Journal of Industrial Microbiology and Biotechnology

Published by Oxford University Press

Online ISSN: 1476-5535

·

Print ISSN: 1367-5435

Articles


Evidence for grow-through penetration of 0.2-μm-pore-size filters by Serratia marcescens and Brevundimonas diminuta
  • Article

February 2013

·

240 Reads

Simran Kaushal

·

·

·

[...]

·

We find that both Brevundimonas diminuta and Serratia marcescens can grow through sterilizing grade filter membranes of different membrane polymer compositions. Although this passage does not occur on a consistent basis, generation of "grow-through positive" results indicate that grow-through can occur stochastically at basal levels. This observation argues that the following risk mitigation strategies during pharmaceutical aseptic processing are warranted: minimization of processing times, and monitoring, minimizing and characterizing pre-filter bioburden.
Share

Anaerobic co-reduction of chromate and nitrate by bacterial cultures of Staphylococcus epidermidis L-02
  • Article
  • Full-text available

October 2005

·

96 Reads

Industrial wastewater is often polluted by Cr(VI) compounds, presenting a serious environmental problem. This study addresses the removal of toxic, mutagenic Cr(VI) by means of microbial reduction to Cr(III), which can then be precipitated as oxides or hydroxides and extracted from the aquatic system. A strain of Staphylococcus epidermidis L-02 was isolated from a bacterial consortium used for the remediation of a chromate-contaminated constructed wetland system. This strain reduced Cr(VI) by using pyruvate as an electron donor under anaerobic conditions. The aims of the present study were to investigate the specific rate of Cr(VI) reduction by the strain L-02, the effects of chromate and nitrate (available as electron acceptors) on the strain, and the interference of chromate and nitrate reduction processes. The presence of Cr(VI) decreased the growth rate of the bacterium. Chromate and nitrate reduction did not occur under sterile conditions but was observed during tests with the strain L-02. The presence of nitrate increased both the specific Cr(VI) reduction rate and the cell number. Under denitrifying conditions, Cr(VI) reduction was not inhibited by nitrite, which was produced during nitrate reduction. The average specific rate of chromate reduction reached 4.4 micromol Cr 10(10 )cells(-1 )h(-1), but was only 2.0 micromol Cr 10(10 )cells(-1 )h(-1) at 20 degrees C. The maximum specific rate was as high as 8.8-9.8 micromol Cr 10(10 )cells(-1 )h(-1). The role of nitrate in chromate reduction is discussed.
Download

Characterization of new isolated Ralstonia eutropha strain A-04 and kinetic study of biodegradable copolyester poly(3-hydroxybutyrate-co-4-hydroxybutyrate) production

September 2008

·

470 Reads

A new isolated bacterial strain A-04 capable of producing high content of polyhydroxyalkanoates (PHAs) was morphologically and taxonomically identified based on biochemical tests and 16S rRNA gene analysis. The isolate is a member of the genus Ralstonia and close to Ralstonia eutropha. Hence, this study has led to the finding of a new and unexplored R. eutropha strain A-04 capable of producing PHAs with reasonable yield. The kinetic study of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] production by the R. eutropha strain A-04 was examined using butyric acid and gamma-hydroxybutyric acid as carbon sources. Effects of substrate ratio and mole ratio of carbon to nitrogen (C/N) on kinetic parameters were investigated in shake flask fed-batch cultivation. When C/N was 200, that is, nitrogen deficient condition, the specific production rate of 3-hydroxybutyrate (3HB) showed the highest value, whereas when C/N was in the range between 4 and 20, the maximum specific production rate of 4-hydroxybutyrate (4HB) was obtained. Thus, the synthesis of 3HB was growth-limited production under nitrogen-deficient condition, whereas the synthesis of 4HB was growth-associated production under nitrogen-sufficient condition. The mole fraction of 4HB units increased proportionally as the ratio of gamma-hydroxybutyric acid in the feed medium increased at any value of C/N ratio. Based on these kinetic studies, a simple strategy to improve P(3HB-co-4HB) production in shake flask fed-batch cultivation was investigated using C/N and substrate feeding ratio as manipulating variable, and was successfully proved by the experiments.

Response surface optimization of fermentation conditions for producing xylanase by Aspergillus niger SL-05

July 2008

·

103 Reads

Fermentation conditions were statistically optimized for producing extracellular xylanase by Aspergillus niger SL-05 using apple pomace and cotton seed meal. The primary study shows that culture medium with a 1:1 ratio of apple pomace and cotton seed meal (carbon and nitrogen sources) yielded maximal xylanase activity. Three significant factors influencing xylanase production were identified as urea, KH(2)PO(4), and initial moisture content using Plackett-Burman design study. The effects of these three factors were further investigated using a design of rotation-regression-orthogonal combination. The optimized conditions by response surface analysis were 2.5% Urea, 0.09% KH(2)PO(4), and 62% initial moisture content. The analysis of variance indicated that the established model was significant (P < 0.05), "while" or "and" the lack of fit was not significant. Under the optimized conditions, the model predicted 4,998 IU/g dry content, whereas validation experiments produced an enzymatic activity of xylanase at 5,662 IU/g dry content after 60 h fermentation. This study innovatively developed a fermentation medium and process to utilize inexpensive agro-industrial wastes to produce a high yield of xylanase.

Purification and structural characterization of fengycin homologues produced by Bacillus subtilis LSFM-05 grown on raw glycerol

July 2011

·

143 Reads

Raw glycerol is a byproduct of biodiesel production that currently has low to negative value for biodiesel producers. One option for increasing the value of raw glycerol is to use it as a feedstock for microbial production. Bacillus subtilis LSFM 05 was used for the production of fengycin in a mineral medium containing raw glycerol as the sole carbon source. Fengycin was isolated by acid precipitation at pH 2 and purified by silica gel column chromatography and characterized using electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) with collision-induced dissociation (CID). The mass spectrum revealed the presence of the ions of m/z 1,435.7, 1,449.9, 1,463.8, 1,477.8, 1,491.8 and 1,505.8, which were further fragmented by ESI-MS/MS. The CID profile showed the presence of a series of ions (m/z 1,080 and 966) and (m/z 1,108 and 994) that represented the different fengycin homologues A and B, respectively. Fengycin homologues A and B are variants that differ at position 6 of the peptide moiety, having either Ala or Val residues, respectively. Mass spectrometry analyses identified four fengycin A and three fengycin B variants with fatty acid components containing 14-17 carbons. These results demonstrate that raw glycerol can be used as feedstock to produce fengycin, and additional work should focus on the optimization of process conditions to increase productivity.

Improved production of (S)-ketoprofen ester hydrolase by a mutant of Trichosporon brassicae CGMCC 0574

July 2003

·

48 Reads

An efficient screening method following UV mutagenesis yielded a high frequency of improved mutants of Trichosporon brassicae CGMCC 0574, a wild-type esterase-producer capable of enantioselectively hydrolyzing the ethyl ester of ketoprofen [2-(3-benzoylphenyl) propionic acid]. The mutant had an activity 1.8-fold higher than the wild type and was stable in its enzyme production for ten serial transfers. As the best single carbon source, isopropanol improved the specific activity of the enzyme 5-fold; and this did not result from the effect of cell permeabilization. An 18-h culture grown on a medium containing 0.5% glucose plus 0.5% isopropanol produced 3-fold as much esterase as a culture grown on 1% glucose.

Biodegradation of phenol and m-cresol by Candida albicans PDY-07 under anaerobic condition

April 2009

·

96 Reads

Strain Candida albicans PDY-07 was used to study the anaerobic biodegradation of phenol and m-cresol as single and dual substrates in batch cultures. The strain had a higher potential to degrade phenol than m-cresol. The cell growth kinetics of batch cultures with various initial m-cresol concentrations was investigated, and the Haldane kinetic model adequately described the dynamic behavior of cell growth on m-cresol. When cells grew on the mixture of phenol and m-cresol, substrate interactions were observed. Phenol inhibited the utilization of m-cresol; on the other hand, m-cresol also inhibited the degradation of phenol. However, the presence of low-concentration phenol enhanced m-cresol biodegradation; 100 mg/l m-cresol could be completely degraded within a shorter period of time than m-cresol alone in the presence of 150-300 mg/l phenol. The maximum m-cresol biodegradation rate was obtained at the existence of 200 mg/l phenol. Phenol was preferably utilized by the strain as a carbon and energy source. In addition, a sum kinetics model was used to describe the cell growth behavior in binary mixture of phenol and m-cresol, and the interaction parameters were determined. The model adequately predicted the growth kinetics and the interaction between the substrates.

Direct starch fermentation to L-lactic acid by a newly isolated thermophilic strain, Bacillus sp. MC-07

November 2014

·

129 Reads

A newly isolated Bacillus sp. MC-07 showed 99.2 % 16S rRNA gene sequence similarity with the Bacillus thermoamylovorans LMG 18084(T). It demonstrated optimum and maximum growth temperatures of 50 and 62 °C, respectively. The ability of MC-07 to produce optically pure L-lactic acid via direct fermentation of starch without enzymatic hydrolysis was investigated at different pH values (6.0-8.0) by intermittent adjustments every 12 h. During batch fermentation in mineral salt medium containing 0.001 % yeast extract at pH 7.0, 20 g/L of soluble starch was utilized to produce 16.6 g/L L-lactic acid at 50 °C within 24 h of fermentation, with 100 % optical purity, 92.1 % lactic acid selectivity, and an L-lactic acid yield of 0.977 g/g. Direct starch fermentation at pHs 6.0, 6.5, 7.5, and 8.0 resulted in considerably lower concentrations of lactic acid than did at pH 7.0. Compared with B. thermoamylovorans LMG 18084(T), the ability of strain MC-07 to produce L-lactic acid was superior.

Highly glucose tolerant β-glucosidase from Aspergillus unguis: NII 08123 for enhanced hydrolysis of biomass

June 2013

·

577 Reads

Aspergillus unguis NII-08123, a filamentous fungus isolated from soil, was found to produce β-glucosidase (BGL) activity with high glucose tolerance. Cultivation of the fungus in different carbon sources resulted in the secretion of different isoforms of the enzyme. A low molecular weight isoform, which retained ~60 % activity in the presence of 1.5 M glucose, was purified to homogeneity and the purified enzyme exhibited a temperature and pH optima of 60 °C and 6, respectively. The K m and V max of the enzyme were 4.85 mM and 2.95 U/mg, respectively, for 4-nitrophenyl β-D-glucopyranoside. The glucose inhibition constant of the enzyme was 0.8 M, indicating high glucose tolerance, and this is the second-highest glucose tolerance ever reported from the Aspergillus nidulans group. The glucose-tolerant BGL from A. unguis, when supplemented to cellulase preparation from Penicillium, could improve biomass hydrolysis efficiency by 20 % in 12 h compared to the enzyme without additional beta glucosidase supplementation. The beta glucosidase from A. unguis is proposed as a highly potent "blend-in" for biomass saccharifying enzyme preparations.

Encapsulation of Pannonibacter phragmitetus LSSE-09 in alginate-carboxymethyl cellulose capsules for reduction of hexavalent chromium under alkaline conditions

March 2011

·

130 Reads

Cr(VI) was efficiently reduced to Cr(III) by Pannonibacter phragmitetus LSSE-09 encapsulated in liquid-core alginate–carboxymethyl cellulose capsules under alkaline conditions. Taking into account the physical properties of the capsules, the activity of encapsulated cells, and total Cr(III) concentration in the supernatant, optimal conditions (0.5% w/v sodium alginate; 2% w/v sodium carboxymethyl cellulose; 0.1 M CaCl2; 30-min gelation time) for LSSE-09 encapsulation were determined. At optimal conditions, a relatively high reduction rate of 4.20 mg g (dry weight)−1 min−1 was obtained. Total Cr(III) concentration in the supernatant was significantly decreased after reduction, because 63.7% of the formed soluble organo-Cr(III) compounds compared with those of free cells were captured by the relatively smaller porous structure of alginate capsules. The optimal pH value (9.0) for Cr(VI) reduction was not changed after encapsulation. In addition, encapsulated LSSE-09 showed no appreciable loss in activity after eight repeated cycles at 37°C, and 85.7% of its initial activity remained after 35-day storage at 4°C. The results suggest that encapsulated LSSE-09 in alginate–carboxymethyl cellulose capsules has potential biotechnological applications for the detoxification of Cr(VI)-contaminated wastewater.

Stability and activity of lipase in subcritical 1,1,1,2-tetrafluoroethane (R134a)

January 2008

·

24 Reads

The stability and activity of commercial immobilized lipase from Candida antarctica (Novozym 435) in subcritical 1,1,1,2-tetrafluoroethane (R134a) was investigated. The esterification of oleic acid with glycerol was studied as a model reaction in subcritical R134a and in solvent-free conditions. The results indicated that subcritical R134a treatment led to significant increase of activity of Novozym 435, and a maximum residual activity of 300% was measured at 4 MPa, 30 degrees C after 7 h incubation. No deactivation of Novozym 435 treated with subcritical R134a under different operation factors (pressure 2-8 MPa, temperature 30-60 degrees C, incubation time 1-12 h, water content 1:1, 1:2, 1:5 enzyme/water, depressurization rate 4 MPa/1 min, 4 MPa/30 min, 4 MPa/90 min) was observed. While the initial reaction rate was high in subcritical R134a, higher conversion was obtained in solvent-free conditions. Though the apparent conversion of the reaction is lower in subcritical R134a, it is more practicable, especially at low enzyme concentrations desired at commercial scales.

Cloning and sequence analyses of a 2,3-dihydroxybiphenyl 1,2-dioxygenase gene (bphC) from Comamonas sp. SMN4 for phylogenetic and structural analysis

May 2003

·

13 Reads

A genomic library of biphenyl-degrading Comamonas sp. SMN4 for isolating fragments containing the 2,3-dihydroxybiphenyl 1,2-dioxygenase (23DBDO) gene was constructed. The smallest subclone (pNPX9) encoding 23DBDO activity was sequenced and analyzed. The C-terminal domain of 23DBDO from Comamonas sp. SMN4 had five catalytically essential residues and was more highly conserved than the N-terminal domain. Phylogenetic and structural relationships of 23DBDO from Comamonas sp. SMN4 were analyzed.

Table 1 Physiological characteristics of strains HK-1 and HK-3 
Table 2 Biodegradation of chlorinated aliphatics by cell extracts 
Fig. 3 Effects of electron donors on PCE and cis-DCE degradation by cell-free extracts of strains HK-1 and HK-3. Initial protein concentration of crude enzyme was 0.79 mg ml -1 . Results are means of triplicate independent experiments. Control experiment was conducted with enzyme and without electron donors. Data points are means of triplicate observations, and error bars represent ±SD  
Fig. 4 Release of chloride ions during degradation of PCE (a) and cis-DCE (b) by cell-free extracts of strains HK-1 and HK-3. a solid circles (PCE with enzyme); solid squares (PCE without enzyme); solid triangles (chloride ion). b solid circles (cis-DCE with enzyme); solid squares (cis-DCE without enzyme); solid triangles (chloride ion). Initial protein concentration of crude enzyme was 1.2 mg ml -1 . Data points are means of triplicate observations, and error bars represent ±SD  
Fig. 5 Inactivation of PCE dehalogenase by propyl iodide and reactivation by light. The enzyme was reduced by the addition of 2 mM titanium(III) citrate (TC; arrow) prior to inactivation with 0.5 mM propyl iodide (PI). At 40 min, the assay mixture was exposed to light (hm). Relative activity was calculated compared with a control (without PI). One unit (U) of enzyme activity was defined as nmol of PCE degraded per hour under assay conditions. Results were normalized with respect to a maximal activity (100%) of 30 U. Initial protein concentration of crude enzyme was 1.2 mg ml-1. Results are means of duplicate experiments
Isolation and characterization of tetrachloroethylene- and cis-1,2-dichloroethylene-dechlorinating propionibacteria

March 2011

·

202 Reads

Two rapidly growing propionibacteria that could reductively dechlorinate tetrachloroethylene (PCE) and cis-1,2-dichloroethylene (cis-DCE) to ethylene were isolated from environmental sediments. Metabolic characterization and partial sequence analysis of their 16S rRNA genes showed that the new isolates, designated as strains Propionibacterium sp. HK-1 and Propionibacterium sp. HK-3, did not match any known PCE- or cis-DCE-degrading bacteria. Both strains dechlorinated relatively high concentrations of PCE (0.3 mM) and cis-DCE (0.52 mM) under anaerobic conditions without accumulating toxic intermediates during incubation. Cell-free extracts of both strains catalyzed PCE and cis-DCE dechlorination; degradation was accelerated by the addition of various electron donors. PCE dehalogenase from strain HK-1 was mediated by a corrinoid protein, since the dehalogenase was inactivated by propyl iodide only after reduction by titanium citrate. The amounts of chloride ions (0.094 and 0.103 mM) released after PCE (0.026 mM) and cis-DCE (0.05 mM) dehalogenation using the cell-free enzyme extracts of both strains, HK-1 and HK-3, were stoichiometrically similar (91 and 100%), indicating that PCE and cis-DCE were fully dechlorinated. Radiotracer studies with [1,2-¹⁴C] PCE and [1,2-¹⁴C] cis-DCE indicated that ethylene was the terminal product; partial conversion to ethylene was observed. Various chlorinated aliphatic compounds (PCE, trichloroethylene, cis-DCE, trans-1,2-dichloroethylene, 1,1-dichloroethylene, 1,1-dichloroethane, 1,2-dichloroethane, 1,2-dichloropropane, 1,1,2-trichloroethane, and vinyl chloride) were degraded by cell-free extracts of strain HK-1.

The effect of carbon sources and lactate dehydrogenase deletion on 1,2-propanediol production in Escherichia coli

February 2003

·

62 Reads

In previous studies, we showed that cofactor manipulations can potentially be used as a tool in metabolic engineering. In this study, sugars similar to glucose, that can feed into glycolysis and pyruvate production, but with different oxidation states, were used as substrates. This provided a simple way of testing the effect of manipulating the NADH/NAD+ ratio or the availability of NADH on the metabolic patterns of Escherichia coli under anaerobic conditions and on the production of 1,2-propanediol (1,2-PD), which requires NADH for its synthesis. Production of 1,2-PD was achieved by overexpressing the two enzymes methylglyoxal synthase from Clostridium acetobutylicum and glycerol dehydrogenase from E. coli. In addition, the effect of eliminating a pathway competing for NADH by using a ldh – strain (without lactate dehydrogenase activity) on the production of 1,2-PD was investigated. The oxidation state of the carbon source significantly affected the yield of metabolites, such as ethanol, acetate and lactate. However, feeding a more reduced carbon source did not increase the yield of 1,2-PD. The production of 1,2-PD with glucose as the carbon source was improved by the incorporation of a ldh – mutation. The results of these experiments indicate that our current 1,2-PD production system is not limited by NADH, but rather by the pathways following the formation of methylglyoxal.

3-Hydroxypropionaldehyde guided glycerol feeding strategy in aerobic 1,3-propanediol production by Klebsiella pneumoniae

September 2008

·

42 Reads

3-Hydroxypropionaldehyde (3-HPA) is a toxic intermediary metabolite in the biological route of 1,3-propanediol biosynthesis from glycerol. 3-HPA accumulated in culture medium would arouse an irreversible cessation of the fermentation process. The role of substrate (glycerol) on 3-HPA accumulation in aerobic fermentation was investigated in this paper. 1,3-Propanediol oxidoreductase and glycerol dehydratase, two key enzyme catalyzing reactions of 3-HPA formation and consumption, were sensitive to high concentration of 3-HPA. When the concentration of 3-HPA increased to a higher level in medium (ac 10 mmol/L), the activity of 1,3-propanediol oxidoreductase in cell decreased correspondingly, which led to decrease of the 3-HPA conversion rate, then the 3-HPA concentration increasing was accelerated furthermore. 3-HPA accumulation in culture medium was triggered by this positive feedback mechanism. In the cell exponential growth phase, the reaction catalyzed by 1,3-propanediol oxidoreductase was the rate limiting step in 1,3-propanediol production. The level of 3-HPA in culture medium could be controlled by the substrate (glycerol) concentration, and lower level of glycerol could avoid 3-HPA accumulating to a high, lethal concentration. In fed batch fermentation, under the condition of initial glycerol concentration 30 g/L, and keeping glycerol concentration lower than 7-8 g/L in cell exponential growth phase, 3-HPA accumulation could not be incurred. Based on this result, a glycerol feeding strategy was set up in fed batch fermentation. Under the optimized condition, 50.1 g/L of 1,3-propanediol was produced in 24 h, and 73.1 g/L of final 1,3-propanediol concentration was obtained in 54 h.

Inactivation of dhaD and dhaK abolishes by-product accumulation during 1,3-propanediol production in Klebsiella pneumoniae

April 2010

·

46 Reads

1,3-Propanediol (1,3-PD) can be used for the industrial synthesis of a variety of compounds, including polyesters, polyethers, and polyurethanes. 1,3-PD is generated from petrochemical and microbial sources. 1,3-Propanediol is a typical product of glycerol fermentation, while acetate, lactate, 2,3-butanediol, and ethanol also accumulate during the process. Substrate and product inhibition limit the final concentration of 1,3-propanediol in the fermentation broth. It is impossible to increase the yield of 1,3-propanediol by using the traditional whole-cell fermentation process. In this study, dhaD and dhaK, the genes for glycerol dehydrogenase and dihydroxyacetone kinase, respectively, were inactivated by homologous recombination in Klebsiella pneumoniae. The dhaD/dhaK double mutant (designated TC100), selected from 5,000 single or double cross homologous recombination mutants, was confirmed as a double cross by using polymerase chain reaction. Analysis of the cell-free supernatant with high-performance liquid chromatography revealed elimination of lactate and 2,3-butanediol, as well as ethanol accumulation in TC100, compared with the wild-type strain. Furthermore, 1,3-propanediol productivity was increased in the TC100 strain expressing glycerol dehydratase and 1,3-PDO dehydrogenase regulated by the arabinose P(BAD) promoter. The genetic engineering and medium formulation approaches used here should aid in the separation of 1,3-propanediol from lactate, 2,3-butanediol, and ethanol and lead to increased production of 1,3-propanediol in Klebsiella pneumoniae.

Production of 1,3-Propanediol by Clostridium butyricum VPI 3266 in continuous cultures with high yield and productivity

October 2005

·

92 Reads

The effects of dilution rate and substrate feed concentration on continuous glycerol fermentation by Clostridium butyricum VPI 3266, a natural 1,3-propanediol producer, were evaluated in this work. A high and constant 1,3-propanediol yield (around 0.65 mol/mol), close to the theoretical value, was obtained irrespective of substrate feed concentration or dilution rate. Improvement of 1,3-propanediol volumetric productivity was achieved by increasing the dilution rate, at a fixed feed substrate concentration of 30, 60 or 70 g l(-1). Higher 1,3-propanediol final concentrations and volumetric productivities were also obtained when glycerol feed concentration was increased from 30 to 60 g l(-1), at D=0.05-0.3 h(-1), and from 60-70 g l(-1), at D=0.05 and 0.1 h(-1).30 g l(-1) of 1,3-propanediol and the highest reported value of productivity, 10.3 g l(-1) h(-1), was achieved at D=0.30 h(-1) and 60 g l(-1) of feed glycerol. A switch to an acetate/butyrate ratio higher than one was observed for 60 g l(-1) of feed glycerol and a dilution rate higher than 0.10 h(-1); moreover, at D=0.30 h(-1) 3-hydroxypropionaldehyde accumulation was observed for the first time in the fermentation broth of C. butyricum.

A novel thin-layer chromatography method to screen 1,3-propanediol producers

July 2012

·

92 Reads

To date, there is no established protocol for the screening of 1,3-propanediol producers. The proposed method has a wide applicability to harness the commercial potential of microorganisms which produce 1,3-propanediol as the end product. Glycerol fermentation broth of 50 bacteria spotted on thin-layer chromatography plates and run by appropriate solvent systems followed by colour development using vanillin reagent gave different coloured spots with most of the compounds present in the fermentation broth. The appearance of a purple-coloured spot of 1,3-propanediol with a retention factor (R f) of 0.62 forms the basis for the selection of 1,3-propanediol producers. Apart from being a rapid detection system the proposed method is pH independent and its authenticity was reconfirmed by HPLC.

Chemometric modeling and two-dimensional fluorescence analysis of bioprocess with a new strain of Klebsiella pneumoniae to convert residual glycerol into 1,3-propanediol

January 2012

·

66 Reads

The goal of this study was to show that the metabolism of Klebsiella pneumoniae under different aeration strategies could be monitored and predicted by the application of chemometric models and fluorescence spectroscopy. Multi-wavelength fluorescence was applied to the on-line monitoring of process parameters for K. pneumoniae cultivations. Differences observed in spectra collected under aerobiosis and anaerobiosis can be explained by the different metabolic states of the cells. To predict process variables such as biomass, glycerol, and 1,3-propanediol (1,3-PD), chemometric models were developed on the basis of the acquired fluorescence spectra, which were measured continuously. Although glycerol and 1,3-PD are not fluorescent compounds, the results showed that this technique could be successfully applied to the on-line monitoring of variables in order to understand the process and thus improve 1,3-PD production. The root mean square errors of predictions were 0.78 units, 10 g/L, and 2.6 g/L for optical density, glycerol, and 1,3-PD, respectively.

Table 3 Experimental design and results of the steepest ascent 
Table 4 The results of the central composition experiment 
Asymmetric reduction of 4-hydroxy-2-butanone to (R)-1,3-butanediol with absolute stereochemical selectivity by a newly isolated strain of Pichia jadinii

October 2014

·

285 Reads

In this study, a novel strain of Pichia jadinii, HBY61, capable of the biocatalysis of 4-hydroxy-2-butanone (4H2B) to (R)-1,3-BD was isolated. HBY61 produced (R)-1,3-BD with high activity and absolute stereochemical selectivity (100 % e.e). Glucose and beef extract were found to be the key factors governing the fermentation, and their optimal concentrations were determined to be 84.2 and 43.7 g/L, respectively. The optimal bioconversion conditions of 4H2B catalyzed by HBY61 were pH 7.4, 30 °C, and 250 rpm with 6 % (v/v) glucose as the co-substrate. Accordingly, when 45 g/L of 4H2B was divided into three equal parts and added successively into the system at set time intervals, the maximum (R)-1,3-BD concentration reached 38.3 g/L with high yield (85.1 %) and strict 100 % enantioselectivity. Compared with previously reported yields for the biocatalytic production of (R)-1,3-BD, the use of strain HBY61 provided a high yield with excellent stereoselectivity.

Decrease of 3-hydroxypropionaldehyde accumulation in 1,3-propanediol production by over-expressing dhaT gene in Klebsiella pneumoniae TUAC01

August 2008

·

50 Reads

Glycerol can be biologically converted to 1,3-propanediol, a key raw material required for the synthesis of polytrimethylene terephthalate and other polyester fibers. In 1,3-propanediol synthesis pathway, 3-hydroxypropionaldehyde (3-HPA) was an inhibitory intermediary metabolite. The accumulation of 3-HPA in broth would cause an irreversible cessation of the fermentation process. With the object of reducing 3-HPA level in the fermentation broth, dhaT gene which encodes 1,3-propanediol oxidoreductase (PDOR) was cloned and over expressed in 1,3-propanediol producing bacterium Klebsiella pneumoniae TUAC01. dhaT gene was linked downstream of the ptac promoter in an expressing vector pDK6 to form plasmid pDK-dhaT. The newly formed pDK-dhaT was transformed to K. pneumoniae TUAC01. Under the inducement of IPTG, PDOR was over-expressed when the constructed strain was cultured on an LB medium or a fermentation medium. A 5 L scale-up fermentation experiment was done to test the 3-HPA accumulation in broth, with the initial substrate glycerol 30 g/L; the peak levels of 3-HPA in broth were 7.55 and 1.49 mmol/L for control host strain and the constructed strain, respectively. In 50 g/L initial glycerol experiment, the peak level of 3-HPA in broth was 12.57 and 2.02 mmol/l for the control host strain and the constructed strain, respectively. Thus the fermentation cessation caused by the toxicity of 3-HPA was alleviated in the constructed strain.

High-level expression of a novel Penicillium endo-1,3(4)-β-D-glucanase with high specific activity in Pichia pastoris

February 2012

·

51 Reads

A novel endo-1,3(4)-β-D-glucanase gene (bgl16C1) from Penicillium pinophilum C1 was cloned and sequenced. The 945-bp full-length gene encoded a 315-residue polypeptide consisting of a putative signal peptide of 18 residues and a catalytic domain belonging to glycosyl hydrolase family 16. The deduced amino acid sequence showed the highest identity (82%) with the putative endo-1,3(4)-β-glucanase from Talaromyces stipitatus ATCC 10500 and 60% identity with the characterized β-1,3(4)-glucanase from Paecilomyces sp. FLH30. The gene was successfully overexpressed in Pichia pastoris. Recombinant Bgl16C1 constituted 95% of total secreted proteins (2.61 g l⁻¹) with activity of 28,721 U ml⁻¹ in a 15-l fermentor. The purified recombinant Bgl16C1 had higher specific activity toward barley β-glucan (12,622 U mg⁻¹) than all known glucanases and also showed activity against lichenan and laminarin. The enzyme was optimally active at pH 5.0 and 55°C and exhibited good stability over a broad acid and alkaline pH range (>85% activity at pH 3.0-7.0 and even 30% at pH 11.0). All these favorable enzymatic properties make it attractive for potential applications in various industries.

Bioconversion of glycerol to 1,3-propanediol in thin stillage-based media by engineered Lactobacillus panis PM1

February 2014

·

91 Reads

Thin stillage (TS) is a waste residue that remains after bioethanol production, and its disposal reflects the high costs of bioethanol production. Thus, the development of cost-effective ways to process TS is a pending issue in bioethanol plants. The aim of this study was to evaluate the utilization of TS for the production of the valuable chemical, 1,3-propanediol (1,3-PDO), by Lactobacillus panis PM1. Different fermentation parameters, including temperature, pH and strains [wild-type and a recombinant strain expressing a NADPH-dependent aldehyde reductase (YqhD) gene] were tested in batch and fed-batch cultivations. The highest 1,3-PDO concentration (12.85 g/L) and yield (0.84 g/g) were achieved by batch fermentation at pH-4.5/30 °C by the YqhD recombinant strain. Furthermore, pH-controlled batch fermentation reduced the total fermentation period, resulting in the maximal 1,3-PDO concentration of 16.23 g/L and yield of 0.72 g/g in TS without an expensive nutrient or nitrogen (e.g., yeast extract, beef extract, and peptone) supplementation. The addition of two trace elements, Mg(2+) and Mn(2+), in TS increased 1,3-PDO yield (0.74 g/g) without 3-hydroxypropionaldehyde production, the only intermediate of 1,3-PDO biosynthetic pathway in L. panis PM1. Our results suggest that L. panis PM1 can offer a cost-effective process that utilizes the TS to produce a value-added chemical, 1,3-PDO.

Fig. 2 Mineralization of [UL-14 C]-RDX (closed circles) and [UL-14 C]-HMX (open circles) by enriched mixed microbial culture from the Hawaii marine sediment. Open squares Abiotic control
Fig. 3 Denaturing gradient gel electrophoresis (DGGE) profiles of PCR-amplified 16S rRNA gene fragments. Lanes: I Original untreated sediment, II sediment slurry not spiked with cyclic nitramines, III RDX-spiked sediment slurry, IV HMX-spiked sediment slurry, V 16S rRNA fragment standards. Banding patterns and relative intensities of the recovered bands provide a means of comparing bacterial communities. Bacteria must constitute at least 1-2% of the total bacterial community to form a visible band. Labeled bands C-F and H-N were excised and sequenced
Fig. 4 Phylogenetic tree of 16S rRNA genes of selected DGGE bands and bacterial isolates from Hawaii sediment based on pairwise nucleotide distance of Kimura 2-parameter using the neighbor-joining method included in the MEGA2 software package. Bar Difference of 10 nucleotides per 100 bases. GenBank accession numbers of the16S rRNA genes appear in parentheses
Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine by novel fungi isolated from unexploded ordnance contaminated marine sediment

November 2006

·

237 Reads

Undersea deposition of unexploded ordnance (UXO) constitutes a potential source of contamination of marine environments by hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). Using sediment from a coastal UXO field, Oahu Island, Hawaii, we isolated four novel aerobic RDX-degrading fungi HAW-OCF1, HAW-OCF2, HAW-OCF3 and HAW-OCF5, tentatively identified as members of Rhodotorula, Bullera, Acremonium and Penicillium, respectively. The four isolates mineralized 15-34% of RDX in 58 days as determined by liberated 14CO2. Subsequently we selected Acremonium to determine biotransformation pathway(s) of RDX in more details. When RDX (100 microM) was incubated with resting cells of Acremonium we detected methylenedinitramine (MEDINA), N2O and HCHO. Also we detected hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) together with trace amounts of hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazine (DNX) and hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX). Under the same conditions MNX produced N2O and HCHO together with trace amounts of DNX and TNX, but we were unable to detect MEDINA. TNX did not degrade with Acremonium. These experimental findings suggested that RDX degraded via at least two major initial routes; one route involved direct ring cleavage to MEDINA and another involved reduction to MNX prior to ring cleavage. Nitrite was only detected in trace amounts suggesting that degradation via initial denitration did take place but not significantly. Aerobic incubation of Acremonium in sediment contaminated with RDX led to enhanced removal of the nitramine.

Studies on the microbial transformation of androst-1,4-dien-3,17-dione with Acremonium strictum

October 2006

·

51 Reads

The strain of Acremonium strictum PTCC 5282 was applied to investigate the biotransformation of androst-1,4-dien-3,17-dione (I; ADD). Microbial products obtained were purified by preparative TLC and the pure metabolites were characterized on the basis of their spectroscopic features (13C NMR, 1H NMR, FTIR, MS) and physical constants (melting points and optical rotations). The 15 alpha-Hydroxyandrost-1,4-dien-3,17-dione (II), 17 beta-hydroxyandrost-1,4-dien-3-one (III), androst-4-en-3,17-dione (IV; AD), 15 alpha-hydroxyandrost-4-en-3,17-dione (V), 15 alpha,17 beta-dihydroxyandrost-1,4-dien-3-one (VI) and testosterone (VII) were produced during this fermentation. Formation of the 15 alpha,17 beta-dihydroxy derivative of ADD is reported for the first time during steroid biotransformation. The bioconversion reactions observed were 1,2-hydrogenation, 15 alpha-hydroxylation and 17-ketone reduction. From the time course profile of this biotransformation, ketone reduction and 1,2-hydrogenation were observed from the first day of fermentation while 15 alpha-hydroxylation occurred from the third day. Optimum concentration of the substrate, which gave the maximum bioconversion efficiency, was 0.5 mg ml(-1) in one batch. The highest yield of the microbial products recorded in this work was achieved within the pH range 6.5-7.3 and at the temperature of 27 degrees C.

Production of the Aspergillus aculeatus endo-1,4-β-mannanase in A. niger

May 2009

·

86 Reads

The β-mannanase gene (man1) from Aspergillus aculeatus MRC11624 (Izuka) was patented for application in the coffee industry. For production of the enzyme, the gene was originally cloned and expressed in Saccharomyces cerevisiae. However the level of production was found to be economically unfeasible. Here we report a 13-fold increase in enzyme production through the successful expression of β-mannanase of Aspergillus aculeatus MRC11624 in Aspergillus niger under control of the A. niger glyceraldehyde-3-phosphate dehydrogenase promoter (gpd P) and the A. awamori glucoamylase terminator (glaAT). The effect of medium composition on mannanase production was evaluated, and it was found that the glucose concentration and the organic nitrogen source had an effect on both the volumetric enzyme activity and the specific enzyme activity. The highest mannanase activity levels of 16,596 nkat ml−1 and 574 nkat mg−1 dcw were obtained for A. niger D15[man1] when cultivated in a process-viable medium containing corn steep liquor as the organic nitrogen source and high glucose concentrations.

Metabolically engineered Escherichia coli for biotechnological production of four-carbon 1,4-dicarboxylic acids

November 2010

·

45 Reads

Confronted with inescapable exhaustion of the earth's fossil energy resources, the bio-based process to produce industrial chemicals is receiving significant interest. Biotechnological production of four-carbon 1,4-dicarboxylic acids (C4 diacids) from renewable plant biomass is a promising and attractive alternative to conventional chemistry routes. Although the C4 diacids pathway is well characterized and microorganisms able to convert biomass to these acids have been isolated and described, much still has to be done to make this process economically feasible. Metabolically engineered Escherichia coli has been developed as a biocatalyst to provide new processes for the biosynthesis of many valuable chemicals. However, E. coli does not naturally produce C4 diacids in large quantities. Rational strain development by metabolic engineering based on efficient genetic tools and detailed knowledge of metabolic pathways are crucial to successful production of these compounds. This review summarizes recent efforts and experiences devoted to metabolic engineering of the industrial model bacteria E. coli that led to efficient recombinant biocatalysts for the production of C4 diacids, including succinate, fumarate, malate, oxaloacetate, and aspartate, as well as the key limitations and challenges. Continued advancements in metabolic engineering will help to improve the titers, yields, and productivities of the C4 diacids discussed here.

2-Ketogluconic acid production by Klebsiella pneumoniae CGMCC 1.6366

March 2013

·

64 Reads

Klebsiella pneumoniae CGMCC 1.6366 is a bacterium isolated for 1,3-propanediol or 2,3-butanediol production previously. K. pneumoniae ΔbudA, a 2,3-butanediol synthesis pathway truncated mutant with the gene deletion of budA which encodes alpha-acetolactate decarboxylase, was found to execrate an unknown chemical at a high titer when grown in the broth using glucose as carbon source. Later this chemical was identified to be 2-ketogluconic acid, which was formed through the glucose oxidation pathway in K. pneumoniae. It was found that 2-ketogluconic can also be produced by the wild strain. The fermentation studies showed that the production of this metabolite is strictly pH dependent, when the fermenting broth was maintained at pH 6-7, the main metabolite produced by K. pneumoniae CGMCC 1.6366 was 2,3-butanediol, or some organic acids in the budA mutated strain. However, if the cells were fermented at pH 4.7, 2-ketogluconic acid was formed, and the secretion of all other organic acids or 2,3-butanediol were limited. In the 5L bioreactors, a final level of 38.2 and 30.2 g/L 2-ketogluconic acid were accumulated by the wild type and the budA mutant K. pneumoniae, respectively, in 26 and 56 h; and the conversion ratios of glucose to 2-ketogluconic acid reached 0.86 and 0.91 mol/mol for the wild and the budA mutant, respectively.

Figure 1 Degradation of benzo[ a ]pyrene ( ) or dibenz[ a,h ]anthracene ( & ) in the presence of pyrene ( ~ ) using pyrene -grown S. maltophilia VUN 10,003. Fresh pyrene was resupplied to cultures after 63 days. Mercuric chloride -killed controls for pyrene ( 4 ), benzo[ a ]pyrene ( 6 ) and dibenz[ a,h ]anthracene ( & ) are also shown.
Figure 2 Relationship between initial concentration of benzo[ a ]pyrene ( ) or dibenz[ a,h ]anthracene ( & ) and the kinetics of degradation by S. maltophilia VUN 10,003. Benzo[ a ]pyrene or dibenz[ a,h ]anthracene was added to BSM containing S. maltophilia VUN 10,003 at the following concentrations: 25, 50 and 100 mg l À 1 . Microbial numbers ( ^ ) in inoculated cultures as well as benzo[ a ]pyrene ( 6 ) and dibenz[ a,h ]anthracene ( & ) concentrations in mercuric chloride -killed controls are also shown.
Figure 5 Degradation of benzo[ a ]pyrene or dibenz[ a,h ]anthracene in the presence of pyrene by S. maltophilia VUN 10,003 previously exposed to benzo[ a ]pyrene ( A ) or dibenz[ a,h ]anthracene ( B ) for 63 days. PAH -containing medium was inoculated with 10% unwashed benzo[ a ]pyrene or dibenz[ a,h ]anthracene -exposed cells. Pyrene ( 4 ), benzo[ a ]pyrene ( 6 ) and dibenz[ a,h ]anthracene ( & ) concentrations in mercuric chloride -killed controls are also shown.
Figure 6 Effect of benzo[ a ]pyrene and dibenz[ a,h ]anthracene metabolic by -products on the degradation of benzo[ a ]pyrene ( ) or dibenz[ a,h ]anthracene ( & ) by S. maltophilia VUN 10,003 in the presence of pyrene ( ~ ). Pyrene, benzo[ a ]pyrene and dibenz[ a,h ]anthracene were added to cultures containing pyrene -grown cells. After 63 days, two treatments were used to assess the effects of polar metabolic by -products ( A ) and total metabolic by -products ( B ). For polar metabolic by -products, cultures were centrifuged and the supernatants, containing presumptive five -ring by -products, were used as the medium for the remainder of the experiment. Pyrene was resupplied at a concentration of 250 mg l À 1 ; benzo[ a ]pyrene or dibenz[ a,h ]anthracene was added at a concentration equal to that prior to centrifugation and the medium was inoculated with freshly grown cells. For total metabolic by -products, cultures were extracted with DCM, then transferred to dimethylformamide ( 0.1 ml ). Culture extracts were added to sterile BSM, pyrene was added at 250 mg l À 1 and cultures were inoculated with freshly grown cells. Mercuric chloride -killed controls for pyrene ( 4 ), benzo[ a ]pyrene ( ) and dibenz[ a,h ]anthracene ( & ) are also shown.
Metabolite repression inhibits degradation of benzo[a]pyrene and dibenz[a,h]anthracene by Stenotrophomonas maltophilia VUN 10,003

March 2002

·

71 Reads

Large inocula of Stenotrophomonas maltophilia VUN 10,003 were used to investigate bacterial degradation of benzo[a]pyrene and dibenz[a,h]anthracene. Although strain VUN 10,003 was capable of degrading 10-15 mg (-1) of the five-ring compounds in the presence of pyrene after 63 days, further addition of pyrene after degradation of the five-ring polycyclic aromatic hydrocarbons (PAHs) ceased did not stimulate significant decreases in the concentration of benzo[a]pyrene or dibenz[a,h]anthracene. However, pyrene was degraded to undetectable levels 21 days after its addition. The amount of benzo[a]pyrene and dibenz[a,h]anthracene degraded by strain VUN 10,003 was not affected by the initial concentration of the compounds when tested at 25-100 mg l(-1), by the accumulation of by-products from pyrene catabolism or a loss of ability by the cells to catabolise benzo[a]pyrene or dibenz[a,h]anthracene. Metabolite or by-product repression was suspected to be responsible for the inhibition: By-products from the degradation of the five-ring compounds inhibited their further degradation.


Importance of biofilm formation for corrosion inhibition of SAE 1018 steel by axenic aerobic biofilms

July 1997

·

56 Reads

To investigate if corrosion inhibition by aerobic biofilms is a general phenomenon, carbon steel (SAE 1018) coupons were exposed to a complex liquid medium (Luria-Bertani) and seawater-mimicking medium (VNSS) containing fifteen different pure-culture bacterial suspensions representing seven genera. Compared to sterile controls, the mass loss in the presence of these bacteria (which are capable of developing a biofilm to various degrees) decreased by 2- to 15-fold. The extent of corrosion inhibition in LB medium depended on the nature of the biofilm: an increased proportion of live cells, observed with confocal scanning laser microscopy (CSLM) and image analysis, decreased corrosion. Corrosion inhibition in LB medium was greatest with Pseudomonas putida (good biofilm formation), while metal coupons exposed to Streptomyces lividans in LB medium (poor biofilm formation) corroded in a manner similar to the sterile controls. Pseudomonas mendocina KR1 reduced corrosion the most in VNSS. It appears that only a small layer of active, respiring cells is required to inhibit corrosion, and the corrosion inhibition observed is due to the attached biofilm.

Bench scale production of benzohydroxamic acid using acyl transfer activity of amidase from Alcaligenes sp. MTCC 10674

October 2012

·

153 Reads

The acyl transfer activity of the amidase of Alcaligenes sp. MTCC 10674 has been applied to the conversion of benzamide and hydroxylamine to benzohydroxamic acid. The unique features of the acyl transfer activity of this organism include its optimal activity at 50 °C and very high substrate (100 mM benzamide) and product (90 mM benzohydroxamic acid) tolerance among the hitherto reported enzymes. The bench scale production of benzohydroxamic acid was carried out in a fed-batch reaction (final volume 1 l) by adding 50 mM benzamide and 250 mM of hydroxylamine after every 20 min for 80 min in 0.1 M potassium phosphate buffer (pH 7.0) at 50 °C, using resting cells equal to 4.0 mg dcm/ml of reaction mixture. From 1 l of reaction mixture 33 g of benzohydroxamic acid was recovered with 24.6 g l(-1) h(-1) productivity. The acyl transfer activity of the amidase of Alcaligenes sp. MTCC 10674 and the process developed in the present study are of industrial significance for the enzyme-mediated production of benzohydroxamic acid.

Amino acid supplementation enhances urokinase production by HT-1080 cells

March 2014

·

26 Reads

Medium optimization is an important strategy that can lead to several fold increase in the production of proteins in cell culture. However, the usual methods of medium optimization are complex and time consuming. Urokinase is a widely employed thrombolytic drug for the treatment of stroke. We describe here medium optimization for maximizing urokinase production by HT-1080 cells using supplementation of specific amino acids. The new specifically designed method resulted in 240 % increase in urokinase productivity.

Symbiotic Streptomyces sp. TN119 GH 11 xylanase: A new pH-stable, protease- and SDS-resistant xylanase

April 2011

·

39 Reads

A pH-stable and protease-resistant xylanase (XynB119) was identified from Streptomyces sp. TN119, a strain isolated from the gut luminal contents of longhorned beetle (Batocera horsfieldi) larvae. Using the GC TAIL-PCR method, the 1,026-bp coding gene (xynB119) with 67.3% GC content was successfully cloned and expressed in Escherichia coli. It encodes a 341-residue polypeptide with a calculated molecular mass of 35.9 kDa, including a putative 41-residue signal peptide, a catalytic domain of glycosyl hydrolase (GH) family 11, a short Gly/Pro-rich linker, and a family 2 cellulose-binding domain (CBM 2). The deduced amino acid sequence is most similar to (61.9% identity) an endo-1,4-β-xylanase from Streptomyces thermoviolaceus OPC-520. Purified recombinant XynB119 exhibited peak activity at 50 °C and pH 7.0, remained stable over a broad pH range (retaining >70% activity after incubation at pH 1.0-11.0 for 1 h at 37 °C without substrate), had strong protease resistance (retaining >90% activity after proteolytic treatment at 37 °C for 1 h) and SDS resistance (at 100 mM). These properties make XynB119 promising for application in the feed industry and valuable for basic research. Compared to r-XynB119, the r-XynB119 derivative without CBM 2 and linker region (r-XynB119d) exhibited a decreased pH stability of >25% at extreme pHs (pH 1.0-3.0 and pH 11.0-12.0).

Amino acid substitutions in the N-terminus, cord and α-helix domains improved the thermostability of a family 11 xylanase XynR8

May 2012

·

38 Reads

The thermostability of xylanase XynR8 from uncultured Neocallimastigales rumen fungal was improved by combining random point mutagenesis with site-directed mutagenesis guided by rational design, and a thermostable variant, XynR8_VNE, was identified. This variant contained three amino acid substitutions, I38V, D137N and G151E, and showed an increased melting temperature of 8.8 °C in comparison with the wild type. At 65 °C the wild-type enzyme lost all of its activity after treatment for 30 min, but XynR8_VNE retained about 65 % activity. To elucidate the mechanism of thermal stabilization, three-dimensional structures were predicted for XynR8 and its variant. We found that the tight packing density and new salt bridge caused by the substitutions may be responsible for the improved thermostability. These three substitutions are located in the N-terminus, cord and α-helix domains, respectively. Hence, the stability of these three domains may be crucial for the thermostability of family 11 xylanases.

Fig. 1 Amino acid sequence alignment of XynG1-1B43 and four thermophile xylanases obtained from GenBank. The numbers on the left are the GenBank accession numbers of the sequences. gb|AAB95327.1| is xylanase from Caldicellulosiruptor sp. Rt69B.1; gb|AAC46361.1| is xylanase 229B from Dictyoglomus thermophilum; gi|11,513,709| is xylanase XynB from Dictyoglomus thermophilum
Fig. 4 Stereo views of the amino acid residues and their surroundings at the mutant sites before (a, c) and after (b, d) epPCR mutation. The residues at the mutant sites are shown in yellow and the surrounding residues are shown in red. The green dashed lines indicate hydrogen bondings
Fig. 6 Stereo views of the amino acid residues and their surroundings at the mutant sites before (a, c) and after (b, d) site-directed mutation. The residues at the mutant sites were shown in yellow; the residues forming hydrogen bonds with the residues at the mutant sites were shown in red and the residues have hydrophobic interaction with the residues at the mutant sites were shown in blue; The green dashed lines indicated hydrogen bondings
Improvement of alkali stability and thermostability of Paenibacillus campinasensis Family-11 xylanase by directed evolution and site-directed mutagenesis

November 2013

·

143 Reads

The extreme process condition of high temperature and high alkali limits the applications of most of natural xylanases in pulp and paper industry. Recently, various methods of protein engineering have been used to improve the thermal and alkalic tolerance of xylanases. In this work, directed evolution and site-directed mutagenesis were performed to obtain a mutant xylanase improved both on alkali stability and thermostability from the native Paenibacillus campinasensis Family-11 xylanase (XynG1-1). Mutant XynG1-1B43 (V90R/P172H) with two units increased in the optimum pH (pH 7.0–pH 9.0) and significant improvement on alkali stability was selected from the second round of epPCR library. And the further thermoduric mutant XynG1-1B43cc16 (V90R/P172H/T84C-T182C/D16Y) with 10 °C increased in the optimum temperature (60–70 °C) was then obtained by introducing a disulfide bridge (T84C-T182C) and a single amino acid substitution (D16Y) to XynG1-1B43 using site-directed mutagenesis. XynG1-1B43cc16 also showed higher thermostability and catalytic efficiency (k cat /K m ) than that of wild-type (XynG1-1) and XynG1-1B43. The attractive improved properties make XynG1-1B43cc16 more suitable for bioleaching of cotton stalk pulp under the extreme process condition of high temperature (70 °C) and high alkali (pH 9.0).

Immobilization of Streptomyces thermotolerans 11432 on polyurethane foam to improve production of Acetylisovaleryltylosin

November 2014

·

47 Reads

In this study, polyurethane foam (PUF) was chemically treated to immobilize Streptomyces thermotolerans 11432 for semi-continuous production of acetylisovaleryltylosin (AIV). Based on experimental results, positive cross-linked PUF (PCPUF) was selected as the most effective carrier according to immobilized cell mass. The effect of adsorption time on immobilized mass was investigated. AIV concentration (33.54 mg/l) in batch fermentations with immobilized cells was higher than with free cells (20.34 mg/l). In repeated batch fermentations with immobilized S. thermotolerans 11432 using PCPUF cubes, high AIV concentrations and conversion rates were attained, ranging from 25.56 to 34.37 mg/l and 79.93 to 86.31 %, respectively. Significantly, this method provides a feasible strategy for efficient AIV production and offers the potential for large-scale production.

A new organic solvent tolerant protease from Bacillus pumilus 115b

August 2007

·

57 Reads

Five out of the nine benzene-toulene-ethylbenzene-xylene (BTEX) tolerant bacteria that demonstrated high protease activity on skim milk agar were isolated. Among them, isolate 115b identified as Bacillus pumilus exhibited the highest protease production. The protease produced was stable in 25% (v/v) benzene and toluene and it was activated 1.7 and 2.5- fold by n-dodecane and n-tetradecane, respectively. The gene encoding the organic solvent tolerant protease was cloned and its nucleotide sequence determined. Sequence analysis revealed an open reading frame (ORF) of 1,149 bp that encoded a polypeptide of 383 amino acid residues. The polypeptide composed of 29 residues of signal peptide, a propeptide of 79 residues and a mature protein of 275 amino acids with a calculated molecular mass of 27,846 Da. This is the only report available to date on organic solvent tolerant protease from B. pumilus.

Sugarcane molasses and yeast powder used in the Fructooligosaccharides production by Aspergillus japonicus-FCL 119T and Aspergillus niger ATCC 20611

January 2007

·

175 Reads

Different concentrations of sucrose (3–25% w/v) and peptone (2–5% w/v) were studied in the formulation of media during the cultivation of Aspergillus japonicus-FCL 119T and Aspergillus niger ATCC 20611. Moreover, cane molasses (3.5–17.5% w/v total sugar) and yeast powder (1.5–5% w/v) were used as alternative nutrients for both strains’ cultivation. These media were formulated for analysis of cellular growth, β-Fructosyltransferase and Fructooligosaccharides (FOS) production. Transfructosylating activity (U t ) and FOS production were analyzed by HPLC. The highest enzyme production by both the strains was 3% (w/v) sucrose and 3% (w/v) peptone, or 3.5% (w/v) total sugars present in cane molasses and 1.5% (w/v) yeast powder. Cane molasses and yeast powder were as good as sucrose and peptone in the enzyme and FOS (around 60% w/w) production by studied strains.

Intracellular PHB conversion in a Type II methanotroph studied by C-13 NMR

February 2001

·

72 Reads

Poly-p-hydroxybutyrate (PHB) formation under aerobic conditions via incorporation of [13C-2]acetate as a cosubstrate and its intracellular degradation under anaerobic conditions in a Type II methanotroph was studied by 13C NMR. During PHB synthesis in the presence of labelled acetate, low levels of beta-hydroxybutyrate, butyrate, acetone, isopropanol, 2,3-butanediol and succinate were observed. Subsequent anaerobic PHB breakdown showed enhanced levels of these products at the expense of PHB. Fermentative metabolism occurring during anaerobic PHB degradation was confirmed in experiments with fully 13C-enriched cells, which were grown on 13C-labelled methane. beta-hydroxybutyrate, butyrate, acetate, acetone, isopropanol, 2,3-butanediol and succinate were detected as multiple 13C-labelled compounds in the culture medium. Our results suggest that intracellular PHB degradation can be used as a reserve energy source by methanotrophs under anoxic conditions.

Solid-state C-13 NMR spectroscopic, chemolytic and biological assessment of pretreated municipal solid waste

February 2001

·

52 Reads

In Central Europe, composting and anaerobic digestion of municipal solid waste (MSW) is used as pretreatment before landfilling to reduce landfill emissions. MSW samples were analyzed before, during, and after pretreatment to assess the stability of the organic matter. Chemolytic, nuclear magnetic resonance (NMR) spectroscopic, and respiration parameters were correlated to evaluate a substitution of the time-consuming respiration analysis by chemical parameters. 13C cross polarization magic angle spinning (CPMAS) NMR spectroscopy showed a preferential biodegradation of O-alkyl carbon (carbohydrates) and a selective accumulation of plastics during all pretreatments, confirming findings from chemolytic analyses. Principal component analysis exhibited a strong association between the respiration rate, the carbohydrate content, and the O-alkyl C content, corroborating that carbohydrates are the most important compounds of MSW with regard to the emission potential. Rank correlation (Spearman) also showed strong relationships between the respiration rate and the content of carbohydrates (r = 0.75) and of O-alkyl C (r = 0.72).

Combined effects of an oxidative enzyme and dissolved humic substances on C-13-labelled 2,4-D herbicide as revealed by high-resolution C-13 NMR spectroscopy

February 2001

·

30 Reads

Phenoxyalkanoic acids are a widely used class of herbicides. This work employed high-resolution 13C NMR to study the structural changes induced by humic substances and horseradish perodixase on 2,4-dichlorophenoxyacetic acid (2,4-D) 13C-labelled in the side chain. NMR spectra showed that humic substances chemically catalyze abiotic splitting of [13C]2,4-D into 2,4-dichlorophenol and [13C]acetic acid at pH 7 but not at pH 4.7. Peroxidase did not catalyze the oxidative degradation of [13C]2,4-D at any pH tested and inhibited the effect of humic substances. Catalytic degradation by humic substances was attributed to free-radical reactions enhanced by the stereochemical contribution of large conformational structures formed by heterogeneous humic molecules at neutral pH. Inhibition of 2,4-D degradation when humic substances were combined with peroxidase was explained by modification of both chemical and conformational humic structure due to peroxidase-promoted oxidative cross-coupling among humic molecules. Our findings show for the first time that the abiotic degradation of 2,4-D is catalyzed by dissolved humic substances at neutral pH.

Combined effects of an oxidative enzyme and dissolved humic substances on (13)C-labelled 2,4-D herbicide as revealed by high-resolution (13)C NMR spectroscopy

February 2001

·

24 Reads

Phenoxyalkanoic acids are a widely used class of herbicides. This work employed high-resolution (13)C NMR to study the structural changes induced by humic substances and horseradish perodixase on 2,4-dichorophenoxyacetic acid (2,4-D) (13)C-labelled in the side chain. NMR spectra showed that humic substances chemically catalyze abiotic splitting of [(13)C]2,4-D into 2,4-dichlorophenol and [(13)C]acetic acid at pH 7 but not at pH 4.7. Peroxidase did not catalyze the oxidative degradation of [(13)C]2,4-D at any pH tested and inhibited the effect of humic substances. Catalytic degradation by humic substances was attributed to free-radical reactions enhanced by the stereochemical contribution of large conformational structures formed by heterogeneous humic molecules at neutral pHs. Inhibition of 2,4-D degradation when humic substances were combined with peroxidase was explained by modification of both chemical and conformational humic structure due to peroxidase-promoted oxidative cross-coupling among humic molecules. Our findings show for the first time that the abiotic degradation of 2,4-D is catalyzed by dissolved humic substances at neutral pH. 70-76.

C-13 nuclear magnetic resonance studies on selectively labeled bacterial biofilms

February 2001

·

32 Reads

Bacterial biofilms of Pseudomonas aeruginosa selectively labeled by introduction of 2-13C-glycerol was studied by solid-state and high-resolution nuclear magnetic resonance. The 13C nuclei were mainly integrated into mannuronate and guluronate, the two monomer units forming the bacterial alginate. The signal for the C5 position of the mannuronate, which was easily identified and well separated from other peaks, was analyzed for molecular mobility. The result indicated a high degree of motional freedom within the molecular network of the alginate. Despite the fact that the alginate was part of a solid aqueous gel phase, the reorientation mechanism of the monomer units came close to isotropic tumbling. Solid-state spectra of biofilms labeled in the described manner may serve as a valuable tool for noninvasive analyses of molecular mobility of the alginate component under various influences, thereby revealing important structural information. In addition, the effect of a monovalent electrolyte (LiCl) on the molecular mobility of alginate fragments in an aqueous solution was studied by determining the spin-lattice relaxation times, line widths and line shapes under variations of the ion concentration. The presence of ions accelerated overall motions but left rapid local motions virtually unaffected.

Enhancement of microbial hydroxylation of 13-ethyl-gon-4-ene-3,17-dione by Metarhizium anisopliae using nano-liposome technique

February 2014

·

61 Reads

The introduction of 11α-hydroxy to 13-ethyl-gon-4-ene-3,17-dione (GD) by microbial transformation is a key step in the synthesis of oral contraceptive desogestrel, while low substrate solubility and uptake into cells are tough problems influencing biotransformation efficiency greatly. Nano-liposome technique was used in the hydroxylation of GD by Metarhizium anisopliae. The substrate GD was processed to be GD-loaded nano-liposomes (GNLs) with high stability and encapsulation efficiency, and then applied in microbial hydroxylation by M. anisopliae. The results proved that the yield of the main product 11α-hydroxy-13-ethyl-gon-4-ene-3,17-dione (HGD) tripled compared to regular solvent dimethylformamide dispersion method at 2 g/l of substrate feeding concentration, and the HGD conversion rate showed no obvious reduction when the substrate feeding concentration increased from 2 to 6 g/l, which indicated the improvement of GNL addition method on biotransformation. Furthermore, the main byproduct changed from 6β-hydroxy derivative of GD (with similar polarity to HGD) to 6β,11α-dihydroxy derivative, which benefits the following purification of HGD from fermentation broth. These advantages suggest a great potential for the application of nano-liposome technique in microbial steroid transformation.

Characterization of 13 newly isolated strains of anaerobic, cellulolytic, thermophilic bacteria

December 2001

·

190 Reads

Characteristics of 13 newly isolated thermophilic, anaerobic, and cellulolytic strains were compared with previously described strains of Clostridium thermocellum: ATCC 27405 and JW20 (ATCC 31549). Colony morphology, antibiotic sensitivity, fermentation end-products, and cellulose degradation were documented. All 13 strains were sensitive to erythromycin (5 μg/ml) and chloramphenicol (25 μg/ml), and all strains but one were sensitive to kanamycin (20 μg/ml). Polymerase chain reaction (PCR) amplification using primers based on gene sequences from C. thermocellum ATCC 27405 was successful for all 13 strains in the case of the hydrogenase gene and 11 strains in the case of phosphotransacetylase/acetate kinase genes. Ten strains amplified a product of the expected size with primers developed to be specific for C. thermocellum 16SrRNA primers. Two of the 13 strains did not amplify any product with the PCR primers designed for the phosphotransacetylase/acetate kinase and 16SrRNA primers. A MboI-like GATC- recognizing restriction activity was present in all of the five strains examined. The results of this study have several positive implications with respect to future development of a transformation system for cellulolytic thermophiles. Journal of Industrial Microbiology & Biotechnology (2001) 27, 275–280.

The effect of oxygen on methanol oxidation by an obligate methanotrophic bacterium studied by in vivo C-13 nuclear magnetic resonance spectroscopy

February 2001

·

79 Reads

13C NMR was used to study the effect of oxygen on methanol oxidation by a type II methanotrophic bacterium isolated from a bioreactor in which methane was used as electron donor for denitrification. Under high (35-25%) oxygen conditions the first step of methanol oxidation to formaldehyde was much faster than the following conversions to formate and carbon dioxide. Due to this the accumulation of formaldehyde led to a poisoning of the cells. A more balanced conversion of 13C-labelled methanol to carbon dioxide was observed at low (1-5%) oxygen concentrations. In this case, formaldehyde was slowly converted to formate and carbon dioxide. Formaldehyde did not accumulate to inhibitory levels. The oxygen-dependent formation of formaldehyde and formate from methanol is discussed kinetically and thermodynamically.

Glucooligosaccharides from Leuconostoc mesenteroides B-742 (ATCC 13146): A potential prebiotic

November 2002

·

55 Reads

There is an emerging market for functional oligosaccharides for use in foods. Currently, technology for the production of oligosaccharides is limited to extraction from plant sources, acid or enzymatic hydrolysis of polysaccharides or synthesis by transglycosylation reactions. Oligosaccharides can also be produced using a Leuconostoc fermentation and restricting the polymer size by addition of maltose. Maltose limits the dextransucrase reaction, yielding high concentrations of alpha-glucooligosaccharides. Branched oligomers produced by this process were readily catabolized by bifidobacteria and lactobacilli but were not readily utilized by either Salmonella sp. or Escherichia coli, pointing toward their use in intestinal microflora modification.

Figure 2 HPSEC profile of R151O-S ( ) and DBE-treated R151O-S (-). The column was Shodex KB-803. Detection was by optical rotation. The flow rate = 0.5 ml min-I. 
Figure 3 Proton-decoupled 13C-NNIR spectrum of fraction R1510-S glucan. 
Some structural features of an insoluble ?- D -glucan from a mutant strain of Leuconostoc mesenteroides NRRL B-1355

August 1999

·

53 Reads

Leuconostoc mesenteroides strain NRRL B-1355 produces two soluble extracellular alpha-D-glucans from sucrose: alternan and dextran. An unusual mutant strain derived from NRRL B-1355 has recently been isolated which produces practically no soluble polysaccharide, but significant amounts of an insoluble D-glucan. Methylation analysis shows it contains linear (1-->3) and (1-->6) linkages as well as (1-->2) and (1-->3) branch linkages. The insoluble glucan was partially digestible by endodextranase, giving rise to a series of oligosaccharides, a high-molecular weight soluble fraction and an insoluble residue. Treatment of the soluble dextranase-limit fraction with an alpha(1-->2) debranching enzyme led to further dextranase susceptibility. Methylation, FTIR and NMR analyses of the dextranase-treated fractions indicate a non-uniform structure with domains bearing similarities to L. mesenteroides strain NRRL B-1299 dextran and to insoluble streptococcal D-glucans.

Isolation and optimisation of the oleaginous yeast Sporobolomyces roseus for biosynthesis of 13C isotopically labelled 18-carbon unsaturated fatty acids and trans 18:1 and 18:2 derivatives through synthesis

July 2011

·

35 Reads

An oleaginous and psychrotrophic strain (F38-3) of Sporobolomyces roseus Kluyver & van Niel was isolated from a salt marsh environment in Nova Scotia, Canada following a screening program to select for high producers of 18-carbon unsaturated fatty acids. Fatty acid production was characterised as a function of temperature at 20 g glucose L(-1), and optimal yields were obtained at 14°C, achieving 5.7 g dw biomass and 39.2% total fatty acids by dry weight, with 18:1, 18:2 and 18:3 all-cis fatty acids accounting for 49.4%, 14.3% and 6.7% of total fatty acids (TFA), respectively--the highest reported for this species. Production of 18:3 was inversely correlated to growth temperature, rising from 2% of TFA at 30°C to 8.9% at 6°C. Cultivation of isolate F38-3 on universally (13)C (U-(13)C) labelled glucose and subsequent transesterification and isolation of the fatty acid methyl esters (FAMEs) by preparative chromatography yielded pure, highly (13)C-enriched (>90%) 18:1, 18:2 and 18:3 all-cis FAMEs. The U-(13)C 18:1 FAME was catalytically converted to U-(13)C 18:1 trans-9 and purified to >99.5% purity. The U-(13)C 18:2 was converted by alkaline isomerisation into a 50/50 mixture of 18:2 cis-9, trans-11 and 18:2 trans-10, cis-12 isomers and purified to >95.0% purity. Overall, 10%, by weight, of labelled glucose fed to isolate F38-3 was recovered as fatty acid methyl esters and 7.5% as 18-carbon unsaturated fats, and the final isomerisation reactions resulted in yields of 80% or greater. The ultimate goal of the work is to develop methodologies to produce (13)C-labelled metabolic tracers as tools to study the metabolism of trans fats.

Top-cited authors