expression at 24 h over PMCAO alone (Figure 2)." On Page 11, right column: lines 16-19 should read as - "In the ischemic hemisphere at 24 h, the PACAP plus PMCAO expression level of Il6 was also reduced compared to the PMCAO plus saline control." We regret any inconvenience that this inaccuracy in Figure 2 and therein the figure legend, which could not be properly corrected at the proof stage, in the originally published manuscript might have caused.
The aim of the present study was to investigate microglia activation over time following traumatic brain injury (TBI) and to relate these findings to glutamate release.
Sequential dynamic (R)-[(11)C]PK11195 PET scans were performed in rats 24 hours before (baseline), and one and ten days after TBI using controlled cortical impact, or a sham procedure. Extracellular fluid (ECF) glutamate concentrations were measured using cerebral microdialysis. Brains were processed for histopathology and (immuno)-histochemistry.
Ten days after TBI, (R)-[(11)C]PK11195 binding was significantly increased in TBI rats compared with both baseline values and sham controls (p < 0.05). ECF glutamate values were increased immediately after TBI (27.6 ± 14.0 μmol·L(-1)) as compared with the sham procedure (6.4 ± 3.6 μmol·L(-1)). Significant differences were found between TBI and sham for ED-1, OX-6, GFAP, Perl's, and Fluoro-Jade B.
Increased cerebral uptake of (R)-[(11)C]PK11195 ten days after TBI points to prolonged and ongoing activation of microglia. This activation followed a significant acute posttraumatic increase in ECF glutamate levels.
The RING domain-containing protein RING finger protein 11 (RNF11) is a member of the A20 ubiquitin-editing protein complex and modulates peripheral NF-κB signaling. RNF11 is robustly expressed in neurons and colocalizes with a population of α-synuclein-positive Lewy bodies and neurites in Parkinson disease patients. The NF-κB pathway has an important role in the vertebrate nervous system, where the absence of NF-κB activity during development can result in learning and memory deficits, whereas chronic NF-κB activation is associated with persistent neuroinflammation. We examined the functional role of RNF11 with respect to canonical NF-κB signaling in neurons to gain understanding of the tight association of inflammatory pathways, including NF-κB, with the pathogenesis of neurodegenerative diseases.
Luciferase assays were employed to assess NF-κB activity under targeted short hairpin RNA (shRNA) knockdown of RNF11 in human neuroblastoma cells and murine primary neurons, which suggested that RNF11 acts as a negative regulator of canonical neuronal NF-κB signaling. These results were further supported by analyses of p65 translocation to the nucleus following depletion of RNF11. Coimmunoprecipitation experiments indicated that RNF11 associates with members of the A20 ubiquitin-editing protein complex in neurons. Site-directed mutagenesis of the myristoylation domain, which is necessary for endosomal targeting of RNF11, altered the impact of RNF11 on NF-κB signaling and abrogated RNF11's association with the A20 ubiquitin-editing protein complex. A partial effect on canonical NF-κB signaling and an association with the A20 ubiquitin-editing protein complex was observed with mutagenesis of the PPxY motif, a proline-rich region involved in Nedd4-like protein interactions. Last, shRNA-mediated reduction of RNF11 in neurons and neuronal cell lines elevated levels of monocyte chemoattractant protein 1 and TNF-α mRNA and proteins, suggesting that NF-κB signaling and associated inflammatory responses are aberrantly regulated in the absence of RNF11.
Our findings support the hypothesis that, in the nervous system, RNF11 negatively regulates canonical NF-κB signaling. Reduced or functionally compromised RNF11 could influence NF-κB-associated neuronal functions, including exaggerated inflammatory responses that may have implications for neurodegenerative disease pathogenesis and progression.
Spinal cord injury (SCI) is a devastating condition with substantial functional and social morbidity. Previous research has established that the neuroinflammatory response plays a significant role in cord damage post-SCI. However, global immunosuppressive therapies have demonstrated mixed results. As a result, more specific therapies modulating inflammation after injury are needed. In this regard, research into cytokine signaling has demonstrated that cytokines of the gp130 family including IL-6 and leukemia inhibitory factor (LIF) play key roles in mediating damage to the spinal cord. Since members of the gp130 family all share a common signal transduction pathway via the JAK/STAT system, we performed the first study of a relatively new member of the gp130 family, IL-11, in SCI.
A validated clip-compression mouse model of SCI was used to assess for temporal changes in expression of IL-11 and its receptor, IL-11Rα, post-SCI. To elucidate the role of IL-II in the pathophysiology of SCI, we compared differences in locomotor recovery (Basso Mouse Score; CatWalk), electrophysiological spinal cord signaling, histopathology, and the acute inflammatory neutrophil response in IL-11Rα knockouts with littermate wild-type C57BL/6 mice.
We found an increase in gene expression of IL-11 in the spinal cord to a peak at twenty-four hours post-SCI with increases in IL-11Rα gene expression, peaking at seven days post-SCI. In spite of clear changes in the temporal expression of both IL-11 and its receptor, we found that there were no significant differences in motor function, electrophysiological signaling, histopathology, or neutrophil infiltration into the spinal cord between wild-type and knockout mice.
This is the first study to address IL-11 in SCI. This study provides evidence that IL-11 signaling may not play as significant a role in SCI as other gp130 cytokines, which will ideally guide future therapy design and the signaling pathways those therapies target.
The peroxisome proliferator-activated receptor (PPAR)-α activator, 5,8,11,14-eicosatetraynoic acid (ETYA), is an arachidonic acid analog. It is reported to inhibit up-regulation of pro-inflammatory genes; however, its underlying mechanism of action is largely unknown. In the present study, we focused on the inhibitory action of ETYA on the expression of the chemokine, CCL2/MCP-1, which plays a key role in the initiation and progression of inflammation.
To determine the effect of ETYA, primary cultured rat astrocytes and microglia were stimulated with IFN-γ in the presence of ETYA and then, expression of CCL2/MCP-1 and MAPK phosphatase (MKP-1) were determined using RT-PCR and ELISA. MKP-1 mRNA stability was evaluated by treating actinomycin D. The effect of MKP-1 and human antigen R (HuR) was analyzed by using specific siRNA transfection system. The localization of HuR was analyzed by immunocytochemistry and subcellular fractionation experiment.
We found that ETYA suppressed CCL2/MCP-1 transcription and secretion of CCL2/MCP-1 protein through up-regulation of MKP-1mRNA levels, resulting in suppression of c-Jun N-terminal kinase (JNK) phosphorylation and activator protein 1 (AP1) activity in IFN-γ-stimulated brain glial cells. Moreover, these effects of ETYA were independent of PPAR-α. Experiments using actinomycin D revealed that the ETYA-induced increase in MKP-1 mRNA levels reflected an increase in transcript stability. Knockdown experiments using small interfering RNA demonstrated that this increase in MKP-1 mRNA stability depended on HuR, an RNA-binding protein known to promote enhanced mRNA stability. Furthermore, ETYA-induced, HuR-mediated mRNA stabilization resulted from HuR-MKP-1 nucleocytoplasmic translocation, which served to protect MKP-1 mRNA from the mRNA degradation machinery.
ETYA induces MKP-1 through HuR at the post-transcriptional level in a receptor-independent manner. The mechanism revealed here suggests eicosanoids as potential therapeutic modulators of inflammation that act through a novel target.
The functions of Toll-like receptors (TLRs) 11-13 in central nervous system (CNS) infections are currently unknown. Using a murine model of neurocysticercosis, we investigated the expression and distribution of TLRs 11-13 by using both gene specific real-time PCR analysis and in situ immunofluorescence microscopy in both control and neurocysticercosis brains. In the mock infected brain, mRNAs of TLRs 11-13 were constitutively expressed. Parasite infection caused an increase of both mRNAs and protein levels of all three TLRs by several fold. All three TLR proteins were present in both CNS and immune cell types. Among them TLR13 was expressed the most in terms of number of positive cells and brain areas expressing it, followed by TLR11 and TLR12 respectively. Among the nervous tissue cells, TLRs 11-13 protein levels appeared highest in neurons. However, TLR13 expression was also present in ependymal cells, endothelial cells of pial blood vessels, and astrocytes. In contrast, infiltrating CD11b and CD11c positive myeloid cells predominantly produced TLR11 protein, particularly early during infection at 1 wk post infection (approximately 50% cells). TLRs 12 and 13 proteins were present on approximately 5% of infiltrating immune cells. The infiltrating cells positive for TLRs 11-13 were mostly of myeloid origin, CD11b+ cells. This report provides a comprehensive analysis of the expression of TLRs 11-13 in normal and parasite infected mouse brains and suggests a role for them in CNS infections.
Background
We studied the distribution and expression of translocator protein in the human brain using 11C-[R]-PK-11195 positron emission tomography (PK11195 PET) and evaluated age-related changes.
Methods
A dynamic PK11195 PET scan was performed in 15 normal healthy adults (mean age: 29 ±8.5 years (range: 20 to 49); 7 males) and 10 children (mean age: 8.8 ±5.2 years (range: 1.2 to 17); 5 males), who were studied for potential neuroinflammation but showed no focally increased PK11195 binding. The PET images were evaluated by calculating standard uptake values and regional binding potential, based on a simplified reference region model, as well as with a voxel-wise analysis using statistical parametric mapping.
Results
PK11195 uptake in the brain is relatively low, compared with the subcortical structures, and symmetrical. The overall pattern of PK11195 distribution in the brain does not change with age. PK11195 uptake was lowest in the frontal-parietal-temporal cortex and highest in the pituitary gland, midbrain, thalamus, basal ganglia, occipital cortex, hippocampus and cerebellum, in descending order. White matter showed negligible PK11195 uptake. Overall, brain PK11195 uptake increased with age, with midbrain and thalamus showing relatively higher increases with age compared with other brain regions.
Conclusions
The brain shows low PK11195 uptake, which is lower in the cortex and cerebellum compared with subcortical structures, suggesting a low level of translocator protein expression. There is no hemispheric asymmetry in PK11195 uptake and the overall pattern of PK11195 distribution in the brain does not change with age. However, brain PK11195 uptake increases with age, with the thalamus and midbrain showing relatively higher increases compared with other brain regions. This increase in uptake suggests an age-related increase in translocator protein expression or the number of cells expressing these receptors or both.
Chronic pain is often associated with microglia activation in the spinal cord. We recently showed that microglial levels of the kinase G protein-coupled receptor kinase (GRK)2 are reduced in models of chronic pain. We also found that mice with a cell-specific reduction of around 50% in GRK2 level in microglia/macrophages (LysM-GRK2+/- mice) develop prolonged inflammatory hyperalgesia concomitantly with ongoing spinal microglia/macrophage activation. The microRNA miR-124 is thought to keep microglia/macrophages in brain and spinal cord in a quiescent state. In the present study, we investigated the contribution of miR-124 to regulation of hyperalgesia and microglia/macrophage activation in GRK2-deficient mice. In addition, we investigated the effect of miR-124 on chronic inflammatory and neuropathic pain in wild-type (WT) mice.
Hyperalgesia was induced by intraplantar IL-1β in WT and LysM-GRK2+/- mice. We determined spinal cord microglia/macrophage miR-124 expression and levels of pro-inflammatory M1 and anti-inflammatory M2 activation markers. The effect of intrathecal miR-124 treatment on IL-1β-induced hyperalgesia and spinal M1/M2 phenotype, and on carrageenan-induced and spared nerve injury-induced chronic hyperalgesia in WT mice was analyzed.
Transition from acute to persistent hyperalgesia in LysM-GRK2+/- mice is associated with reduced spinal cord microglia miR-124 levels. In our LysM-GRK2+/- mice, there was a switch towards a pro-inflammatory M1 phenotype together with increased pro-inflammatory cytokine production. Intrathecal administration of miR-124 completely prevented the transition to persistent pain in response to IL-1β in LysM-GRK2+/- mice. The miR-124 treatment also normalized expression of spinal M1/M2 markers of LysM-GRK2+/- mice. Moreover, intrathecal miR-124 treatment reversed the persistent hyperalgesia induced by carrageenan in WT mice and prevented development of mechanical allodynia in the spared nerve injury model of chronic neuropathic pain in WT mice.
We present the first evidence that intrathecal miR-124 treatment can be used to prevent and treat persistent inflammatory and neuropathic pain. In addition, we show for the first time that persistent hyperalgesia in GRK2-deficient mice is associated with an increased ratio of M1/M2 type markers in spinal cord microglia/macrophages, which is restored by miR-124 treatment. We propose that intrathecal miR-124 treatment might be a powerful novel treatment for pathological chronic pain with persistent microglia activation.
Maternal viral infection during pregnancy is associated with an increase in the incidence of psychiatric disorders with presumed neurodevelopmental origin, including autism spectrum disorders and schizophrenia. The enhanced risk for developing mental illness appears to be caused by deleterious effects of innate immune response-associated factors on the development of the central nervous system, which predispose the offspring to pathological behaviors in adolescence and adulthood. To identify the immune response-associated soluble factors that may affect central nervous system development, we examined the effect of innate immune response activation by polyriboinosinic-polyribocytidylic acid (poly(I:C)), a synthetic analogue of viral double-stranded RNA, on the expression levels of pro- and anti-inflammatory cytokines, chemokines and colony stimulating factors in fetal and postnatal mouse brain 6 h and 24 h after treatment.
C57BL/6J pregnant mice (gestational day 16) or newborn mice (postnatal day 4) received a single intraperitoneal injection of the synthetic analogue of viral double-stranded RNA poly(I:C) (20 mg/kg). Thirty-two immune response-associated soluble factors, including pro- and anti-inflammatory cytokines, chemokines and colony stimulating factors, were assayed 6 h and 24 h after poly(I:C) injection using multiplexed bead-based immunoassay (Milliplex Map) and processed in a Luminex 100 IS instrument.
Maternal exposure to poly(I:C) at gestational day 16 induced a significant increase in cytokines interleukin (IL)-1β, IL-7 and IL-13; chemokines monocyte chemoattractant protein 1 (MCP-1), macrophage inflammatory protein (MIP)-1α, interferon gamma-induced protein (IP)-10 and monokine induced by IFN-gamma (MIG); and in the colony stimulating factor vascular endothelial growth factor (VEGF) in the fetal brain. IL-1β showed the highest concentration levels in fetal brains and was the only cytokine significantly up-regulated 24 h after maternal poly(I:C) injection, suggesting that IL-1β may have a deleterious impact on central nervous system development. In contrast, poly(I:C) treatment of postnatal day 4 pups induced a pronounced rise in chemokines and colony stimulating factors in their brains instead of the pro-inflammatory cytokine IL-1β.
This study identified a significant increase in the concentration levels of the cytokines IL-1β and IL-13, the chemokine MCP-1 and the colony stimulating factor VEGF in the developing central nervous system during activation of an innate immune response, suggesting that these factors are mediators of the noxious effects of maternal immune activation on central nervous system development, with potential long-lasting effects on animal behavior.
Experimental autoimmune encephalomyelitis (EAE) is--in certain aspects--regarded as an animal model of the human CNS autoimmune disease multiple sclerosis (MS). While in EAE CNS-autoantigen-specific immunity is induced in a defined way, the initial processes leading to CNS autoimmunity in humans are so far unknown. Despite essential restrictions, which exist regarding the interpretation of EAE data towards MS, EAE might be a useful model to study certain basic aspects of CNS autoimmunity. Studies in MS have demonstrated that established autoimmune pathology can be critically influenced by environmental factors, in particular viral and bacterial infections. To investigate this interaction, EAE as an instrument to study CNS autoimmunity under defined conditions appears to be a suitable experimental tool. For this reason, we here investigated the influence of the Toll-like-receptor (TLR) ligand CpG oligonucleotide (CpG) on already established CNS autoimmunity in murine proteolipid protein (PLP)-induced EAE in SJL mice. CpG were found to co-stimulate PLPp-specific IFN-γ production in the peripheral immune system and in the CNS. However, CpG induced Interleukin (IL)-17 production in the inflamed CNS both alone and in combination with additional PLPp stimulation. These findings might indicate a mechanism by which systemic infections and the microbial stimuli associated with them may influence already existing CNS autoimmune pathology.
Cerebral cortical neurons have a high vulnerability to the harmful effects of hypoxia. However, the brain has the ability to detect and accommodate to hypoxic conditions. This phenomenon, known as preconditioning, is a natural adaptive process highly preserved among species whereby exposure to sub-lethal hypoxia promotes the acquisition of tolerance to a subsequent lethal hypoxic injury. The cytokine tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor fibroblast growth factor-inducible 14 (Fn14) are found in neurons and their expression is induced by exposure to sub-lethal hypoxia. Accordingly, in this work we tested the hypothesis that the interaction between TWEAK and Fn14 induces tolerance to lethal hypoxic and ischemic conditions.
Here we used in vitro and in vivo models of hypoxic and ischemic preconditioning, an animal model of transient middle cerebral artery occlusion and mice and neurons genetically deficient in TWEAK, Fn14, or tumor necrosis factor alpha (TNF-α) to investigate whether treatment with recombinant TWEAK or an increase in the expression of endogenous TWEAK renders neurons tolerant to lethal hypoxia. We used enzyme-linked immunosorbent assay to study the effect of TWEAK on the expression of neuronal TNF-α, Western blot analysis to investigate whether the effect of TWEAK was mediated by activation of mitogen-activated protein kinases and immunohistochemical techniques and quantitative real-time polymerase chain reaction analysis to study the effect of TWEAK on apoptotic cell death.
We found that either treatment with recombinant TWEAK or an increase in the expression of TWEAK and Fn14 induce hypoxic and ischemic tolerance in vivo and in vitro. This protective effect is mediated by neuronal TNF-α and activation of the extracellular signal-regulated kinases 1 and 2 pathway via phosphorylation and inactivation of the B-cell lymphoma 2-associated death promoter protein.
Our work indicate that the interaction between TWEAK and Fn14 triggers the activation of a cell signaling pathway that results in the induction of tolerance to lethal hypoxia and ischemia. These data indicate that TWEAK may be a potential therapeutic strategy to protect the brain from the devastating effects of an ischemic injury.
Microglia make up the innate immune system of the central nervous system and are key cellular mediators of neuroinflammatory processes. Their role in central nervous system diseases, including infections, is discussed in terms of a participation in both acute and chronic neuroinflammatory responses. Specific reference is made also to their involvement in Alzheimer's disease where microglial cell activation is thought to be critically important in the neurodegenerative process.
Mechanisms underlying the pathology of diabetic retinopathy are still not completely understood. Increased understanding of potential cellular pathways responsive to hyperglycemia is essential to develop novel therapeutic strategies for diabetic retinopathy. Emerging evidence shows the impact of microRNA (miR) as a potential novel therapeutic target. The purpose of our study was to test the hypothesis that miR-15b and miR-16 are altered by hyperglycemia in retinal endothelial cells (REC), and that miR-15b/16 play key roles in regulating insulin signaling through a reduction in TNFα- and suppressor of cytokine signaling 3 (SOCS3)-mediated insulin resistance pathways.
Human REC were maintained in normal (5 mM) glucose or transferred to high-glucose medium (25 mM) for 3 days. REC were transfected with miRNA mimics (hsa-miR-15b-5p and hsa-miR-16-5p) 48 h before cell harvest. A final concentration of 30 nM was used when transfected separately (miR-15b and miR-16) and 15 nM was used in combination (miR-15b + miR-16). A negative control group was treated with an equal concentration of a mimic negative control. The levels of miRNA overexpression were verified using quantitative reverse transcription-polymerase chain reaction and real-time PCR. Western blot analyses were performed to study the levels of phosphorylated Akt (Serine 473), Akt, SOCS3, insulin receptor, phosphorylated insulin receptor (tyrosine 1150/1151), and insulin receptor phosphorylated on Tyr960. In addition, ELISA was used to examine cleaved caspase 3 and TNFα. Analyses were done using unpaired Student t test. Data are presented as mean ± S.E.M.
We demonstrated that the expression of miR-15b and miR-16 was reduced in human REC cultured in hyperglycemia. Overexpression of miR-15b and/or miR-16 reduced TNFα and SOCS3 levels, while increasing insulin-like growth factor binding protein-3 (IGFBP-3) levels and the phosphorylation of insulin receptor (IR)(Tyr1150/1151) in REC cultured in hyperglycemia. These, in turn, led to an increase of Akt phosphorylation and decreased cleavage of caspase 3.
miR-15b and miR-16 play a role in the inhibition of insulin resistance via reduced TNFα and SOCS3 signaling and increased IGFBP-3 levels, resulting in REC protection from hyperglycemia-induced apoptosis. This outcome suggests that both miR-15b and miR-16 are potential therapeutic targets for therapeutics for the diabetic retina.
In an important article published in Nature Medicine, Liu and colleagues described a novel CD4+ FoxA1+ regulatory T (Treg) cell population as distinct regulators of relapsing-remitting multiple sclerosis (RRMS) and experimental autoimmune encephalomyelitis (EAE). CD4+ FoxA1+ Treg cells appear as key regulators of responsiveness to therapy with interferon beta (IFN-β) in RRMS patients. Data indicate that CD4+FoxA1+ FOXP3− Treg cells develop within the central nervous system (CNS), and a potential of cerebellar granule neurons (CGN) in generation of CD4+FoxA1+PD-L1hiFOXP3− Treg cells from encephalitogenic CD4+ T cells.
A CD4 co-receptor specific ligand, IL-16, governs trafficking and biological properties of CD4+ T cells irrespective of their activation state. Functions of IL-16, relevant to Treg cells, include expansion of CD4+CD25+ T cells in long-term cultures with IL-2, de novo induction of FOXP-3 and migration of FOXP-3+ T cells. IL-16 is highly conserved across species including human and mouse. CGN and neurons in hippocampus contain neuronal-IL-16 (NIL-16), splice variant of immune IL-16, and express CD4 molecule. In a CD4-dependent manner, IL-16 supports cultured CGN survival.
Concomitant studies of RRMS lesions and corresponding MOG35–55-induced relapsing EAE in (B6 × SJL)F1 (H-2b/s) mice discovered similar roles of IL-16 in regulation of relapsing disease. In RRMS and EAE relapse, peak levels of IL-16 and active caspase-3 correlated with CD4+ T cell infiltration and levels of T-bet, Stat-1(Tyr701), and phosphorylated neurofilaments of axonal cytoskeleton [NF (M + H) P], suggesting a role of locally produced IL-16 in regulation of CD4+ Th1 inflammation and axonal damage, respectively. IL-16 was abundantly present in CD4+ T cells, followed by CD20+ B, CD8+ T, CD83+ dendritic cells, and Mac-1+ microglia. Apart from lesions, bioactive IL-16 was located in normal-appearing white matter (NAWM) and normal-appearing grey matter (NAGM) in RRMS brain and spinal cord.
A cytokine IL-16 emerges as an important regulator of relapsing MS and EAE. Better understanding of immune cell-neuron interactions mediated by IL-16 will foster development of more specific CD4+ T cell subset-targeted therapies to prevent or ameliorate progression of neuroinflammation and axonal and neuronal damage. Translational studies necessitate corresponding EAE models.
Multiple sclerosis (MS) is a central nervous system-specific autoimmune, demyelinating and neurodegenerative disease. Infiltration of lesions by autoaggressive, myelin-specific CD4+Th1 cells correlates with clinical manifestations of disease. The cytokine IL-16 is a CD4+ T cell-specific chemoattractant that is biased towards CD4+ Th1 cells. IL-16 precursor is constitutively expressed in lymphocytes and during CD4+ T cell activation; active caspase-3 cleaves and releases C-terminal bioactive IL-16. Previously, we used an animal model of MS to demonstrate an important role for IL-16 in regulation of autoimmune inflammation and subsequent axonal damage. This role of IL-16 in MS is largely unexplored. Here we examine the regulation of IL-16 in relation to CD4+ Th1 infiltration and inflammation-related changes of axonal cytoskeleton in MS lesions.
We measured relative levels of IL-16, active caspase-3, T-bet, Stat-1 (Tyr 701), and phosphorylated NF(M+H), in brain and spinal cord lesions from MS autopsies, using western blot analysis. We examined samples from 39 MS cases, which included acute, subacute and chronic lesions, as well as adjacent, normal-appearing white and grey matter. All samples were taken from patients with relapsing remitting clinical disease. We employed two-color immunostaining and confocal microscopy to identify phenotypes of IL-16-containing cells in frozen tissue sections from MS lesions.
We found markedly increased levels of pro- and secreted IL-16 (80 kD and 22 kD, respectively) in MS lesions compared to controls. Levels of IL-16 peaked in acute, diminished in subacute, and were elevated again in chronic active lesions. Compared to lesions, lower but still appreciable IL-6 levels were measured in normal-appearing white matter adjacent to active lesions. Levels of IL-16 corresponded to increases in active-caspase-3, T-bet and phosphorylated Stat-1. In MS lesions, we readily observed IL-16 immunoreactivity confined to infiltrating CD3+, T-bet+ and active caspase-3+ mononuclear cells.
We present evidence suggesting that IL-16 production occurs in MS lesions. We show correlations between increased levels of secreted IL-16, CD4+ Th1 cell inflammation, and phosphorylation of axonal cytoskeleton in MS lesions. Overall, the data suggest a possible role for IL-16 in regulation of inflammation and of subsequent changes in the axonal cytoskeleton in MS.
The interplay between IFN-γ, IL-17 and neutrophils during CNS inflammatory disease is complex due to cross-regulatory factors affecting both positive and negative feedback loops. These interactions have hindered the ability to distinguish the relative contributions of neutrophils, Th1 and Th17 cell-derived effector molecules from secondary mediators to tissue damage and morbidity.
Encephalitis induced by a gliatropic murine coronavirus was used as a model to assess the direct contributions of neutrophils, IFN-γ and IL-17 to virus-induced mortality. CNS inflammatory conditions were selectively manipulated by adoptive transfer of virus-primed wild-type (WT) or IFN-γ deficient (GKO) memory CD4+ T cells into infected SCID mice, coupled with antibody-mediated neutrophil depletion and cytokine blockade.
Transfer of GKO memory CD4+ T cells into infected SCID mice induced rapid mortality compared to recipients of WT memory CD4+ T cells, despite similar virus control and demyelination. In contrast to recipients of WT CD4+ T cells, extensive neutrophil infiltration and IL-17 expression within the CNS in recipients of GKO CD4+ T cells provided a model to directly assess their contribution(s) to disease. Recipients of WT CD4+ T cells depleted of IFN-γ did not express IL-17 and were spared from mortality despite abundant CNS neutrophil infiltration, indicating that mortality was not mediated by excessive CNS neutrophil accumulation. By contrast, IL-17 depletion rescued recipients of GKO CD4+ T cells from rapid mortality without diminishing neutrophils or reducing GM-CSF, associated with pathogenic Th17 cells in CNS autoimmune models. Furthermore, co-transfer of WT and GKO CD4+ T cells prolonged survival in an IFN-γ dependent manner, although IL-17 transcription was not reduced.
These data demonstrate that IL-17 mediates detrimental clinical consequences in an IFN-γ-deprived environment, independent of extensive neutrophil accumulation or GM-CSF upregulation. The results also suggest that IFN-γ overrides the detrimental IL-17 effector responses via a mechanism downstream of transcriptional regulation.
Glucocorticoids have been shown to be effective in the treatment of autoimmune diseases of the CNS such as multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). However, the mechanisms and the site of glucocorticoids' actions are still not completely defined. The aim of this study was to investigate the in vivo effect of the synthetic glucocorticoid methylprednisolone (MP) on the expression and production of proinflammatory cytokines interferon (IFN)-gamma and interleukin (IL)-17 by cells infiltrating CNS tissue.
Experimental autoimmune encephalomyelitis was induced in Dark Agouti (DA) rats by immunization with rat spinal cord homogenate mixed with adjuvants. Commencing on the day when the first EAE signs appeared, DA rats were injected daily for 3 days with MP and/or RU486, an antagonist of glucocorticoid receptor. Cytokine production and gene expression in CNS-infiltrating cells and lymph node cells were measured using ELISA and real time PCR, respectively.
Treatment of rats with MP ameliorated EAE, and the animals recovered without relapses. Further, MP inhibited IFN-gamma and IL-17 expression and production in cells isolated from the CNS of DA rats with EAE after the last injection of MP. The observed effect of MP in vivo treatment was not mediated through depletion of CD4+ T cells among CNS infiltrating cells, or through induction of their apoptosis within the CNS. Finally, the glucocorticoid receptor-antagonist RU486 prevented the inhibitory effect of MP on IFN-gamma and IL-17 production both in vitro and in vivo, thus indicating that the observed effects of MP were mediated through glucocorticoid receptor-dependent mechanisms.
Taken together, these results demonstrate that amelioration of EAE by exogenous glucocorticoids might be, at least partly, ascribed to the limitation of effector cell functions in the target tissue.
Interleukin-17A (IL-17A) is the founding member of a novel family of inflammatory cytokines that plays a critical role in the pathogenesis of many autoimmune diseases, including multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). IL-17A signals through its receptor, IL-17RA, which is expressed in many peripheral tissues; however, expression of IL-17RA in the central nervous system (CNS) and its role in CNS inflammation are not well understood.
EAE was induced in C57Bl/6 mice by immunization with myelin oligodendroglial glycoprotein. IL-17RA expression in the CNS was compared between control and EAE mice using RT-PCR, in situ hybridization, and immunohistochemistry. Cell-type specific expression was examined in isolated astrocytic and microglial cell cultures. Cytokine and chemokine production was measured in IL-17A treated cultures to evaluate the functional status of IL-17RA.
Here we report increased IL-17RA expression in the CNS of mice with EAE, and constitutive expression of functional IL-17RA in mouse CNS tissue. Specifically, astrocytes and microglia express IL-17RA in vitro, and IL-17A treatment induces biological responses in these cells, including significant upregulation of MCP-1, MCP-5, MIP-2 and KC chemokine secretion. Exogenous IL-17A does not significantly alter the expression of IL-17RA in glial cells, suggesting that upregulation of chemokines by glial cells is due to IL-17A signaling through constitutively expressed IL-17RA.
IL-17RA expression is significantly increased in the CNS of mice with EAE compared to healthy mice, suggesting that IL-17RA signaling in glial cells can play an important role in autoimmune inflammation of the CNS and may be a potential pathway to target for therapeutic interventions.
Although IL-17A (commonly referred to as IL-17) has been implicated in the pathogenesis of central nervous system (CNS) autoimmune disease, its role during CNS bacterial infections remains unclear. To evaluate the broader impact of IL-17 family members in the context of CNS infection, we utilized IL-17 receptor (IL-17R) knockout (KO) mice that lack the ability to respond to IL-17, IL-17F and IL-17E (IL-25). In this article, we demonstrate that IL-17R signaling regulates bacterial clearance as well as natural killer T (NKT) cell and gamma-delta (γδ) T cell infiltrates during Staphylococcus aureus-induced brain abscess formation. Specifically, when compared with wild-type (WT) animals, IL-17R KO mice exhibited elevated bacterial burdens at days 7 and 14 following S. aureus infection. Additionally, IL-17R KO animals displayed elevated neutrophil chemokine production, revealing the ability to compensate for the lack of IL-17R activity. Despite these differences, innate immune cell recruitment into brain abscesses was similar in IL-17R KO and WT mice, whereas IL-17R signaling exerted a greater influence on adaptive immune cell recruitment. In particular, γδ T cell influx was increased in IL-17R KO mice at day 7 post-infection. In addition, NK1.1high infiltrates were absent in brain abscesses of IL-17R KO animals and, surprisingly, were rarely detected in the livers of uninfected IL-17R KO mice. Although IL-17 is a key regulator of neutrophils in other infection models, our data implicate an important role for IL-17R signaling in regulating adaptive immunity during CNS bacterial infection.
Pro-inflammatory cytokines are known to have deleterious effects on Schwann cells (SCs). Interleukin 17 (IL-17) is a potent pro-inflammatory cytokine that exhibits relevant effects during inflammation in the peripheral nervous system (PNS), and IL-17-secreting cells have been reported within the endoneurium in proximity to the SCs.
Here, we analyzed the effects of IL-17 on myelination and the immunological properties of SCs. Dorsal root ganglia (DRG) co-cultures containing neurons and SCs from BL6 mice were used to define the impact of IL-17 on myelination and on SC differentiation; primary SCs were analyzed for RNA and protein expression to define the putative immunological alignment of the SCs.
SCs were found to functionally express the IL-17 receptors A and B. In DRG cultures, stimulation with IL-17 resulted in reduced myelin synthesis, while pro-myelin gene expression was suppressed at the mRNA level. Neuronal outgrowth and SC viability, as well as structural myelin formation, remained unaffected. Co-cultures exhibited SC-relevant pro-inflammatory markers, such as matrix metalloproteinase 9 and SCs significantly increased the expression of the major histocompatibility complex (MHC) I and exhibited a slight, nonsignificant increase in expression of MHCII, and a transporter associated with antigen presentation (TAP) II molecules relevant for antigen processing and presentation.
IL-17 may act as a myelin-suppressive mediator in the peripheral nerve, directly propagating SC-mediated demyelination, paralleled by an inflammatory alignment of the SCs. Further analyses are warranted to elucidate the role of IL-17 during inflammation in the PNS in vivo, which could be useful in the development of target therapies.
Inflammatory responses in the cerebrospinal fluid (CSF) of patients with sporadic Creutzfeldt-Jakob disease (sCJD) remain elusive.
We conducted a case-control study, in which 14 patients with sCJD, 14 with noninflammatory neurological disorders, and 14 with autoimmune encephalitis were enrolled. We used the suspension array system to measure the concentrations of 27 cytokines in CSF. The cytokine titers of the three groups were compared, and the correlation between the relevant cytokine titers and clinical parameters was investigated in the patients with sCJD.
Levels of the two cytokines interleukin (IL)-1 receptor antagonist and IL-17 were significantly elevated in the patients with sCJD compared with those in the patients with noninflammatory neurological disorders: IL-17 levels in sCJD were approximately ten times higher than in the noninflammatory neurological disorders (mean, 35.46 vs. 3.45 pg/ml; P < 0.001) but comparable to that in encephalitis (mean, 32.16 pg/ml). In contrast, levels of classical proinflammatory cytokines such as IL-12(p70) and tumor necrosis factor-alpha were increased only in encephalitis. Although not significant, IL-17 titers tended to be higher in the patients with shorter disease duration before CSF sampling (r = -0.452; P = 0.104) and in those with lower CSF total protein concentrations (r = -0.473; P = 0.086).
IL-17 is significantly increased in CSF in sCJD, which can be an early event in the pathogenesis of sCJD.
Toll-like receptor 2 (TLR2) represents a reasonable functional and positional candidate gene for Alzheimer's disease (AD) as it is located under the linkage region of AD on chromosome 4q, and functionally is involved in the microglia-mediated inflammatory response and amyloid-β clearance. The -196 to -174 del polymorphism affects the TLR2 gene and alters its promoter activity.
We recruited 800 unrelated Northern Han Chinese individuals comprising 400 late-onset AD (LOAD) patients and 400 healthy controls matched for gender and age. The -196 to -174 del polymorphism in the TLR2 gene was genotyped using the polymerase chain reaction (PCR) method.
There were significant differences in genotype (P = 0.026) and allele (P = 0.009) frequencies of the -196 to -174 del polymorphism between LOAD patients and controls. The del allele was associated with an increased risk of LOAD (OR = 1.31, 95% CI = 1.07-1.60, Power = 84.9%). When these data were stratified by apolipoprotein E (ApoE) ε4 status, the observed association was confined to ApoE ε4 non-carriers. Logistic regression analysis suggested an association of LOAD with the polymorphism in a recessive model (OR = 1.64, 95% CI = 1.13-2.39, Bonferroni corrected P = 0.03).
Our data suggest that the -196 to -174 del/del genotype of TLR2 may increase risk of LOAD in a Northern Han Chinese population.