Journal of Nanoscience and Nanotechnology

Published by American Scientific Publishers
Print ISSN: 1533-4880
Publications
Ni(1-x)Zn(x)Fe2O4 (x = 0, 0.5 and 1) ferrite nanoparticles were synthesized by chemical co-precipitation method. X-ray diffraction technique and Rietveld refinement were used to investigate the structural characteristics and determination of the particle size which was found to decrease from 4.9 to 4.1 nm as a function of increasing Zn from 0 to 1.0. Vibrating sample magnetometer was used to study magnetic properties of nickel zinc ferrite nanoparticles. Field-dependent magnetization measurements (M-H curve) at 300 K revealed that Zn substitutions on inverse spinel nickel ferrites enhance the magnetic properties. Magnetization as a function of temperature showed the superparamagnetic behavior of Ni(1-x)Zn(x)Fe2O4 (x = 0,0.5 and 1) nanoparticles. Dielectric permittivity and a.c. conductivity were measured as a function of frequency from 100 kHz to 1 MHz at certain temperatures. The observed response in a.c. conductivity as a function of log of frequency of these nickel zinc ferrite systems was believed to be due to the presence of Maxwell-Wagner type interfacial polarization and hopping of electron by means of quantum mechanical tunneling.
 
Nanocrystalline Ce(1-x)Fe(x)O(2-delta) particles with different Fe concentrations (x = 0.0, 0.05, 0.10, 0.15, and 0.20) have been prepared by a gel-combustion method. X-ray diffraction data revealed the formation of an impurity free Ce(1-x)Fe(x)O(2-delta) products up to x = 0.15. This observation is further confirmed from the detailed studies conducted on 10 at.% Fe doped CeO2 using High-Resolution Transmission Electron Microscopy (HRTEM) imaging, Selected-Area Electron Diffraction (SAED) and Raman spectroscopy. DC magnetization studies as a function of field and temperature indicate that they are ferromagnetic with Curie temperature (Tc) well above room temperature.
 
Pristine LiNiO2 and yttrium substituted LiY x Ni1−x O2 (0.00 ≤ x ≤ 0.20) cathode materials were synthesized by sol–gel technique using aqueous solutions of metal nitrates and tartaric acid as a chelating agent. Physical properties of synthesized materials were characterized by using X-ray diffraction analysis (XRD), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). X-ray powder diffraction analysis showed an increase in lattice parameters with increasing yttrium content yttrium occupies within the layer. SEM and TEM analyses were used to visualize the nature and surface morphological aspects of the oxides. Electrochemical studies were made for the assembled cells using galvanostatic charge/discharge studies discharge rate 0.5 C in the potential range between 3 and 4.5 V. Among them, LiY0.15Ni0.85O2 behaved much better, losing about 5% of its initial capacity (195 mA h g−1) after 60 cycles at 185 mA h g−1. While the pristine LiNiO2 lost about 10% of its initial capacity (164 mA h g−1). The substitution of Ni with yttrium, in LiY0.15Ni0.85O2 enhanced the high discharge capacity, good reversibility and best electrochemical performance of rechargeable lithium-ion batteries.
 
Seebeck coefficient of the Fe 19925 P 00075 O 3 sintered at various temperatures.  
Power factor of the Fe 19925 P 00075 O 3 sintered at various temperatures.  
The solution combustion process is used to synthesize Fe1.9925P0.0075O3 nano-powders. The sintered Fe1.9925P0.0075O3 bodies are alpha-Fe2O3-based single phase with the rhombohedral structure. The electrical conductivity increases with an increase in sintering temperature because of an increase in grain size and density. The absolute value of the Seebeck coefficient escalates with an increase in sintering temperature up to 1000 degrees C, and then decreases with a further rise in its sintering temperature. The Fe1.9925P0.0075O3 sintered at 1000 degrees C shows the highest power factor, i.e., 1.39 x 10(-5) W m(-1) K(-2) at 700 degrees C.
 
Y2O3 acts as the matrix material when doped with different content of La2O3 for reducing sintering temperature and refining grains. The (Nd(0.01)La(x)Y(0.99-x))2O3 nanoparticles and transparent ceramics are fabricated by a combustion synthesis. The powder feature is characterized by TEM. The microstructure, mechanical properties and transmittance of the samples are examined by SEM, HV-1000 hardness tester and fluorescence analyzer respectively. The results show that the (Nd(0.01)La(x)Y(0.99-x))2O3 nanoparticles are homogeneous in size and nearly spherical with average diameter in the range of 40-60 nm. There are no other phases except the Y2O3 cubic phase in the (Nd(0.01)La(x)Y(0.99-x))2O3 nanoparticles. The grains of the samples significantly reduce with increasing La2O3 content. The hardness and fracture toughness increase rapidly first and then gradually tend to plateau with increasing La2O3 content. The transmittance of sample also increases gradually with increasing La2O3, the largest transmittance exceeds 77% when the La2O3 content is x = 0.12.
 
Li[Ni(1-x-y)Co(x)Mn(y)]O2 (0.025 < or = x < or = 0.4, 0.015 < or = y < or = 0.25) electrode powders were prepared by a solid-state reaction. The phase purity and R-3m layered structure of the synthesized Li[Ni(1-x-y)Co(x)Mn(y)]O2 materials were confirmed by X-ray diffraction analysis. The particle size of the powder/compounds was decreased with increasing Co and Mn contents to a minimum average particle size of 0.2 approximately 0.3 microm for the LiNi0.35Co0.4Mn0.25O2 powder. A specific capacity of 187 mAh/g was obtained for the LiNi0.35Co0.4Mn0.25O2 electrode with good capacity retention when cycled in the potential region of 3.0-4.6 V with a current density of 20 mA/g at room temperature. Although the structural parameters of the LiNi0.35Co0.4Mn0.25O2 cathode material were similar to those of the LiNil/3CO1/3Mn1/3O2 powder, its specific capacity was higher due to the higher Co contents.
 
We report the effect of varying Cr content on magnetic and magnetocaloric properties of Pr0.6Ca0.4Mn(1-x)Cr(x)O3 samples (x = 0, 0.02, 0.04, 0.06 and 0.08). While the parent compound (x = 0) is a charge ordered and antiferromagnetic insulator, Cr doped compounds are ferromagnetic metals with nearly same Curie temperature (T(c) approximately 140 K). We find unusual field-induced meta-magnetic transition above T(c) in x = 0.02 and 0.04 which is absent in x = 0.06 and 0.08. It is suggested that the paramagnetic phase in these compounds is inhomogeneous with coexistence of nano-size ferromagnetic clusters and short range charge ordered clusters. Field induced growth of ferromagnetic nano-clusters and destruction of short-range charge ordering leads to the observed metamagnetic transition, which results in large magnetic entropy change of -deltaS(M) = 5.043, 6, 5.509 and 4.375 J/kg K under deltaH = 5 T, for x = 0.02, 0.04, 0.06 and 0.08, respectively. In addition, large relative cooling power (RCP) found in these materials (327.384, 286.36, 272.22 and 279.936 J/kg) makes it interesting for practical applications. Our study suggests that creation of ferromagnetic nano-clusters in the paramagnetic phase by Mn-site doping in charge ordered compounds provides an alternative approach to achieve high AS(M) and RCP values.
 
Metal hydrides (MH) are often preferred to absorb and desorb hydrogen at ambient temperature and pressure with a high volumetric density. These hydrogen storage alloys create promising prospects for hydrogen storage and can solve the energetic and environmental issues. In the present research work, the goal of our studies is to find the influence of partial substitution of small amounts of vanadium and tantalum on the hydrogenation properties of TiFe0.7-xMn0.3Vx (x=0.05, and 0.1) and Ti1-yTayFe0.7Mn0.3 (y=0.2, and 0.4) alloys, respectively. The nominal compositions of these materials are TiFe0.65Mn0.3V0.05, TiFe0.6Mn0.3V0.1, Ti0.8Ta0.2Fe0.7Mn0.3, and Ti0.6Ta0.4Fe0.7Mn0.3. All samples were synthesized by arc-melting high purity elements under argon atmosphere. The structural and microstructural properties of the samples were studied by using XRD and SEM, respectively, while the corresponding microchemistry was determined by obtaining EDS measurements at specific regions of the samples. Mapping was obtained in order to investigate atomic distribution in microstructure. Moreover, to ensure the associations between the properties and structure, all samples were examined by an optical microscope for accessional characterization. From all these microscopic examinations a variety of photomicrographs were taken with different magnifications. The hydrogenation properties were obtained by using a Magnetic Suspension Balance (Rubotherm). In this equipment, the hydrogen desorption and re-absorption, can be investigated at constant hydrogen pressures in the range of 1 to 20 MPa (flow-through mode). At least 3.43 wt. % of absorbed hydrogen amount was measured while the effect of substitutions was investigated at the same temperature.
 
0.95 (Na0.5Bi0.5)TiO3-0.05 BaTiO3 +1 wt% Bi2O3 (NBT-BT3) ceramic is used as target to deposit the NBT-BT3 thin films. The excess 1wt% Bi2O3 is used to compensate the vaporization of Bi2O3 during the sintering and annealing processes. NBT-BT3 thin films are successfully deposited using radio frequency (RF) magnetron sputter method and crystallized subsequently using a conventional furnace annealing (CFA) process. The annealed process is conducted in air and in oxygen atmosphere at temperatures ranging from 600–800 °C for 60 min. As compared with the as-deposited NBT-BT3 thin films, the CFA-treated process has improved the grain growth and crystallization. We will show that the annealing atmosphere is the more important parameter to influence the grain growth and crystallization of NBT-BT3 thin films than the annealing temperature. The influences of CFA-treated temperature and atmosphere on the electrical characteristics of NBT-BT3 thin films, including the polarization characteristics (Pr, Ps, and Ec values), the capacitance–voltage (C–V) curves, and the leakage current density–electric field (J–E) curves, are also investigated in this study.
 
The post-heat treated (Y(1-x-y)Gd(x)Eu(y))BO3 (0 < or = x < or = 0.36, 0.06 < or = y < or = 0.13) powders crystallized in a solution of (Y(1-x-y)Gd(x)Eu(y))BO3 with the hexagonal vaterite crystal structure, irrespective of composition. The lattice parameter of the (Y(0.9-x)Gd(x)Eu(0.1))BO3 (0 < or = x < or = 0.36) powders slightly increased with an increase in Gd content. The average powder sizes were sub-micron order and the powders showed relatively uniform size distribution and smooth surface. We obtained improved powder morphologies by adding organic additives such as ethylene glycol and citric acid. For the post-treated (Y(0.9-x)Gd(x)Eu(0.1))BO3, the emission intensity became stronger with increasing Gd content up to x = 0.27. In addition, for the post-treated (Y(0.73-y)Gd(0.27)Eu(y))BO3, the emission intensity gradually increased with Eu content up to y = 0.13. In particular, the emission intensity of the (Y(0.6)Gd)0.27)Eu(0.13))BO3 powders synthesized was higher than that of the commercial (Y,Gd)BO3:Eu3+ product.
 
The calculated crystallite sizes of (La(1-x)Y(x))(0.94)Tb(0.06)PO4 (0 < or = x < or = 1.0) phosphors ranged from 37-39 nm. Annealed (La(1-x)Y(x))(0.94)Tb(0.06)PO4 (0 < or = x < or = 1.0) phosphors showed a smooth, regular, and spherical morphology. Strong excitation peaks were appeared at 226 and 270 nm for all the phosphors. These were caused by the crystal splitting of 7D and 9D of 4f75d1 configuration in Tb3+, respectively. The characteristic emission peaks were observed at 489, 543, 585, and 621 nm, which were caused by the 5D4-7F(j) (j = 6-3) transitions of Tb3+, respectively. The emission intensity at 543 nm increased with an increase in Y content up to 0.5 and then decreased for a higher Y content.
 
Novel cathode active materials, Li[Li(x)(Ni0.3Co0.1Mn0.6)1-x]O2 (x = 0.09, 0.11) composed of rod-like primary particles, but aggregated spherical shape in appearance, were synthesized. The newly Mn-rich cathode active materials were then adopted as cathodes to show the benefits for Li-ion rechargeable batteries. The results show that to use proper nano-scaled particles as a cathode and to make homogeneous particle sizes have great improvements on electrochemical performances, probably ascribed to enhancement of charge transfer kinetics and lower cell impedance at high voltage region (approximately 4.6 V). The electrochemical performances of Mn-rich cathodes were investigated by cycler (BT2000, Arbin), comparing electrochemical behaviors between room and elevated temperature, 55 degtees C. The morphology of cathodes having nano-scaled particles of active materials and the Mn-rich cathode active materials were investigated using field emission scanning electron microscope (FE-SEM) and field emission transmission electron microscope (FE-TEM), also the crystalline phase identification was analyzed by high power X-ray diffractometer (XRD).
 
High rate capable Mn-rich layered Li[Li(x)(Ni0.3Co0.1Mn0.6)1-x]O2 (x = 0.09, 0.11) cathode materials that are fully charged are investigated with respect to stability. Differential scanning calorimetry is used to determine the thermal stability of cathode material compositions together with PVdF binder and a conductive agent by heating from 30 degrees C to 400 degrees C at 10 degrees C/min. In the Li[Li(x)(Ni0.3Co0.1Mn0.6)1-x]O2 (x = 0.09, x = 0.11) cathode materials, the exothermic reaction started at 100 degrees C. Due to thermal runway, a sharp peak was observed at 279.25 degrees C for the material of x = 0.09 with exothermic heat generation of 168.4 J/g. For the Mn-rich cathode material, where x = 0.11, two relatively smaller peaks appeared at 250.72 degrees C and 268.60 degrees C with heat evolution of 71.49 J/g and 93.67 J/g, respectively. These layered cathode materials are thermally stable. The x = 0.09 composition shows huge heat flow occurrence when compared to the x = 0.11. It is concluded from a heat generation analysis that the two Mn-rich cathode materials are thermally stable for lithium rechargeable batteries.
 
Ce(0.8)Sm(0.2)O(2-delta) and Ce(1-x)Gd(x)O(2-delta) (0.1 < or = x < or = 0.3) nano-sized powders were successfully synthesized by the solution combustion synthesis process. The calcined nanopowders showed a ceria-based single phase with a cubic fluorite structure. In this study, we discussed the structural and electrical characteristics of the sintered Ce(0.8)Sm(0.2)O(2-delta) and Ce(1-x)Gd(x)O(2-delta). We obtained high-quality Ce(0.8)Sm(0.2)O(2-delta) and Ce(1-x)Gd(x)O(2-delta) ceramics with a high density, ultra-fine grain size, and high electrical conductivity even at low sintering temperature using the nanosized powders. The electrical conductivities at 800 degrees C for the Ce(0.8)Sm(0.2)O(2-delta) sintered at 1400 degrees C and the Ce(0.8)Gd(0.2)O(2-delta) sintered at 1350 degrees C were 0.110 and 0.104 Scm(-1), respectively.
 
High quality Cd0.9Mn0.1S nanobelts have been synthesized using a one-step thermal evaporation method in large scale. Their morphology and microstructures were determined by X-ray powder diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, Raman spectroscopy and photoluminescence spectroscopy. The observations revealed that the as-synthesized Cd0.9Mn0.1S nanobelts were high quality single crystalline with hexagonal wurtzite structure. The nanobelts grew along [0 -1 1 0] direction with side surfaces of +/- (0 0 0 1) and top surfaces of +/- (2 1 1 0). The nanobelts can range in length from several tens to a hundred microns, in thickness about 50 nm and in tapered width 50 to 300 nm. A hydrogen-assisted vapor-liquid-solid (VLS) combined with vapor-solid (VS) formation mechanism is also proposed to interpret the growth of Cd0.9Mn01S nanobelts in our work. The room-temperature photoluminescence spectrum of Cd0.9Mn0.1S nanobelts featured two luminescence peaks around 515 and 596 nm, which could be attributed to surface state emission and Mn2+ ion intra-3d (4T1-6A1) transition, respectively.
 
Magnetic properties, phase evolution, and microstructure of melt spun Hf-substituted Sm(Co0.97Hf0.03)(x)Cy (x = 5-9; y = 0-0.1) ribbons quenched at the wheel speed of 40 m/s are investigated. X-ray diffraction analysis shows that the main phases existed in Sm(Co0.97Hf0.03)(x) ribbons are 1:5 phase for x = 5-5.5; 1:5 and 1:7 phases for x = 6; 1:7 phase for x = 6.5-7.5; 1:7 and 2:17 phases for x = 8; and only 2:17 phase for x = 8.5-9, respectively. For Sm(Co0.97Hf0.03)(x) (x = 5-9) ribbons, the optimum magnetic properties of B(r) = 5.6 kG, (i)H(c)= 15.6 kOe and (BH)(max) = 7.1 MGOe are obtained for Sm(Co0.97Hf0.03)6.5 ribbons. Furthermore, a slight amount of C addition in Sm(Co0.97Hf0.03)(x) ribbons slightly modify phase constitution and effectively refine the grain size from 200-700 nm for C free ribbons to 10-70 nm, strengthening the exchange coupling effect between magnetic grains of the ribbons. As a result, magnetic properties are further improved. The magnetic properties of B(r) = 6.9 kG, (i)H(c) = 9.2 kOe and (BH)(max) = 10.0 MGOe can be achieved for Sm(Co0.97Hf0.03)7.5C0.1 nanocomposites.
 
Only two of the first row transition metals have elemental oxides that are either ferro- or ferri-magnetic. These are CrO2 and Fe3O4. The electron spin alignment that promotes the ferro(i)magnetism is associated with a double exchange mechanism that requires mixed valence as well as metallic conductivity. This paper describes a novel way to realize these two necessary, but not sufficient conditions for double exchange magnetism. These are mixed valence and a hopping conductivity that promotes at least intra-plane electron spin alignment in a complex oxide perovskite host, A(B,C)O3. A is an ordinary metal, or a rare earth atom, B is a d0 transition metal, and C is a d(n) transition metal in which n > or = 1, as for example in GdSc1-xTi(x)O3. This article combines X-ray absorption spectroscopy, multiplet theory, charge transfer multiplet theory and degeneracy removal by Jahn-Teller effect mechanisms to demonstrate mixed valence for both Sc and Ti above a percolation threshold, x > 0.16, in which hopping transport gives rise to a metal to insulator transition.
 
Mn-rich layered Li[Ni0.3M0.2Mn0.5]O2 (M = Mg, In, and Gd) cathode active materials were synthesized by a simple sol-gel method and comparative studies of those materials depending on doping elements were carried out.
 
Nanocrystalline Sn1-xInxO2 (0 < or = x < or = 0.2) has been successfully prepared by a solution chemical route. High-resolution transmission electron microscopy studies show that the average grain size of Sn0.8In0.2O2 heated at 310 degrees C, 500 degrees C, and 800 degrees C for 12 h is about 3-4 nm, 5-6 nm, and 7-10 nm, respectively. The corresponding values for pure SnO2 are 3-4 nm, 7-10 nm, and 50-90 nm, respectively. Powder X-ray diffraction and electron diffraction studies confirm the existence of solid solution only in the nanocrystalline state (the average particle size is in the range of 5-10 nm) with the solubility limited to 20% of In2O3. Indium ions stabilize the nanocrystalline nature of Sn1-xInxO2 (0 < or = x < or = 0.2) and prevent the grain growth by entering the SnO2 lattice. The thermal characteristics of nanocrystalline Sn1-xInxO2 (0 < or = x < or = 0.2) investigated by thermogravimetric (TG) and differential thermal analysis (DTA) show that the solid solution decomposes at 820 degrees C into SnO2 and In2O3, which is accompanied by a rapid crystal growth. The electrical conductivity and activation energy of Sn1-xInxO2 (0 < or = x < or = 0.2) undergo significant changes when the average grain size is less than or equal to 2 x the Debye length, LD.
 
Lanthanum strontium manganite (La0.8Sr0.2MnO3±δ , LSM) powders with a high specific surface area (55.26 m2/g) were successfully synthesized by aerosol flame synthesis (AFS) technique. The crystallinity and morphology of the synthesized powders sintered at various temperatures were studied by XRD, TEM and BET. The synthesized powders exhibited spherical shape mostly in a few nanometer ranges with a relatively high crystallinity due to thermal plasma reactions in a high temperature of oxy-hydrogen flame. To analyze electrochemical performances of synthesized LSM powders, impedance spectroscopy (IS) was carried out with the symmetric cells prepared by slurry based electrostatic spray deposition (ESD) onto the YSZ electrolyte pellet. The interfacial polarization resistances were 3.04 Ω·cm2 at 750 °C which is relatively lower than that of micro-porous film (7.24 Ω·cm2) applying micro-sized powders deposited on same condition.
 
The three-layer structure microwave absorbers with thickness of 2 mm were designed based on nanocrystalline alpha-Fe, Fe0.2(Co0.2Ni0.8)0.8 and Ni0.5Zno.sFe204 porous microfibers with diameters about 2-5 microm. The electromagnetic parameters and microwave absorption properties were investigated by vector network analyzer in the frequency range of 2-18 GHz. The results show that the three-layer structure microwave absorbers display stronger absorption properties in a wide frequency range than the single-layer and double-layer microwave absorber. For the three-layer structure, the microwave absorption properties are mainly influenced by the microfibers layer arrangement order, total thickness and each layer thickness. When the Ni0.5Zn0.5Fe2O4 porous microfibers layer is arranged as the impedance-matching surface layer, with a total thickness of 2 mm consisting of 0.7 mm thick alpha-Fe porous microfibers inner layer, 0.9 mm thick Fe0.2(Co0.2Ni0.8)0.8 porous microfibers medium layer and 0.4 mm thick impedance-matching surface layer, the three-layer structure has a strongest microwave absorption of 45.7 dB at 12.8 GHz, the absorption bandwidth (with RL < -10 dB ) of 10.2 GHz from 7.8 GHz to 18 GHz and bandwidth (with RL < -20 dB) of 4.4 GHz from 11.1 GHz to 15.5 GHz respectively. This three-layer structure is promising microwave absorbers to meet the requirements of thin thickness, light weight and wide band for military and civil applications.
 
We successfully synthesized nano-sized Ce(0.8)Gd(0.2)O(2-delta) powders by combustion method, using gelatin as fuel. The calcined powders showed high-quality characteristics, i.e., nano-scale size (14-35 nm) and narrow size distribution. The structural, morphological, and electrical characteristics of the sintered Ce(0.8)Gd(0.2)O(2-delta) were studied systematically, depending on sintering temperature. The crystal structure of the Ce(0.8)Gd(0.2)O(2-delta) belonged to the cubic fluorite structure. The gelatin-assisted combustion synthesized Ce(0.8)Gd(0.2)O(2-delta) powders allowed to sinter well at low temperature for dense and ultra-fine Ce(0.8)Gd(0.2)O(2-delta) electrolyte with good electrical conductivity. The sintering temperature of the Ce(0.8)Gd(0.2)O2 powder was approximately 300 degrees C lower than that of conventional solid-state synthesized powder. The nanopowder produced was sintered into pellets with relative densities over 99.1% of the theoretical value even at 1400 degrees C. The Ce(0.8)Gd(0.2)O(2-delta) sintered at 1400 degrees C exhibited a conductivity of 0.101 S/cm at 800 degrees C in air.
 
Nanocrystalline NiFe2O4 with different particle sizes and nanocomposites of (NiFe2O4)(1-x)(Al2O3)x (x = 0.25, 0.40) were prepared by using co-precipitation method. In this method two techniques viz., 'ultrasonication' and 'magnetic stirring' during co-precipitation were used. The as prepared samples were annealed at different temperatures to obtain samples with different particle sizes. The formation of the nanocrystalline spinel phases of all the samples were confirmed by X-ray diffraction (XRD) patterns. The sizes of the nanoparticles of all the samples were calculated from the broadening of the (311) line in the XRD pattern. The distribution of sizes are remarkably less in samples obtained from 'ultrasonication' technique compared to those obtained in 'magnetic stirring' technique. The different soft magnetic quantities viz., coercive field, magnetization, remanance, hysteresis losses etc. were extracted from the ac hysteresis loops observed at different frequencies. The variations of coercive field and hysteresis loss as functions of frequency and particle sizes have been studied. Mössbauer spectra of the samples along with the hysteresis loops recorded at room temperature indicate the presence of superparamagnetic (SPM) relaxations of the nanoparticles. Also, SPM relaxations have been introduced in the samples annealed at higher temperature by encapsulating the nanoparticles in non-magnetic matrix of Al2O3 with 40% coating.
 
A pseudomorphic Al0.5Ga0.5As/In0.25Ga0.75As/GaAs asymmetric quantum wire (QWR) structure was grown on GaAs V-grooved substrate by low pressure metal organic vapor phase epitaxy. The formation of crescent shaped QWRs at the bottom of the V-grooves was confirmed by both transmission electron microscopy and photoluminescence (PL) spectra. The temperature dependence of PL spectra demonstrated a fast decrease of the sidewall quantum well PL intensity with increasing temperature, which originates from relaxation of carriers from well to wire region. The self-aligned dual implantation technique was successfully used to selectively disable the adjacent quantum structures. Decrease of the PL intensity of QWR at 8 K was observed after selective implantation, which resulted from a decreased number of carriers relaxed from adjacent quantum structures.
 
This study investigated the morphological and electromechanical characteristics of 0.2PZN-0.8PZT films fabricated using a PbTiO3 layer. Crack-free 1-microm-thick films with a pure perovskite phase were obtained on Pt/Ti/SiO2/Si substrates using a modified sol-gel deposition method. A highly dense and smooth morphology and a high piezoelectric coefficient (d33) of 230 pC/N were observed in a 0.2PZN-0.8PZT film with a PbTiO3 insertion layer after annealing at 750 degrees C. The as-produced sol-gel-driven 0.2PZN-0.8PZT thin films are attractive for application to piezoelectrically operated microelectronic actuators, sensors, or energy harvesters due to their low facility cost, smooth surface, and excellent electromechanical characteristics.
 
Structural, magnetic and magnetocaloric properties of sol-gel prepared, nanocrystalline oxides Pr(1-x)A(x)Mn(1-y)Co(y)O3 (A = Ca, Sr) (x = 0.3; y = 0.5) (cubic, space group Fm3m) have been studied. From the X-ray data, the crystallite size of Pro.7Ca0.3Mn0.5Co0,503 and Pr0.7Sr0.3Mn0.5Co0.5O3 samples is found to be approximately 24 nm and approximately15 nm respectively. High resolution transmission electron microscopy image shows average particle size of approximately 34 nm and approximately 20 nm. Magnetization measurements indicate a Curie temperature of approximately 153 K and approximately172 K in applied magnetic field of 100 Oe for Pr0.7Ca0.3Mn0.5Co0.5O3 and Pr0.7Sr0.3Mn0.5Co0.O3 compounds. The magnetization versus applied magnetic field curves obtained at temperatures below 150 K show significant hysteresis and magnetization is not saturated even in a field of 7 T. The magnetocaloric effect is calculated from M versus H data obtained at various temperatures. Magnetic entropy change shows a maximum near T(c) for both the samples and is of the order approximately 2.5 J/kg/K.
 
We successfully synthesized nano-sized Ca(3-x)Cu(x)Co4O9 (0 < or = x < or = 0.32) powders by solution combustion process. Plate-like grains and porous structure were observed in the sintered Ca(3-x)Cu(x)Co4O9 ceramics. The sintered Ca(3-x)Cu(x)Co4O9 showed a monoclinic symmetry. The electrical conductivity of the Ca(3-x)Cu(x)Co4O9 increased with increasing temperature, indicative of a semiconducting behavior. The added Cu led to a significant increase in the electrical conductivity. The Seebeck coefficient of the Cu-added Ca(3-x)Cu(x)Co4O9 was much higher than that of the Cu-free Ca3Co4O9. The highest power factor (9.99 x 10(-4) Wm(-1)K-2) was obtained for Ca2.76Cu0.24Co4O9 at 800 degrees C.
 
The Mn0.720Ni0.175Co0.105(OH)2 precursor was co-precipitated by the Couette-Taylor reactor. The 0.3Li2MnO3 x 0.7LiMn0.60Ni0.25Co0.15O2 of the high capacity cathode material for a Li-ion battery was synthesized according to the amount of lithium excess (5-20 mol.%). X-ray diffraction (XRD) and field emission-scanning electron microscopy (FE-SEM) were used to characterize the 0.3Li2MnO3 x 0.7Li-Mn0.60Ni0.25Co0.15O2. Based on the XRD patterns and FE-SEM images, the 5 and 10 mol.% lithium excess samples were observed for spinel structure. The 15 and 20 mol.% lithium excess samples were not observed for the structure. We can conclude that the spinel structure was made in 0.3Li2MnO3 x 0.7LiMn0.60-Ni0.25Co0.15O2, due to a lack of lithium. The discharge specific capacity of 5, 10, 15, and 20 mol.% lithium excess were measured at 216, 246, 262, and 261 mA h g(-1), respectively. Cyclic voltammograms show that the Li2MnO3 has a lower lithium influence than a spinel or layered structure. Based on these experiment results, we can conclude that the best Li source amount of the 0.3Li2MnO3 x 0.7LiMn0.60-Ni0.25Co0.15O2 synthesis is a 15 mol.% excess.
 
BaSm(x)Fe(12-x)O19 (x < or = 0.4) ferrite nanofibers were prepared by sol-gel method from starting reagents of metal salts and citric acid. These nanofibers were characterized by TG-DTA, FTIR, SEM, XRD and VSM. These results show that the BaSm(x)Fe(12-x)O19 (x < or = 0.4) ferrite nanofibers were obtained subsequently from calcination at 750 degrees C for 1 h. The BaSm(x)Fe(12-x)O19 (x < or = 0.4) microstructure and magnetic property are mainly influenced by chemical composition and heat-treatment temperature. The grain sizes of BaSm0.3Fe11.7O19 ferrite nanofibers are in a nanoscale from 40 nm to 62 nm corresponding to the calcination temperature from 750 degrees C to 1050 derees C. The saturation magnetization of BaSm(x)Fe(12-x)O19 ferrite nanofiber calcined at 950 degrees C for 1 h initially decreases with the Sm content from 0 to 0.3 and then increases with a further Sm content, while the coercivity exhibits a continuous increase from 348 kA x m(-1) (x = 0) to 427 kA x m(-1) (x = 0.4). The differences of magnetic properties are attributed to lattice distortion and enhancement for the anisotropy energy.
 
20%Yb3+, 0.5%Tm3+ co-doped YF3 and GdF3 were synthesized through a facile hydrothermal method. After annealing under an argon atmosphere, the sizes and morphologies of the two samples were characterized by field emission scanning electron microscopy, and the phase and crystallization were analyzed by X-ray diffraction. With a 980 nm continuous wave laser diode as the excitation source, blue and ultraviolet upconversion emissions in the wavelength range of 260-510 nm of Tm3+ and Gd3+/Tm3+ ions were recorded. Under the same excitation conditions, the upconversion emission spectra of the two nanocrystals were compared and analyzed. Gd3+ in the ground state cannot absorb 980 nm photons directly because of the large energy gap between the ground state 8S7/2 and the first excited state 6P7/2. In the 20%Yb3+, 0.5%Tm3+ co-doped GdF3 nanocrystals, the excited states 6I(J) of Gd3+ can be populated through the energy transfer 3P2 --> 3H6 (Tm3+): 8S7/2 --> 6I(J)(Gd3+), meaning that Yb3+ acted as primary sensitizers and Tm3+ acted as secondary sensitizers, transferred energies to host material Gd3+ and resulted in the ultraviolet upconversion emission of the host ions. In this article, the upconversion luminescent dynamics were studied at the onset of a 980 nm pulsed laser from an optical parametric oscillator pumped by a 10 ns pulsed Nd:YAG laser, too.
 
XRD patterns of precursor nanofibers and products calcined at different temperatures. 
SrFe12O19/Ni(0.5)Zn(0.5)Fe2O4 composite ferrite nanofibers of diameters about 100 nm with mass ratio 1:1 have been prepared by the electrospinning and calcination process. The SrFe12O19/Ni(0.5)Zn(0.5)Fe2O4 composite ferrites are formed after calcined at 700 degrees C for 2 hours. The composite ferrite nanofibers are fabricated from nanosized Ni(0.5)Zn(0.5)Fe2O4 and SrFe12O19 ferrite grains with a uniform phase distribution. The ferrite grain size increases from about 11 to 36 nm for Ni(0.5)Zn(0.5)Fe12O4 and 24 to 56 nm for SrFe12O19 with the calcination temperature increasing from 700 to 1100 degrees C. With the ferrite grain size increasing, the coercivity (Hc) and remanence (Mr) for the SrFe12O19/Ni(0.5)Zn(0.5)Fe2O4 composite ferrite nanofibers initially increase, reaching a maximum value of 118.4 kA/m and 31.5 Am2/kg at the grain size about 40 nm (SrFe12O19) and 24 nm (Ni(0.5)Zn(0.5)Fe2O4) respectively, and then show a reduction tendency with a further increase of the ferrite grain size. The specific saturation magnetization (Msh) of 63.2 Am2/kg for the SrFe12O19/Ni(0.5)Zn(0.5)Fe2O4 composite ferrite nanofibers obtained at 900 degrees C for 2 hours locates between that for the single SrFe12O19 ferrite (48.5 Am2/kg) and the single Ni(0.5)Zn(0.5)Fe2O4 ferrite (69.3 Am2/kg). In particular, the Mr value 31.5 Am2/kg for the SrFe12O19/Ni(0.5)Zn(0.5)Fe2O4 composite ferrite nanofibers is much higher than that for the individual SrFe12O19 (25.9 Am2/kg) and Ni(0.5)Zn(0.5)Fe2O4 ferrite (11.2 Am2/kg). These enhanced magnetic properties for the composite ferrite nanofibers can be attributed to the exchange-coupling interaction in the composite.
 
Porous Zn1–x Cu x Al2O4 (x =0,0.1,0.2,0.3,0.4,0.5) spinel nanostructures were synthesized by one-pot microwave combustion technique. All the samples were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) and scanning electron microscopy (SEM). The XRD patterns confirm the formation of single phase ZnAl2O4 without any impurities. The results of XRD indicated the average crystallite size in the range of 12.44–22.86 nm. FT-IR spectra show the vibrational stretching frequencies corresponding to the zinc aluminate spinel structure. The estimated band gap of undoped ZnAl2O4 was 4.96 eV indicating the quantum confinement phenomenon. DRS spectra also indicated the band gap narrowing effect with increase in copper ion concentrations. The defect centers acting as trap levels were obtained from photoluminescence studies responsible for the emission spectra. SEM images showed the features of well created pore structures in all the matrices. The percentage porosity of zinc aluminate matrices decreased with increasing copper doping.
 
The luminescent complex terbium (III)-trimesic acid (TMA)-1,10-phenanthroline (phen) nanorod was synthesized in the polyvinylpyrrolidone (PVP) matrix by a co-precipitation method. The chemical formula of the synthesized complex was speculated to be PVP/TbL(phen)0.5·7H2O by inductively coupled plasma-atomic emission spectroscopy (ICP-AES), elemental analysis and Fourier-transform infrared spectroscopy (FTIR). The X-ray diffraction pattern (XRD) of PVP/TbL(phen)0.5·7H2O indicated that it was a crystalline complex. The transmission electron microscopy (TEM) result showed that the complex was nanorods with diameters of about 80–100 nm. The thermogravimetric curve (TGA) analysis exhibited that the complex has good stability below 400 °C. UV-Vis diffuse reflectance spectra showed that there is a maximum absorption at 300 nm. The photoluminescence analyses (PLA) showed that the synthesized complex emitted the characteristic green fluorescence of Tb (III) ions under ultraviolet light excitation. The emission peaks of PVP/TbL(phen)0.5·7H2O at 488, 542, 581, and 618 nm using 278 nm as exciting wavelength can be assigned to the 5D4 → 7F6, 5D4 → 7F5, 5D4 → 7F4, and 5D4 → 7F3 electron transitions of the Tb3+ ions, respectively.
 
The promotional effect of nanosized Ru, Fe, Au, and Mn particles on VOHPO4 x 0.5H2O (VHP) catalytic properties was investigated in benzene hydroxylation reaction using hydrogen hydroperoxide (H2O2) as oxidant. Catalytic results indicated a profound effect of the nanoparticle dopants on VHP catalyst activity and products distribution. Amongst the promoted VHP catalysts, Au/VHP exhibited high catalytic effect with benzene conversion of 76% at a combined 85.5% selectivity toward the formation of phenol and hydroquinone achieved in 6 h under optimised reaction conditions. The extended scope application of nanosized doped Au-VHP showed to provide an effective catalyst for activation of the aromatic hydrocarbons C-H bonds into oxygenate derivatives. The catalyst could be re-used for several cycles with insignificant loss of activity. The doped nanosized Au-VHP catalyst provide a clean promising catalytic route based on heterogeneous catalysis for transformation of aromatics into value-added oxygenates.
 
The purpose of our research is to explore the preparation method of a new nanosized As2O3/Mn0.5Zn0.5Fe2O4 thermosensitive magnetoliposome and study its antitumor effect on MDA_MB_231 cells. The liposomes prepared by the method of rotatory film and high-pressure homogenization were detected by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), nano-particles detector, atom fluorescence spectrophotometer and differential scanning calorimetry (DSC). The therapeutic effects of the nanosized thermosensitive magnetoliposomes combined hyperthermia on human MDA_MB_231 cells in vitro were evaluated by MTT assay and flow cytometry assay. The results indicated that the nanosized As2O3/Mn0.5Zn0.5Fe2O4 thermosensitive magnetoliposomes were prepared successfully. The liposomes were spherical, and most of them were single-room. The exat average diameter of them was 103.8 nm. EDS showed each nanosized As2O3/Mn0.5Zn0.5Fe2O4 thermosensitive magnetoliposome contained P, Mn, Zn, Fe, and As elements, and this proved liposomes have successfully entrapped As2O3 and Mn0.5Zn0.5Fe2O4. The encapsulation ratio of As2O3 detected by atom fluorescence spectrophotometer was 82.16%. The result of heating test showed that Mn0.5Zn0.5Fe2O4 can serve as a heating source upon alternating magnetic field (AMF) exposure leading the nanosized thermosensitive liposomes to reach its phase transition temperature (42.52 degrees C) and release As2O3. MTT assay and flow cytometry assay revealed that the therapeutic effect of the nanosized As2O3/Mn0.5Zn0.5Fe2O4 thermosensitive magnetoliposomes combined with hyperthermia upon AMF on MDA_MB_231 cells was much better than other groups.
 
Understanding of mechanism of porous film formation is of fundamental importance for anodizing in general because, the onset of pore initiation terminates the barrier film growth process over the macroscopic metal surface. Several mechanisms have been proposed to explain pore formation. They include direct injection of aluminum ions into electrolyte and a field-assisted dissolution mechanism. High-resolution scanning electron microscopy of anodized surfaces and direct TEM of ion beam thinned films and ultrarmicrotomed film sections have been employed to gain further insight into the mechanism of initial porous film growth in 0.6 M oxalic acid. From detailed examination of the behavior of the xenon-tagged layer in the film during pore initiation and development in oxalic acid, the film structure of the barrier layer is found to be unstable during pore initiation and the instability of the film structure is possibly related to the field-assisted structure modification process.
 
The Sr0.6Ba0.4Nb2O6 (SBN) thin films were successfully prepared on Pt/Ti/Si and SiO2/Si/Al substrates and crystallized subsequently using rapid thermal annealing (RTA) process in ambient atmosphere for 1 min. The surface morphologies and thicknesses of as-deposited and annealed SBN thin films were characterized by field emission scanning electron microscopy, and the thickness was about 246 nm. As compared with the as-deposited SBN thin films, the RTA-treated process had improved the crystalline structures and also had large influence on the crystalline orientation. When the annealing temperatures increased from 700 degrees C to 900 degrees C, the diffraction intensities of (410) and (001) peaks apparently increased. Annealed at 900 degrees C, the (001) peak had the maximum texture coefficient and SBN thin films showed a highly c-axis (001) orientation. The influences of different RTA-treated temperatures on the polarization-applied electric field (P-E) curves and the capacitance-voltage (C-V) curves were also investigated.
 
It is shown that upon increasing Bi content (x) in La(0.7-x)Bi(x)Sr0.3MnO3, the ground state changes from ferromagnetic metal (x = 0) to charge ordered antiferromagnetic insulator (x > 0.4). The x = 0.3 compound shows unusual magnetic and magnetoresistive properties: it shows hysteresis in magnetization as a function of temperature, field-induced metamagnetic transition in the paramagnetic state, and nearly 100% magnetoresistance. The magnetoresistance as a function of composition at microH = 5 T increases from 38% for x = 0.05 to 99.6% for x = 0.3 and then drops to 60% for x = 0.4. The unusual behavior of x = 0.3 composition is suggested to coexistence of short-range charge-ordered clusters and ferromagnetic domains. The field-induced melting of these charge-ordered clusters leads to large magnetoresistance effect.
 
Bi(3.25)La(0.75)Ti3O12 thin films were prepared on Pt/Ti/SiO2/Si substrates by the metal organic decomposition method. The structural characterizations and the surface morphology observations were carried out applying X-ray diffraction and atomic force microscope, respectively. The annealing temperature and the ultraviolet irradiation effect on the ferroelectric properties were studied. It was found that the remnant polarization (Pr) and the coercive field (Ec) increased with the increase of the applied electric field (E) for all films. With the annealing temperature increasing from 670 degrees C to 750 degrees C, the increase tendency of Pr(E) and Ec (E) got enhanced from 670 degrees C to 720 degrees C, followed by weakened from 720 degrees C at 750 degrees C. These phenomena could be well explained by the different internal strain in films. The remnant polarization and the coercive field showed an obvious decrease when the top electrodes of the thin films were illuminated with UV light due to the screening effect of trapped charge carries.
 
Magnetization measurements were performed on a series of Zn(0.9-x)Fe0.1Cu(x)O samples (0 < x approximately 0.1) prepared using solid state reaction and sol-gel methods. Although Cu is nonmagnetic, we found that increasing Cu content increases the saturation magnetization and enhances the hysteresis losses. Curie behavior of the susceptibility at high temperature indicates the presence of ferromagnetic exchange interaction. Moreover, we found that the exchange interaction and the molecular field coefficient are both ferromagnetic and greatly enhanced with Cu-doping; however, the Arrott-Belov-Kouvel plot did not reveal the presence of spontaneous magnetization down to 4.2 K.
 
The major phase of post-treated Ca(Y(0.915-x)Gd(x)A10.025Eu0.06)BO4 (0 < or = x < or = 0.3) phosphors was solid solutions of the constituent oxides, which had an orthorhombic warwickite-like structure. The calculated crystallite size of the Ca(Y(0.915-x)Gd(x)Al0.025Eu0.06)BO4 phosphors was approximately 36 nm. The Gd additive significantly enhanced both the charge transfer (CT) transition of O2(-) -Eu3+ and the absorption of the host materials, thereby resulting in an increase in emission intensity. The Ca(Y(0.715)Gd0.2Al0.025Eu0.06)BO4 phosphor showed the highest emission intensity at 593 nm, which was over five times as strong as that of a Gd-free Ca(Y0.915Al0.025Eu0.06)BO4 phosphor. The addition of Gd was desirable for improving the photoluminescent properties of red-emitting Ca(Y0.915Al0.025Eu0.06)BO4 phosphors.
 
Basing on the density-functional theory, we have investigated the atomistic and electronic structures of Ga adsorption on GaAs(0001) surface with pre-absorbed Au monolayer for the understanding of the surfactant effect of Au on the growth of GaAs nanowires. The results show that the deposited Au layer enhances significantly the stability of the Ga adatom on substrate compared to the direct adsorption of Ga on GaAs(0001) surface. The reason is that more electrons of the Ga 6p levels are transferred toward surface bands of substrate because of mediation of the Au layer. It is revealed that Au plays a catalyst role to assist the adsorption of Ga on GaAs(0001) surface. These results offer valuable information in the epitaxial growth of semiconductor nanowires.
 
XPS survey spectra for 6H-SiC(000-1) substrates after annealing at 1250 C: (a) in a hydrogen atmosphere of 10 −2 Pa, (b) in a UHV and (c) in an oxygen ambient of 10 −2 Pa.
We investigated the effect of annealing in a hydrogen atmosphere on carbon nanocap formation during decomposition of a 6H-SiC(000-1) surface. It was determined that native oxides were reduced to below the detection limit of X-ray photoelectron spectroscopy after 30 min of annealing at 1200 degrees C in a hydrogen atomosphere at 10(-3) Pa. In addition, we found that the homogeneity of carbon nanocap size was improved on the SiC surface, compared with a sample annealed in ultra-high vacuum. This technique will be useful in the fabrication of homogeneous carbon nanotube layers by surface decomposition of SiC.
 
We propose low-damage and high-efficiency treatment of 4H-SiC(0001) surfaces using atmospheric pressure (AP) hydrogen plasma. Hydrogen radicals generated by the AP plasma was found to effectively remove damaged layers on SiC wafers and improve surface morphology by isotropic etching. Localized high-density AP plasma generated with a cylindrical rotary electrode provides a high etching rate of 1.6 microm/min and yields smooth morphology by eliminating surface corrugation and scratches introduced by wafer slicing and lapping procedures. However, high-rate etching with localized plasma was found to cause an inhomogeneous etching profile depending on the plasma density and re-growth of the poly-Si layer at the downstream due to the decomposition of the vaporized SiH(x) products. On the other hand, for the purpose of achieving moderate etching and ideal cleaning of SiC surfaces, we demonstrated the application of a novel porous carbon electrode to form delocalized and uniform AP plasma over 4 inches in diameter. We obtained a reasonably moderate etching rate of 0.1 microm/min and succeeded in fabricating damage-free SiC surfaces.
 
Raman spectroscopy in conjunction with high-resolution transmission electron microscopy (HRTEM) has been used to study structural characteristics and strain distribution of the nanostructured GaN nucleation layer (NL) and the GaN device layer on (0001) sapphire substrates used for light-emitting diodes and lasers. Raman peaks corresponding to the cubic and the hexagonal phase of GaN are observed in the Raman spectrum from 15 nm and 45 nm NLs. A comparison of the peak intensities for the cubic and hexagonal phases of GaN in the NLs suggests that the cubic phase is dominant in the 15 nm NL and the hexagonal phase in the 45 nm NL. An increase in the density of stacking faults in the metastable cubic GaN (c-GaN) phase with increasing growth time lowers the system energy as well as locally converts c-GaN phase into hexagonal GaN (h-GaN). It also explains the observation of the more intense peaks of h-GaN in the 45 nm NL compared to c-GaN peaks. For the sample wherein an h-GaN device layer was grown at higher temperatures on the NL, narrow Raman peaks corresponding to only h-GaN were observed, confirming the high-quality of the films. The peak shift of the E2(H)(LO) mode of h-GaN in the NLs and the h-GaN film suggests the presence of a tensile stress in the NL which is attributed to defects such as stacking faults and twins, and a compressive stress in high-temperature grown h-GaN film which is attributed to the thermal-expansion mismatch between the film and the substrate. The peak shifts of the substrate also reveal that during the low temperature growth of the NL the substrate is under a compressive stress which is attributed to defects in the NL and during the high temperature growth of the device layer, there is a tensile strain in the substrate as expected from differences in coefficients of thermal expansion of the film and the substrate during the cooling cycle.
 
The growth of indium and aluminum nanostructures on molybdenum disulphide (MoS2)(0001) substrate has been studied using scanning tunneling microscopy in ultra-high vacuum. At low coverage and room temperature (RT), mostly ultra-thin (approximately 1.2-2 nm) triangular In islands were observed on MoS2. With increasing coverage or high flux, large coalesced irregular islands along with triangular and round-shaped ones of increased average height were found. Triangular and round-shaped islands were obtained after annealing the RT-deposited In on MoS2 sample at 450 K. At approximately 375 K, exclusively triangular In islands were observed. Al nanoparticles with diameter in 4-16 nm range were obtained after a low-flux deposited whereas ramified islands were observed in a high flux at RT. Ultra-thin (approximately 1.20-2 nm) Al islands and films were obtained on MoS2 after deposition at 500 K. These results demonstrate that the shape of In and Al nanostructures grown on MoS2 can be controlled in self-assembly by adjusting substrate temperature, deposition flux and amount.
 
Variation of depth within a single etching spot (3 mm circular diameter) was observed in nanoporous GaN epilayer obtained on photo-assisted electrochemical etching of n and p-type GaN. The different etching depth regions were studied using microRaman and PL(yellow region) for both n-type and p-type GaN. From Raman spectroscopy, we observed that increase in disorder is accompanied by stress relaxation, as depth of etching increases for n-type GaN epilayer. This is well corroborated with scanning electron microscopy results. Contrarily, for p-type GaN epilayer we found that for minimum etching depth, stress in epilayer increases with increase in disorder. This is understood with the fact that as grown p-type GaN is more disordered compared to n-type GaN due to heavy Mg doping and further disorder leads to lattice distortion leading to increase in stress.
 
Photoenhanced chemical (PEC) etching is applicable for processing an n-GaN (0001) surface rapidly. In this process, the surface oxidation is enhanced by photo-generated holes and the resulting oxide can dissolve into solutions. In current work, we conduct bias-assisted PEC etching in a KOH solution with a positively biased wafer, to remove the crystallographically highly damaged layer. The employed substrate was mechanically polished with diamond slurry of sub-micrometer particle size. Without the positive bias, the rate of PEC etching was quite low because the photogenerated holes were quickly depleted by the recombination process at the crystallographic defects and they could not contribute to the oxidation. On the other hand, in the case where the bias was applied, the photogenerated holes and electrons are separated forcibly in the band-bended surface, which effectively contributed to surface oxidation. As a result, a high removal rate was realized even on the damaged surface.
 
Monolayer and bilayer graphene films with a few hundred nm domain size were grown on ultraprecision figured 4H-SiC(0001) on-axis and 8 degrees -off surfaces by annealing in ultra-high vacuum. Using X-ray photoelectron spectroscopy (XPS), atomic force microscopy, reflection high-energy electron diffraction, low-energy electron diffraction (LEED), Raman spectroscopy, and scanning tunneling microscopy, we investigated the structure, number of graphene layers, and chemical bonding of the graphene surfaces. Moreover, the magnetic property of the monolayer graphene was studied using in-situ surface magneto-optic Kerr effect at 40 K. LEED spots intensity distribution and XPS spectra for monolayer and bilayer graphene films could become an obvious and accurate fingerprint for the determination of graphene film thickness on SiC surface.
 
Catalyst-referred etching (CARE) is a novel abrasive-free planarization method. CARE-processed 4H-SiC(0001) surfaces are extremely flat and undamaged over the whole wafer. They consist of single-bilayer-height atomic steps and atomically flat terraces. This suggests that the etching properties depend principally on the atomic-step density of the substrate surface. We used on-axis and 8 degrees off-axis substrates to investigate the processing characteristics that affect the atomic-step density of these substrates. We found a strong correlation between the removal rate and the atomic-step density of the two substrates. For the on-axis substrate, the removal rate increased with increasing surface roughness, which increases with an increasing atomic-step density. The removal rate ratio is approximately the same as the atomic-step density ratio of the two substrates.
 
Top-cited authors
Katsuhiko Ariga
  • National Institute for Materials Science
Yoshinori Ando
  • Meijo University
Ahmad Umar
  • Najran University
Mukul Kumar
  • HEG Ltd. (Bhopal) India
Syed Ismat Shah
  • University of Delaware