International Journal of Nanomedicine

Published by Taylor & Francis
Online ISSN: 1178-2013
Print ISSN: 1176-9114
Learn more about this page
Aims and scope

Publishes open access research on clinical biomedical applications of nanomedicine, including drug delivery, nanodiagostics, nanoinformatics and nanotoxicity.

Recent publications
  • Zhi-Xin Zhong
    Zhi-Xin Zhong
  • Xu-Zhao Li
    Xu-Zhao Li
  • Jin-Tao Liu
    Jin-Tao Liu
  • [...]
  • Xiao-Chuan Duan
    Xiao-Chuan Duan
Purpose: Chemotherapy is a significant and effective therapeutic strategy that is frequently utilized in the treatment of cancer. Small molecular prodrug-based nanoassemblies (SMPDNAs) combine the benefits of both prodrugs and nanomedicine into a single nanoassembly with high drug loading, increased stability, and improved biocompatibility. Methods: In this study, a disulfide bond inserted 7-ethyl-10-hydroxycamptothecin (SN38) prodrug was rationally designed and then used to prepare nanoassemblies (SNSS NAs) that were selectively activated by rich glutathione (GSH) in the tumor site. The characterization of SNSS NAs and the in vitro and in vivo evaluation of their antitumor effect on a pancreatic cancer model were performed. Results: In vitro findings demonstrated that SNSS NAs exhibited GSH-induced SN38 release and cytotoxicity. SNSS NAs have demonstrated a passive targeting effect on tumor tissues, a superior antitumor effect compared to irinotecan (CPT-11), and satisfactory biocompatibility with double dosage treatment. Conclusion: The SNSS NAs developed in this study provide a new method for the preparation of SN38-based nano-delivery systems with improved antitumor effect and biosafety.
Background: Chemotherapy still plays a dominant role in cancer treatment. However, the inability of conventional chemotherapeutic drugs to reach the hypoxic zone of solid tumors significantly weakens their efficacy. Bacteria-mediated drug delivery systems can be an effective targeting strategy for improving the therapeutic outcomes in cancer. Anaerobic bacteria have the unique ability to selectively transport drug loads to the hypoxic regions of tumors. Methods: We designed a Bifidobacterium infantis (Bif)-based biohybrid (Bif@PDA-PTX-NPs) to deliver polydopamine (PDA)-coated paclitaxel nanoparticles (PTX-NPs) to tumor tissues. Results: The self-driven Bif@PDA-PTX-NPs maintained the toxicity of PTX as well as the hypoxic homing tendency of Bif. Furthermore, Bif@PDA-PTX-NPs significantly inhibited the growth of A549 xenografts in nude mice, and prolonged the survival of the tumor-bearing mice compared to the other PTX formulations without any systemic or localized toxicity. Conclusion: The Bif@PDA-PTX-NPs biohybrids provide a new therapeutic strategy for targeted chemotherapy to solid tumors.
Introduction: Ginger extract (GE) has sparked great interest due to its numerous biological benefits. However, it suffers from limited skin permeability, which challenges its transdermal application. The target of the current work was to develop transethosomes as a potential nanovehicle to achieve enhanced transdermal delivery of GE through the skin. Methods: GE-loaded transethosomes were prepared by cold injection using different edge activators. The fabricated nanovesicles were evaluated for particle size, ζ-potential, encapsulation efficiency, and in vitro drug release. The selected formulation was then laden into the hydrogel system and evaluated for ex vivo permeability and in vivo anti-inflammatory activity in a carrageenan-induced rat-paw edema model. Results: The selected formulation comprised of sodium deoxycholate exhibited particle size of 188.3±7.66 nm, ζ-potential of -38.6±0.08 mV, and encapsulation efficiency of 91.0%±0.24%. The developed transethosomal hydrogel containing hydroxypropyl methylcellulose was homogeneous, pseudoplastic, and demonstrated sustained drug release. Furthermore, it exhibited improved flux (12.61±0.45 μg.cm2/second), apparent skin permeability (2.43±0.008×10-6 cm/second), and skin deposition compared to free GE hydrogel. In vivo testing and histopathological examination revealed that the GE transethosomal hydrogel exhibited significant inhibition of edema swelling compared to free GE hydrogel and ketoprofen gel. The animals that were treated with ginger transethosome hydrogel showed a significant decrement in reactive oxygen species and prostaglandin E2 compared to untreated animals. Conclusion: Transethosomes might be a promising new vehicle for GE for effective skin permeation and anti-inflammation. To the best of our knowledge, this work is the first utilization of transethosomes laden into hydrogel as a novel transdermal delivery system of GE.
Background: Thalidomide (THD) and its analogues were recently reported as a promising treatment for different types of solid tumors due to their antiangiogenic effect. Methods: In this work, we synthesized a novel THD analogue (TA), and its chemistry was confirmed with different techniques such as IR, mass spectroscopy, elemental analysis as well as 1H and 13C NMR. To increase solubility and anticancer efficacy, a new oil in water (O/W) nanoemulsion (NE) was used in the formulation of the analogue. The novel formula's surface charge, size, stability, FTIR, FE-TEM, in vitro drug release and physical characteristics were investigated. Furthermore, molecular docking studies were conducted to predict the possible binding modes and molecular interactions behind the inhibitory activities of the THD and TA. Results: TA showed a significant cytotoxic activity with IC50 ranging from 0.326 to 43.26 µmol/mL when evaluated against cancerous cells such as MCF-7, HepG2, Caco-2, LNCaP and RKO cell lines. The loaded analogue showed more potential cytotoxicity against MDA-MB-231 and MCF-7-ADR cell lines with IC50 values of 0.0293 and 0.0208 nmol/mL, respectively. Moreover, flow cytometry of cell cycle analysis and apoptosis were performed showing a suppression in the expression levels of TGF-β, MCL-1, VEGF, TNF-α, STAT3 and IL-6 in the MDA-MB-231 cell line. Conclusion: The novel NE formula dramatically reduced the anticancer dosage of TA from micromolar efficiency to nanomolar efficiency. This indicates that the synthesized analogue exhibited high potency in the NE formulation and proved its efficacy against triple-negative breast cancer cell line.
Introduction: The high concentration of glutathione (GSH) and hydrogen peroxide (H2O2) levels within the tumor microenvironment (TME) are the major obstacle to induce the unsatisfactory anticancer treatment efficiency. The synergistic cancer therapy strategies of the combination the GSH depletion enhanced chemodynamic therapy (CDT) with photothermal therapy (PTT) have been proved to be the promising method to significantly improve the therapeutic efficacy. Methods: The copperphosphotungstate was incorporated into polyanilines to design copperphosphotungstate doped polyaniline nanorods (CuPW@PANI Nanorods) via chemical oxidant polymerization of aniline. The low long-term toxicity and biocompatibility were evaluated. Both in vitro and in vivo experiments were carried out to confirm the GSH depletion enhanced CDT/NIR-II PTT synergistic therapy. Results: CuPW@PANI Nanorods feature biosafety and biocompatibility, strong NIR-II absorbance, and high photothermal-conversion efficiency (45.14%) in NIR-II bio-window, making them highly applicable for photoacoustic imaging and NIR-II PTT. Moreover, CuPW@PANI Nanorods could consume endogenous GSH to disrupt redox homeostasis and perform a Fenton-like reaction with H2O2 to produce cytotoxic •OH for the enhanced CDT. Furthermore, NIR-II photothermal-induced local hyperthermia accelerates •OH generation to enhance CDT, which realizes high therapeutic efficacy in vivo. Conclusion: This study provides a proof of concept of GSH-depletion augmented chemodynamic/NIR-II photothermal therapy.
Malignant tumor, the leading cause of death worldwide, poses a serious threat to human health. For decades, natural product has been proven to be an essential source for novel anticancer drug discovery. Shikonin (SHK), a natural molecule separated from the root of Lithospermum erythrorhizon, shows great potential in anticancer therapy. However, its further clinical application is significantly restricted by poor bioavailability, adverse effects, and non-selective toxicity. With the development of nanotechnology, nano drug delivery systems have emerged as promising strategies to improve bioavailability and enhance the therapeutic efficacy of drugs. To overcome the shortcoming of SHK, various nano drug delivery systems such as liposomes, polymeric micelles, nanoparticles, nanogels, and nanoemulsions, were developed to achieve efficient delivery for enhanced antitumor effects. Herein, this review summarizes the anticancer pharmacological activities and pharmacokinetics of SHK. Additionally, the latest progress of SHK nanomedicines in cancer therapy is outlined, focusing on long circulation, tumor targeting ability, tumor microenvironment responsive drug release, and nanosystem-mediated combination therapy. Finally, the challenges and prospects of SHK nanomedicines in the future clinical application are spotlighted.
Liu J, Guo L, Rao Y, et al. Int J Nanomedicine. 2022;17:2661–2678. The Editor and Publisher of International Journal of Nanomedicine wish to retract the published article. Concerns were raised regarding the duplication of mice images in Figure 4A and H&E images in Figure 9A. Specifically, The images for Figure 4A, MNs-PEG/IR780-DOX+MF, 6h and 24h appear to be duplicates of each other. The images for Figure 4A, MNs-PEG/IR780-DOX, 1h and 3h appear to be duplicates of each other. The images for Figure 9A, Liver, 1 (PBS) and 5 (MNs-PEG/IR780-DOX+L) appear to have overlapping regions. The images for Figure 9A, Spleen, 1 (PBS), 3 (MNs-PEG/IR780-DOX) and 6 (MNs-PEG/IR780-DOX+MF+L) appear to have overlapping regions. The authors were cooperative and provided some of the original data that was requested. However, the authors explained that the 6h data shown in Figure 4 did not exist and asked to remove it. The Editor questioned how non-existent data came to be used and was concerned that this issue was only being raised post-publication. The authors explanation regarding this did not clearly explain how the error was made. Overall, in combination with the alleged image duplication and addition of non-existent data, the Editor expressed their overall concerns relating to the integrity and reliability of the findings and requested for the article to be retracted. The authors were notified and agreed with this decision. We have been informed in our decision-making by our policy on publishing ethics and integrity and the COPE guidelines on retractions. The retracted article will remain online to maintain the scholarly record, but it will be digitally watermarked on each page as “Retracted”.
Tuberculosis (TB), derived from bacterium named Mycobacterium tuberculosis, has become one of the worst infectious and contagious illnesses in the world after HIV/AIDS. Long-term therapy, a high pill burden, lack of compliance, and strict management regimens are disadvantages which resulted in the extensively drug-resistant (XDR) along with multidrug-resistant (MDR) in the treatment of TB. One of the main thrust areas for the current scenario is the development of innovative intervention tools for early diagnosis and therapeutics towards Mycobacterium tuberculosis (MTB). This review discusses various nanotherapeutic agents that have been developed for MTB diagnostics, anti-TB drugs and vaccine. Undoubtedly, the concept of employing nanoparticles (NPs) has strong potential in this therapy and offers impressive outcomes to conquer the disease. Nanocarriers with different types were designed for drug delivery applications via various administration methods. Controlling and maintaining the drug release might be an example of the benefits of utilizing a drug-loaded NP in TB therapy over conventional drug therapy. Furthermore, the drug-encapsulated NP is able to lessen dosage regimen and can resolve the problems of insufficient compliance. Over the past decade, NPs were developed in both diagnostic and therapeutic methods, while on the other hand, the therapeutic system has increased. These "theranostic" NPs were designed for nuclear imaging, optical imaging, ultrasound, imaging with magnetic resonance and the computed tomography, which includes both single-photon computed tomography and positron emission tomography. More specifically, the current manuscript focuses on the status of therapeutic and diagnostic approaches in the treatment of TB.
Introduction: Esketamine, one of the few non-opioid potent analgesics, has demonstrated efficacy in the treatment of various chronic pain, particularly neuropathic pain. However, its potential clinical applications are confined due to its short half-life and severe side effects including delirium, hallucinations, and other psychiatric symptoms. Here, we reported a nanosized drug delivery system for sustained-release esketamine based on polylactic-co-glycolic acid (PLGA) nanoparticles and hyaluronic acid (HA) hydrogel. Results: In this study, esketamine in the delivery system was continuously released in vitro for at least 21 days, and spinal nerve root administration of the delivery system successfully attenuated (spinal nerve ligation) SNL-induced pain hypersensitivity for at least 14 days. Notably, the excitability of neurons in murine dorsal root ganglion (DRG) was inhibited and the activation of astrocytes in the spinal cord was additionally reduced after administration. Finally, there was no obvious pathophysiological change in the nerves at the administration site after treatment at 14 days. Conclusion: These results indicate that the sustained-release esketamine based on the nanoparticle-hydrogel delivery system can safely produce a lasting analgesic effect on SNL mice, and its mechanism might be related to modulating the activation of astrocytes in the spinal cord and inhibiting the excitability of neurons in DRG.
Background: Drug-resistant microbes pose a global health concern, requiring the urgent development of effective antibacterial agents and strategies in clinical practice. Therefore, there is an urgent need to explore novel antibacterial materials to effectively eliminate bacteria. The synthesis of quaternary phosphonium salt in haloargentate systems, wherein the phosphorus atom is represented in a cationic form, is a possible strategy for the development of antibacterial materials. Methods: Using (triphenyl)phosphonium-based quaternary phosphorus salts with different spacer lengths (n=2, 4, 6) as a template, we designed three kinds of quaternary phosphorus salts as effective antibacterial agents against drug-resistant bacteria. Results: The synthesized quaternary phosphorus salt of (1,4-DBTPP)Br2 effectively prevented the formation of the bacterial biofilms, and degraded bacterial membranes and cell walls by promoting the production of reactive oxygen species, which exhibited effective therapeutic effects in a rat model of a superficial wound infected with methicillin-resistant Staphylococcus aureus. Conclusion: The quaternary phosphorus salt (1,4-DBTPP)Br2 demonstrated hemocompatibility and low toxicity, revealing its potential in the treatment of clinical infections.
Yang H, Xiong X, Zhang L, Wu C, Liu Y. Int J Nanomedicine. 2011;6:2043–2051. An error during the preparation and figure assembly of Figure 7A on page 2049 led to the non-specific IgG group being inadvertently duplicated from the Control group. The correct version of Figure 7 is shown below. Figure 7 Continued. Figure 7 Adhesion of control microbubbles, VCAM-1-targeted microbubbles, and isotype control IgG microbubbles under low shear stress exposure of 6.3 dynes/cm2 for 3 minutes. (A) Representative bright field micrographs of microbubbles adhered to LPS-activated HUVEC-CS cells (magnification 40×). The insets are the high-magnification fields of the white dotted windows. (B) The adhered microbubble numbers on the HUVEC-CS cell monolayer were quantified by microbubble counting from six random microscopic fields (magnification 40×) for each group.Abbreviations: VCAM-1, vascular cell adhesion molecule 1; HUVEC-CS, human umbilical vein endothelial cells, subline.Notes: *P < 0.05 vs control (non-targeted microbubbles); **P < 0.01 vs control (non-targeted microbubbles) or non-specific IgG conjugated microbubbles. This correction has no impact to the findings of the study, and does not change any description, results or conclusions of the original paper. The authors apologize for this error.
The emergence of multidrug-resistant bacteria has been deemed a global crisis that affects humans worldwide. Novel anti-infection strategies are desperately needed because of the limitations of conventional antibiotics. However, the increasing gap between clinical demand and antimicrobial treatment innovation, as well as the membrane permeability obstacle especially in gram-negative bacteria fearfully restrict the reformation of antibacterial strategy. Metal-organic frameworks (MOFs) have the advantages of adjustable apertures, high drug-loading rates, tailorable structures, and superior biocompatibilities, enabling their utilization as drug delivery carriers in biotherapy applications. Additionally, the metal elements in MOFs are usually bactericidal. This article provides a review of the state-of-The-art design, the underlying antibacterial mechanisms and antibacterial applications of MOF- and MOF-based drug-loading materials. In addition, the existing problems and future perspectives of MOF- and MOF-based drug-loading materials are also discussed.
Yu G, Ali Z, Sajjad Khan A, et al. Int J Nanomedicine. 2021;16:3255-3273. At the authors request, the Editor and Publisher of International Journal of Nanomedicine wish to retract the published article. Concerns were raised regarding the alleged duplication of images in Figures 9A, 9B and 9C with the same images from a previous article (ud Din et al, 2017 by the same authors. Specifically, Figure 9A, Untreated Control, Pure Drug, HePC-NLCs, Normal Saline and all corresponding Tumor mass images appear to have been duplicated with the same images for Figure 6A, Control, Solution, DRTN, and Hydrogel images, respectively, from ud Din et al, 2017. Figure 9B, Pure Drug, Caspas-3; HePC-NLCs, Caspas-3 and Normal Saline, Caspas-3 appear to have been duplicated with the same images from Figure 6C, Solution, Ki-67 and Figure 6B, DRTN, Caspase-3 and Control, Caspase-3, respectively, from ud Din et al, 2017. Figure 9C, Untreated Control, PARP; Pure Drug, PARP; HePC-NLCs, PARP and Normal Saline, PARP appear to have been duplicated with the same images from Figure 6C, Hydrogel, CD31; Figure 6B, Solution, PARP; Figure 6C, Control, CD31 and Figure 6B, Control, PARP, respectively, from ud Din et al, 2017. The authors responded to our queries and agreed with the concerns that had been raised and requested for the retraction of the article. The Editor agreed with this decision and approved the authors retraction request. We have been informed in our decision-making by our policy on publishing ethics and integrity and the COPE guidelines on retractions. The retracted article will remain online to maintain the scholarly record, but it will be digitally watermarked on each page as “Retracted”.
Introduction: This work aimed to develop chitosan-coated cubosomal nanoparticles intended for nose-to-brain delivery of paliperidone palmitate. They were compared with standard and cationic cubosomal nanoparticles. This comparison relies on numerous classical in vitro tests and powder deposition within a 3D-printed nasal cast. Methods: Cubosomal nanoparticles were prepared by a Bottom-up method followed by a spray drying process. We evaluated their particle size, polydispersity index, zeta-potential, encapsulation efficiency, drug loading, mucoaffinity properties and morphology. The RPMI 2650 cell line was used to assess the cytotoxicity and cellular permeation. An in vitro deposition test within a nasal cast completed these measurements. Results: The selected chitosan-coated cubosomal nanoparticles loaded with paliperidone palmitate had a size of 305.7 ± 22.54 nm, their polydispersity index was 0.166 ± 0.022 and their zeta potential was +42.4 ± 0.2 mV. This formulation had a drug loading of 70% and an encapsulation efficiency of 99.7 ± 0.1%. Its affinity with mucins was characterized by a ΔZP of 20.93 ± 0.31. Its apparent permeability coefficient thought the RPMI 2650 cell line was 3.00E-05 ± 0.24E-05 cm/s. After instillation in a 3D-printed nasal cast, the fraction of the injected powder deposited in the olfactory region reached 51.47 ± 9.30% in the right nostril and 41.20 ± 4.59% in the left nostril, respectively. Conclusion: The chitosan coated cubosomal formulation seems to be the most promising formulation for nose-to-brain delivery. Indeed, it has a high mucoaffinity and a significantly higher apparent permeability coefficient than the two other formulations. Finally, it reaches well the olfactory region.
Background: Schistosomiasis is a chronic debilitating parasitic disease accompanied with severe mortality rates. Although praziquantel (PZQ) acts as the sole drug for the management of this disease, it has many limitations that restrict the use of this treatment approach. Repurposing of spironolactone (SPL) and nanomedicine represents a promising approach to improve anti-schistosomal therapy. We have developed SPL-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) to enhance the solubility, efficacy, and drug delivery and hence decrease the frequency of administration, which is of great clinical value. Methods: The physico-chemical assessment was performed starting with particle size analysis and confirmed using TEM, FT-IR, DSC, and XRD. The antischistosomal effect of the SPL-loaded PLGA NPs against Schistosoma mansoni (S. mansoni)-induced infection in mice was also estimated. Results: Our results manifested that the optimized prepared NPs had particle size of 238.00 ± 7.21 nm, and the zeta potential was -19.66 ± 0.98 nm, effective encapsulation 90.43±8.81%. Other physico-chemical features emphasized that nanoparticles were completely encapsulated inside the polymer matrix. The in vitro dissolution studies revealed that SPL-loaded PLGA NPs showed sustained biphasic release pattern and followed Korsmeyer-Peppas kinetics corresponding to Fickian diffusion (n<0.45). The used regimen was efficient against S. mansoni infection and induced significant reduction in spleen, liver indices, and total worm count (ρ<0.05). Besides, when targeting the adult stages, it induced decline in the hepatic egg load and the small intestinal egg load by 57.75% and 54.17%, respectively, when compared to the control group. SPL-loaded PLGA NPs caused extensive damage to adult worms on tegument and suckers, leading to the death of the parasites in less time, plus marked improvement in liver pathology. Conclusion: Collectively, these findings provided proof-of-evidence that the developed SPL-loaded PLGA NPs could be potentially used as a promising candidate for new antischistosomal drug development.
Purpose: Graphene oxide (GO) and its derivatives have recently been identified as promising candidates for early disease diagnosis and therapy. However, the physiological stability and precise launch requirements present limitations on further clinical practices. Adipose-derived stem cells (ADSCs) were employed as an unobstructed biological vehicle to address the validate this ADSC-based tumor-targeting system for highly efficient GO delivery combined with two-stage NIR radiation for superior tumor ablation. Methods: GO was modified with poly-ethylene glycol (PEG) and folic acid (FA). Afterward, the GO nanocomposite was internalized into ADSCs. The GO-PEG-FA-laden ADSCs were injected into the tail veins of the tumor-bearing mice. Subsequently, first-stage NIR radiation was utilized to disrupt the ADSCs for GO-PEG-FA release. After this, the heat generated by secondary-stage NIR radiation destroy the malignant cells and shrink the tumor, and the cascade process could be recycled until complete tumor ablation if necessary. Results: The GO-PEG-FA nanocomposite exhibited negligible cytotoxicity and could be internalized into ADSCs to target specific tumor sites after 32 days of intravenous injection. The nanocomposite was released from the ADSCs and taken up into cancer cells again with the assistance of FA after the first dose of near-infrared radiation. Then, the second radiation dose could directly strike the cancer cell for cancer ablation. Conclusion: In summary, we reported a stem cell-based anticancer system that used GO-PEG-FA-laden ADSCs for breast cancer therapy through NIR treatment in mice potentially opens a new avenue not only to address precise drug targeting in tumor therapy, but also future clinical practice in diverse areas.
Purpose: Diabetic wound is a highly prevalent and refractory disease. Extensive studies have confirmed that keratinocytes and macrophages play an important role in the process of wound healing. Additionally, exosomes are regarded as a vital intercellular communication tool. This study aimed to investigate the role of human keratinocyte-derived exosomal MALAT1 in the treatment of diabetic wound by influencing the biological function of macrophages. Methods: We mainly assessed the function of MALAT1 on the biological changes of macrophages, and the expression of MALAT1 in the keratinocyte-exosomes analyzed by quantitative real-time polymerase chain reaction (RT-qPCR). The downstream interaction between RNAs or proteins was assessed by mechanistic experiments. Besides, we evaluated the effects of human keratinocyte-derived exosomal MALAT1 on diabetic wound healing in vivo to verify in vitro results. Results: We demonstrated that human keratinocyte-derived exosomal MALAT1 enhanced the biological functions of high glucose-injured macrophages, including phagocytosis, converting to a pro-healing phenotype and reducing apoptosis. Mechanistically, MALAT1 accelerated the expression of MFGE8 by competitively binding to miR-1914-3p, thereby affecting the function of macrophages and the signal axis of TGFB1/SMAD3, and finally promoting the healing of diabetic wounds. Human keratinocyte-derived exosomal MALAT1 might promote collagen deposition, ECM remodeling, and expression of MFGE8, VEGF, and CD31 but reduce the expression of TGFB and SMAD3 in an in vivo model of diabetic mice wounds, which accelerated diabetic wound healing and restored its function. Conclusion: The current study revealed that human keratinocyte-derived exosomal MALAT1 would suppress miR-1914-3p to activate MFGE8 and eventually promote wound healing by enhancing macrophage phagocytosis, converting to a pro-healing phenotype and reducing apoptosis. It proposed that keratinocyte-derived exosomes might have the capacity to serve as a new method for the clinical treatment of diabetic wound.
Introduction: Antibacterial photodynamic treatment (aPDT) has indispensable significance as a means of treating periodontal disorders because of its extraordinary potential for killing pathogenic bacteria by generating an overpowering amount of reactive oxygen species (ROS). The elevated ROS that may result from the antibacterial treatment procedure, however, could exert oxidative pressure inside periodontal pockets, causing irreparable damage to surrounding tissue, an issue that has severely restricted its medicinal applications. Accordingly, herein, we report the use of black phosphorus nanosheets (BPNSs) that can eliminate the side effects of ROS-based aPDT as well as scavenge ROS to produce an antibacterial effect. Methods: The antibacterial effect of ICG/aPDT was observed by direct microscopic colony counting. A microplate reader and confocal microscope enabled measurements of cell viability and the quantification of ROS fluorescence. BPNS administration regulated the oxidative environment. IL-1β, IL-6, TNF-α, IL-10, TGF-β, and Arg-1 mRNA expression levels were used to assess the inflammatory response after BPNS treatment. In vivo, the efficacy of the combination of BPNSs and ICG/aPDT was evaluated in rats with periodontal disease by histomorphometric and immunohistochemical analyses. Results: The CFU assay results verified the antibacterial effect of ICG/aPDT treatment, and ROS fluorescence quantification by CLSM indicated the antioxidative ability of the BPNSs. IL-1β, IL-6, TNF-α, IL-10, TGF-β, and Arg-1 mRNA expression levels were significantly decreased after BPNS treatment, confirming the in vitro anti-inflammatory effect of this nanomaterial. The histomorphometric and immunohistochemical analyses showed that the levels of proinflammatory factors decreased, suggesting that the BPNSs had anti-inflammatory effects in vivo. Conclusion: Treatment with antioxidative BPNSs gives new insights into future anti-inflammatory therapies for periodontal disease and other infection-related inflammatory illnesses and provides an approach to combat the flaws of aPDT.
Introduction: The role of the human immune system in pathologic responses to chemicals including nanomaterials was identified as a gap in current hazard assessments. However, the complexity of the human immune system as well as interspecies variations make the development of predictive toxicity tests challenging. In the present study, we have analysed to what extent fluctuations of the complement system of different individuals will have an impact on the standardisation of immunological tests. Methods: We treated commercially available pooled sera (PS) from healthy males, individual sera from healthy donors and from patients suffering from cancer, immunodeficiency and allergies with small molecules and liposomes. Changes of iC3b protein levels measured in enzyme-linked immunosorbent assays served as biomarker for complement activation. Results: The level of complement activation in PS differed significantly from responses of individual donors (p < 0.01). Only seven out of 32 investigated sera from healthy donors responded similarly to the pooled serum. This variability was even more remarkable when investigating the effect of liposomes on the complement activation in sera from donors with pre-existing pathologies. Neither the 26 sera of donors with allergies nor sera of 16 donors with immunodeficiency responded similar to the PS of healthy donors. Allergy sufferers showed an increase in iC3b levels of 4.16-fold changes when compared to PS treated with liposomes. Discussion: Our studies demonstrate that the use of pooled serum can lead to an over- or under-estimation of immunological response in particular for individuals with pre-existing pathologies. This is of high relevance when developing medical products based on nanomaterials and asks for a review of the current practice to use PS from healthy donors for the prediction of immunological effects of drugs in patients. A better understanding of individual toxicological responses to xenobiotics should be an essential part in safety assessments.
Background: Fetal lung underdevelopment (FLUD) is associated with neonatal and childhood severe respiratory diseases, among which gestational diabetes mellitus (GDM) play crucial roles as revealed by recent prevalence studies, yet mechanism underlying GDM-induced FLUD, especially the role of trophoblasts, is not all known. Methods: From the perspective of trophoblast-derived exosomes, we established in vitro, ex vivo, in vivo and GDM trophoblast models. Utilizing placenta-derived exosomes (NUB-exos and GDMUB-exos) isolated from normal and GDM umbilical cord blood plasma and trophoblast-derived exosomes (NC-exos and HG-exos) isolated from HTR8/SVneo trophoblasts medium with/without high glucose treatment, we examined their effects on fetal lung development and biological functions. Results: We found that, compared with the NUB-exos group, the exosome concentration increased in GDMUB-exos group, and the content of exosomes also changed evidenced by 61 dysregulated miRNAs. After applying these exosomes to A549 alveolar type II epithelial cells, the proliferation and biological functions were suppressed while the proportion of apoptotic cells was increased as compared to the control. In ex vivo studies, we found that GDMUB-exos showed significant suppression on the growth of the fetal lung explants, where the number of terminal buds and the area of explant surface decreased and shrank. Besides, the expression of Fgf10, Vegfa, Flt-1, Kdr and surfactant proteins A, B, C, and D was downregulated in GDMUB-exos group, whilst Sox9 was upregulated. For in vivo studies, we found significant suppression of fetal lung development in GDMUB-exos group. Importantly, we found consistent alterations when we used NC-exos and HG-exos, suggesting a dominant role of trophoblasts in placenta-derived exosome-induced FLUD. Conclusion: In conclusion, GDM can adversely affect trophoblasts and alter exosome contents, causing crosstalk disorder between trophoblasts and fetal lung epithelial cells and finally leading to FLUD. Findings of this study will shine insight into the theoretical explanation for the pathogenesis of FLUD.
Introduction: The formation of diabetic ulcers (DU) is a common complication for diabetic patients resulting in serious chronic wounds. There is therefore, an urgent need for complex treatment of this problem. This study examines a bioactive wound dressing of a biodegradable electrospun nanofibrous blend of poly(L-lactide-co-ε-caprolactone) and poly(ε-caprolactone) (PLCL/PCL) covered by a thin fibrin layer for sustained delivery of bioactive molecules. Methods: Electrospun PLCL/PCL nanofibers were coated with fibrin-based coating prepared by a controlled technique and enriched with human platelet lysate (hPL), fibroblast growth factor 2 (FGF), and vascular endothelial growth factor (VEGF). The coating was characterized by scanning electron microscopy and fluorescent microscopy. Protein content and its release rate and the effect on human saphenous vein endothelial cells (HSVEC) were evaluated. Results: The highest protein amount is achieved by the coating of PLCL/PCL with a fibrin mesh containing 20% v/v hPL (NF20). The fibrin coating serves as an excellent scaffold to accumulate bioactive molecules from hPL such as PDGF-BB, fibronectin (Fn), and α-2 antiplasmin. The NF20 coating shows both fast and a sustained release of the attached bioactive molecules (Fn, VEGF, FGF). The dressing significantly increases the viability of human saphenous vein endothelial cells (HSVECs) cultivated on a collagen-based wound model. The exogenous addition of FGF and VEGF during the coating procedure further increases the HSVECs viability. In addition, the presence of α-2 antiplasmin significantly stabilizes the fibrin mesh and prevents its cleavage by plasmin. Discussion: The NF20 coating supplemented with FGF and VEGF provides a promising wound dressing for the complex treatment of DU. The incorporation of various bioactive molecules from hPL and growth factors has great potential to support the healing processes by providing appropriate stimuli in the chronic wound.
Neurodegeneration is characterized by progressive, disabling, and incurable neurological disorders with the massive loss of specific neurons. As one of the most promising potential therapeutic strategies for neurodegenerative diseases, stem cell therapy exerts beneficial effects through different mechanisms, such as direct replacement of damaged or lost cells, secretion of neurotrophic and growth factors, decreased neuroinflammation, and activation of endogenous stem cells. However, poor survival and differentiation rates of transplanted stem cells, insufficient homing ability, and difficulty tracking after transplantation limit their further clinical use. The rapid development of nanotechnology provides many promising nanomaterials for biomedical applications, which already have many applications in neurodegenerative disease treatment and seem to be able to compensate for some of the deficiencies in stem cell therapy, such as transport of stem cells/genes/drugs, regulating stem cell differentiation, and real-time tracking in stem cell therapy. Therefore, nanotherapeutic strategies combined with stem cell therapy is a promising therapeutic approach to treating neurodegenerative diseases. The present review systematically summarizes recent advances in stem cell therapeutics and nanotherapeutic strategies and highlights how they can be combined to improve therapeutic efficacy for the treatment of neurodegenerative diseases.
The characteristics of macrophages and BMSCs. (a) Primary macrophages observed under the microscope; cells were spherical and uniform in size. (b) Flow cytometry results of CD68 expression on the cell surface. The expression of CD68 on 10,000 cells was recorded. 90.7% of the cells expressed CD68. (c) The fifth generation of cultured BMSCs was observed under the microscope; the cells were long, fusiform, and translucent. (d-f) Alizarin red, Alcian blue, and Oil red O staining showed that the cells had osteogenic, chondrogenic, and adipogenic differentiation ability. (g-j). The expression of CD29, CD90, CD44, and CD34 on 10,000 cells was recorded; red indicates cell marker expression and blue indicates the isotype control. Microscopy: 100× magnification and 200 μm scale.
The differential expression of lncRNAs in macrophage exosomes. (a and b) The top 20 differentially expressed lncRNAs induced my macrophages that were stimulated using hypoxia, CSF, or BFM alone. (c and d) Volcano plots showing lncRNA expression in macrophage exosomes after hypoxia or CSF stimulation in the fracture microenvironment. Red plots represent up-regulation, blue plots represent down-regulation, and black plots represent unchanged expression. Hypoxia stimulation upregulated 310 lncRNAs, down-regulated 575 lncRNAs, and did not affect the expression of 210 lncRNAs. CSF stimulation up-regulated 557 lncRNAs, down-regulated 407 lncRNAs, and did not affect the expression of 88 lncRNAs. (e and f) Venn diagram of exosomal lncRNAs co-regulated by hypoxia and CSF stimulation of macrophages in the fracture microenvironment. (g) The top three co-regulated lncRNAs with a transcriptional abundance ≥ 100 were LOC102555570, LOC103691165, and LOC100909675.
The effect of exosomal lncRNA LOC103691165 on BMSC osteogenesis in the bone fracture microenvironment. (a) qRT-PCR was used to examine the expression of LOC102555570, LOC103691165, and LOC100909675. The bar graph shows the increased expression of the above lncRNAs in the exosomes secreted by macrophages after being stimulated using hypoxia or CSF. ## p < 0.01, # p < 0.05. (b). Alizarin red staining of BMSCs, viewed under the microscope or with the naked eye. After receiving exosomes carrying the LOC103691165 overexpression plasmid, the Alizarin-red-stained area of BMSCs was enlarged. By contrast, the area of BMSCs stained with Alizarin red was reduced after treatment with exosomes carrying LOC103691165-targeting siRNA. (c and d) The absorbance value of BMSCs at 570 nm after Alizarin red staining. The bar graphs show the differences between each group. ## p < 0.01, #p < 0.05. (e) The effect of LOC103691165 on the expression of osteogenesis-related genes in BMSCs. The bar graphs show that the exosomes overexpressing LOC103691165 promoted the expression of BMP-2, RUNX2, OPN, and OC in BMSCs, while exosomes carrying the LOC103691165-targeting siRNA reduced the expression of the above genes in BMSCs. ## p < 0.01, # p < 0.05. Each experiment was repeated five times. Microscopy: 100× magnification and 200 μm scale.
Primer Sequences Used in This Study
Purpose: To investigate the effect of macrophage exosomal long non-coding (lnc)RNAs on bone mesenchymal stem cell (BMSC) osteogenesis and the associated mechanism. Methods: Rat BMSCs and spleen macrophages were co-cultured with serum derived from the fracture microenvironment of rat tibia. BMSC osteogenesis was evaluated using Alizarin red staining and the expression of BMP-2, RUNX2, OPN, and OC mRNA. BMSC osteogenesis was evaluated after co-culture with macrophages stimulated using hypoxic conditions or colony-stimulating factor (CSF). The uptake of macrophage-derived exosomes by BMSCs was evaluated using the exosome uptake assay. High-throughput sequencing and bioinformatics analyses were performed to identify key lncRNAs in the macrophage exosomes. The effect of lncRNA expression levels on BMSC osteogenesis was also assessed using a lncRNA overexpression plasmid and siRNA technology. M1 and M2 macrophages were distinguished using flow cytometry and the key exosomal lncRNA was detected by in situ hybridization. Results: In the fracture microenvironment, macrophages (stimulated using either hypoxia or CSF) significantly increased the osteogenic ability of BMSCs. We showed that BMSCs assimilated macrophage-derived vesicles and that the inhibition of exosomal secretion significantly attenuated the macrophage-mediated induction of BMSC osteogenesis. The hypoxia condition led to the up-regulation of 310 lncRNAs and the down-regulation of 575 lncRNAs in macrophage exosomes, while CSF stimulation caused the up-regulation of 557 lncRNAs and the down-regulation of 407 lncRNAs. In total, 108 lncRNAs were co-up-regulated and 326 lncRNAs were co-down-regulated under both conditions. We eventually identified LOC103691165 as a key lncRNA that promoted BMSC osteogenesis and was expressed at similar levels in both M1 and M2 macrophages. Conclusion: In the fracture microenvironment, M1 and M2 macrophages promoted BMSC osteogenesis by secreting exosomes containing LOC103691165.
Background: Curcumin (CUR) is a functional ingredient from the spice turmeric. It has attracted considerable attention recently, owing to its diverse biological activities. However, curcumin has low water solubility, which limited its applications. Some sugar molecules were found to be able to solubilise poorly water-soluble compounds by forming micelles in aqueous solutions. Purpose: To improve the water solubility and oral absorption of CUR, using a non-nutritive natural sweetener, namely, Mogroside V (Mog-V). Methods: A solid dispersion of CUR in Mog-V was prepared using a solvent evaporation method. The solid dispersion was characterised by using X-ray diffraction and differential scanning calorimetry. The solid dispersion can dissolve in water to form micelles with a diameter of ~160 nm, which were characterised by using dynamic light scattering. To find out the mechanism of solubilisation, the aggregation behaviour of Mog-V molecules in aqueous solution was investigated using nuclear magnetic resonance spectroscopy. Finally, oral absorption of CUR in the solid dispersion was evaluated using a rodent model. Results: A solid dispersion was formed in a ratio of 1 CUR to 10 Mog-V by weight. Upon dissolution into water, CUR laden micelles formed via self-assembly of Mog-V molecules, which increased the solubility of CUR by nearly 6000 times compared with pure CUR crystals. In rats, the solid dispersion increased the oral absorption of CUR by 29 folds, compared with CUR crystals. In terms of solubilisation mechanism, it was found that Mog-V self-assembled into micelles with a core-shell structure and CUR molecules were incorporated into the hydrophobic core of the Mog-V micelles. Conclusion: Mog-V can form a solid dispersion with CUR. Upon dissolution in water, the Mog-V in the solid dispersion can self-assemble into micelles, which solubilise CUR and increase its oral absorption.
Background: The human epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that is involved in several key cellular processes, such as cell proliferation and differentiation, and it has been linked to the development and progression of various cancers (e.g., breast and lung). Researchers have attempted to improve current cancer-targeted therapies by conjugating molecules on the surface of (nano)particles to efficiently target and inhibit EGFR. However, very few in vitro studies have investigated the effect of particles per se on EGFR signaling and dynamics. Furthermore, the impact of concomitant exposure of particles and EGFR ligands, such as epidermal growth factor (EGF) on cellular uptake efficiency has received little attention. Purpose: The purpose of this research was to determine the effects of silica (SiO2) particles on EGFR expression and intracellular signaling pathways in A549 lung epithelial cells, in the presence or absence of epidermal growth factor (EGF). Results: We showed that A549 cells are able to internalize SiO2 particles with core diameters of 130 nm and 1 µm without affecting cell proliferation or migration. However, both SiO2 particles interfere with the EGFR signaling pathway by raising the endogenous levels of extracellular signal-regulated kinase (ERK) 1/2. Furthermore, both in the presence and absence of SiO2 particles, the addition of EGF increased cell migration. EGF also stimulated cellular uptake of 130 nm SiO2 particles but not 1 µm particles. The increased uptake is primarily associated with EGF-stimulated macropinocytosis. Conclusion: This study shows that SiO2 particle uptake interferes with cellular signaling pathways and can be boosted by concurrent exposure to the bioactive molecule EGF. SiO2 particles, both alone and in combination with the ligand EGF, interfere with EGFR signaling pathway in a size-dependent manner.
Background: Imiquimod (IMQ) is an immunomodulating drug that is approved for the treatment of superficial basal cell carcinoma, actinic keratosis, external genital warts and perianal warts. However, IMQ cream (Aldara®) has several drawbacks including poor skin permeation, local toxicity, and compromised patient compliance as a topical pharmacological option. Methods: Our research aimed to develop and optimize nanostructured lipid carriers (NLCs) containing IMQ for the first time using a hybrid design of experiments approach. The optimized formulation was then incorporated into a matrix-type topical patch as an alternative dosage form for topical application and evaluated for IMQ deposition across different skin layers in comparison to the performance of the commercial product. Additionally, our work also attempted to highlight the possibility of implementing environment-friendly practices in our IMQ-NLCs formulation development by reviewing our analytical methods and experimental designs and reducing energy and solvent consumption where possible. Results: In this study, stearyl alcohol, oleic acid, Tween® 80 (polysorbate 80), and Gelucire® 50/13 (Stearoyl polyoxyl-32 glycerides) were selected for formulation development. The formulation was optimized using a 2k factorial design and a central composite design. The optimized formulation achieved the average particle size, polydispersity index, and zeta potential of 75.6 nm, 0.235, and - 30.9 mV, respectively. Subsequently, a matrix-type patch containing IMQ-NLCs was developed and achieved a statistically significant improvement in IMQ deposition in the deeper skin layers. The IMQ deposition from the patch into the dermis layer and receptor chamber was 3.3 ± 0.9 µg/cm2 and 12.3 ± 2.2 µg/cm2, while the commercial cream only deposited 1.0 ± 0.8 µg/cm2 and 1.5 ± 0.5 µg/cm2 of IMQ, respectively. Conclusion: In summary, IMQ-NLC-loaded patches represent great potential as a topical treatment option for skin cancer with improved patient compliance.
Characterization of the scaffolds. (A) Representative gross morphology (Scale bar, 2 mm) and surface topography SEM images (Scale bar, 1 mm and 5 μm). (B) X-ray diffraction patterns. (C) FTIR spectra. (D) Compressive strength. (E) Weight change of the scaffolds after soaking in Tris solution. (F) pH values. (G) Accumulated ionic release of Ca, Si, and Mg. Data are expressed as mean ± SD (n = 3). & P < 0.05 vs BRT-R scaffold; ### P < 0.001 vs β-TCP scaffold.
BMSCs proliferation, migration, and differentiation in response to the polarized macrophages by scaffolds. (A) Effects of macrophage polarization on BMSCs proliferation using CCK-8 assay. (B) BMSCs migration induced by macrophage polarization using Transwell assays. Scale bar, 1 mm. (C) Quantification analysis of cells migration. (D) ALP staining for alkaline phosphatase activities and ARS images for calcium deposits of the BMSCs. (E) Semi-quantitative data of ALP activity assay. (F) Quantified analysis of ARS. (G) mRNA expression levels of BMP2 and RUNX2 as measured by qRT-PCR. (H) IF images for cytoskeletal proteins F-actin (green), vinculin (red), and DAPI (blue). Scale bar, 50 μm. Data are expressed as mean ± SD (n = 3). Ns, no significance; ## P < 0.01 vs β-TCP scaffold; ***P < 0.001 vs Control group; ### P < 0.001 vs β-TCP scaffold; &&& P < 0.001 vs BRT-R scaffold.
New bone generation as detected by gross observation and μ-CT analysis at weeks 6 and 12 post-implantation. (A) Representative gross observation images. (B) μ-CT analysis. (C) BV/TV as calculated by μ-CT 80 system. Data are expressed as mean ± SD (n = 4). ***P < 0.001 vs Control group; ### P < 0.001 vs β-TCP scaffold; &&& P < 0.001 vs BRT-R scaffold.
Immunomodulation and osteogenesis in the defect region at one-week post surgery. Positively stained cells are indicated by arrows. (A) Representative images of IHC staining for osteogenesis markers RUNX2 expression, macrophage polarization pan marker CD68, M1 marker iNOS, and M2 marker CD163 expression in defect tissues. (B) Semi-quantification of RUNX2, CD68, iNOS and CD163 positive cells. Data are expressed as mean ± SD (n = 4). Scale bar, 100 μm. Ns, no significance; ***P < 0.001 vs Control group; ### P < 0.001 vs β-TCP scaffold; &&& P < 0.001 vs BRT-R scaffold.
Background: Repairing critical-sized bone defects secondary to traumatic or tumorous damage is a complex conundrum in clinical practice; in this case, artificial scaffolds exhibited preferable outcomes. Bredigite (BRT, Ca7MgSi4O16) bioceramic possesses excellent physicochemical properties and biological activity as a promising candidate for bone tissue engineering. Methods: Structurally ordered BRT (BRT-O) scaffolds were fabricated by a three-dimensional (3D) printing technique, and the random BRT (BRT-R) scaffolds and clinically available β-tricalcium phosphate (β-TCP) scaffolds were compared as control groups. Their physicochemical properties were characterized, and RAW 264.7 cells, bone marrow mesenchymal stem cells (BMSCs), and rat cranial critical-sized bone defect models were utilized for evaluating macrophage polarization and bone regeneration. Results: The BRT-O scaffolds exhibited regular morphology and homogeneous porosity. In addition, the BRT-O scaffolds released higher concentrations of ionic products based on coordinated biodegradability than the β-TCP scaffolds. In vitro, the BRT-O scaffolds facilitated RWA264.7 cells polarization to pro-healing M2 macrophage phenotype, whereas the BRT-R and β-TCP scaffolds stimulated more pro-inflammatory M1-type macrophages. A conditioned medium derived from macrophages seeding on the BRT-O scaffolds notably promoted the osteogenic lineage differentiation of BMSCs in vitro. The cell migration ability of BMSCs was significantly enhanced under the BRT-O-induced immune microenvironment. Moreover, in rat cranial critical-sized bone defect models, the BRT-O scaffolds group promoted new bone formation with a higher proportion of M2-type macrophage infiltration and expression of osteogenesis-related markers. Therefore, in vivo, BRT-O scaffolds play immunomodulatory roles in promoting critical-sized bone defects by enhancing the polarization of M2 macrophages. Conclusion: 3D-printed BRT-O scaffolds can be a promising option for bone tissue engineering, at least partly through macrophage polarization and osteoimmunomodulation.
Background: Nanomaterials exhibited intrinsic enzyme-like properties due to the unique properties compared with natural enzyme. Carbon dots (CDs) are an important kind of quantum-sized nanomaterials, which have enormous application potential in bio-imaging, drug carrier, and nanosystems. Carbon dots possess intrinsic enzyme-like properties, such as glutathione (GSH) oxidase or peroxidase activities. Methods: A co-delivery nanosystem that could carry siRNA and doxorubucin (DOX) simultaneously has been studied in this work. The co-delivery based on carbon dots was surface-modified with poly-ethylenimine (PEI) and loaded the siMRP1 with chemotherapeutics on the surface with pH-triggered drug release. The CD-PEI was synthesized by one-step microwave assisted method; the PEI was raw materials and passivator during the reaction process that makes CDs exhibit excellent optical property. Results: The CD-PEI was capable of loading and delivering siMRP1 and DOX to tumors and releasing them synchronously in cells in an acid-triggered manner. The particles exhibited GSH oxidase-like catalytic property, oxidizing GSH to oxidized glutathione with concomitant increase of reactive oxygen species (ROS). We found that silencing of MRP1 by co-delivery system antagonized chemoresistance by increasing DOX accumulation and significantly enhancing the inhibitory effect of cell viability induced by CD-PEI-DOX. The co-delivery system dramatically inhibited tumor growth in xenograft model, and CDs counteracted MRP1 function by siRNA-mediated knockdown of MRP1. Conclusion: Taken together, we uncover the potential role of CDs with a combination of siRNA and chemotherapeutics in overcoming chemoresistance of lung cancer by suppressing MRP1 and oxidation of GSH. Our findings imply its potential of antagonizing chemoresistance to enhance therapeutic efficiency of doxorubicin in clinical practices of lung cancer treatment.
Purpose: Owing to lack of specific molecular targets, the current clinical therapeutic strategy for triple negative breast cancer (TNBC) is still limited. In recent years, some nanosystems for malignancy treatment have received considerable attention. In this study, we prepared caramelized nanospheres (CNSs) loaded with doxorubicin (DOX) and Fe3O4 to achieve the synergistic effect of combined therapy and real-time magnetic resonance imaging (MRI) monitoring, so as to improve the diagnosis and therapeutic effect of TNBC. Methods: CNSs with biocompatibility and unique optical properties were prepared by hydrothermal method, DOX and Fe3O4 were loaded on it to obtain Fe3O4/DOX@CNSs nanosystem. Characteristics including morphology, hydrodynamic size, zeta potentials and magnetic properties of Fe3O4/DOX@CNSs were evaluated. The DOX release was evaluated by different pH/near-infrared (NIR) light energy. Biosafety, pharmacokinetics, MRI and therapeutic treatment of Fe3O4@CNSs, DOX and Fe3O4/DOX@CNSs were examined in vitro or in vivo. Results: Fe3O4/DOX@CNSs has an average particle size of 160 nm and a zeta potential of 27.5mV, it demonstrated that Fe3O4/DOX@CNSs is a stable and homogeneous dispersed system. The hemolysis experiment of Fe3O4/DOX@CNSs proved that it can be used in vivo. Fe3O4/DOX@CNSs displayed high photothermal conversion efficiency, extensive pH/heat-induced DOX release. 70.3% DOX release is observed under the 808 nm laser in the pH = 5 PBS solution, obviously higher than pH = 5 (50.9%) and pH = 7.4 (less than 10%). Pharmacokinetic experiments indicated the t1/2β, and AUC0-t of Fe3O4/DOX@CNSs were 1.96 and 1.31 -fold higher than those of DOX solution, respectively. Additionally, Fe3O4/DOX@CNSs with NIR had the greatest tumor suppression in vitro and in vivo. Moreover, this nanosystem demonstrated distinct contrast enhancement on T2 MRI to achieve real-time imaging monitoring during treatment. Conclusion: Fe3O4/DOX@CNSs is a highly biocompatible, double-triggering and improved DOX bioavailability nanosystem that combines chemo-PTT and real-time MRI monitoring to achieve integration of diagnosis and treatment of TNBC.
Purpose: Oxidative stress, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and adenosine signaling are factors associated with psoriatic inflammation. Topical delivery of methotrexate (MTX) has become an option to overcome the side effects caused by systemic therapy in psoriasis, leading to the suppression of NF-κB activation through boosting adenosine release. However, thickened psoriatic skin is the primary restriction against local drug delivery. Methods: In this study, a ROS responsive MTX prodrug (MTX-TK-HA) was synthesized with the feature of CD44 mediated active targeting to hyperproliferative keratinocytes. MTX prodrug and PLA-mPEG were formulated by nano-precipitation method to develop the MTX-TK-HA/PLA-mPEG nanoassemblies. To achieve painless transdermal delivery, a dissolving microneedle was applied for direct loading of these nanoassemblies by micromolding technique. The particle size, zeta potential, ROS-responsiveness, permeability, and mechanical strength of nanoassemblies and microneedle arrays were determined, respectively. Then, MTT assay, immunoblot analysis, ELISA assay, flow cytometry, and histological staining were utilized to thoroughly evaluate the efficacy of nanoassemblies-loaded microneedles in an imiquimod-induced psoriatic mouse model. Results: Nanoassemblies-loaded microneedle arrays were capable of significantly penetrating imiquimod-induced psoriatic epidermis in mice. The efficient topical delivery of these nanoassemblies was achieved by potent mechanical strength and hyaluronic acid as the dissolvable matrix for microneedle arrays. CD44-mediated endocytosis enabled the intracellular uptake of nanoassemblies in keratinocytes, and methotrexate was released from MTX-TK-HA with ROS stimuli, followed by suppressing the proliferation of epidermal cells via NF-κB pathway blockade. Conclusion: In a psoriatic mouse model, nanoassemblies loaded microneedle arrays relieve inflammatory skin disorders via regulation of adenosine and NF-κB signaling. Our study offered a rational design for the transdermal delivery of hydrophobic agents and defined an effective therapeutic option for psoriasis treatment.
Distribution of 64 Cu-loaded liposomes after PTT in mice bearing CT26 tumors. (A). Representative images of a tumor at different time points during irradiation, captured with a thermal camera. (B). Temperature increase for all three groups of mice undergoing PTT, detected with the thermal camera (0 h, 6 h and 24 h). Data were shown as mean ± standard error of the mean (SEM). (C). Representative PET/CT images of mice 10 minutes and 24 hours after administration of 64 Cu-loaded liposomes. (D). Liposome accumulation in the tumor shown as mean percentage of injected dose per gram of tissue (%ID/g) for the different groups of mice (Control, 0 h, 6 h, and 24 h; n = 5 per group), 10 minutes and 24 hours after liposome administration. * represents p < 0.05, ** represents p < 0.01, and *** represents p < 0.001. n.s. means non-significant. (E). Correlation between the mean %ID/g (from the PET scans) and the maximum temperature reached during PTT (recorded with the thermal camera) for each mouse.
DiI liposomal distribution ex vivo in CT26 tumors and histological analysis. (A). Fluorescent DiI signal on 20 μm tumor slices for the different groups detected on the Amersham Typhoon Biomolecular Analyzer (n = 3). (B). Fluorescent signal on 4 μm tumor slices detected by microscopy. (C). HE staining. (D). Ki-67 staining. Arrows point to positive staining, denoted by brown color. T refers to treated tissue and H refers to healthy tissue. (E). CD31 staining.
Introduction: Traditional cancer treatments, such as chemotherapy, are often incapable of achieving complete responses as standalone therapies. Hence, current treatment strategies typically rely on a combination of several approaches. Nanoparticle-based photothermal therapy (PTT) is a technique used to kill cancer cells through localized, severe hyperthermia that has shown promise as an add-on treatment to multiple cancer therapies. Here, we evaluated whether the combination of gold nanoshell (NS)-based PTT and liposomal doxorubicin could improve outcome in a mouse model of colorectal cancer. Methods: First, NS-based PTT was performed on tumor-bearing mice. Radiolabeled liposomes were then injected at different timepoints to follow their accumulation in the tumor and determine the ideal injection time after PTT. In addition, fluorescent liposomes were used to observe the liposomal distribution in the tumor after PTT. Finally, we combined PTT and doxorubicin-loaded liposomes and studied the effect of the treatment strategy on the mice by following tumor growth and survival. Results: PTT significantly improved liposomal accumulation in the tumor, but only when the liposomes were injected immediately after the therapy. The liposomes accumulated mostly in regions adjacent to the ablated areas. When PTT was combined with liposomal doxorubicin, the mice experienced a slowdown in tumor growth and an improvement in survival. Conclusion: According to our preclinical study, NS-based PTT seems promising as an add-on treatment for liposomal chemotherapy and potentially other systemic therapies, and could be relevant for future application in a clinical setting.
Background: Chronic intermittent hypoxia (CIH) could cause neuronal damage, accelerating the progression of dementia. However, safe and effective therapeutic drugs and delivery are needed for successful CIH therapy. Purpose: To investigate the neuroprotective effect of Huperzine A (HuA) packaged with nanoliposomes (HuA-LIP) on neuronal damage induced by CIH. Methods: The stability and release of HuA-LIP in vitro were identified. Mice were randomly divided into the Control, CIH, HuA-LIP, and HuA groups. The mice in the HuA and HuA-LIP groups received HuA (0.1 mg/kg, i.p.), and HuA-LIP was administered during CIH exposure for 21 days. HuA-LIP contains the equivalent content of HuA. Results: We prepared a novel formulation of HuA-LIP that had good stability and controlled release. First, HuA-LIP significantly ameliorated cognitive dysfunction and neuronal damage in CIH mice. Second, HuA-LIP elevated T-SOD and GSH-Px abilities and decreased MDA content to resist oxidative stress damage induced by CIH. Furthermore, HuA-LIP reduced brain iron levels by downregulating TfR1, hepcidin, and FTL expression. In addition, HuA-LIP activated the PKAα/Erk/CREB/BDNF signaling pathway and elevated MAP2, PSD95, and synaptophysin to improve synaptic plasticity. Most importantly, compared with HuA, HuA-LIP showed a superior performance against neuronal damage induced by CIH. Conclusion: HuA-LIP has a good sustained-release effect and targeting ability and efficiently protects against neural injury caused by CIH.
Introduction: Drug delivery systems (DDSs) based on liposomes are potential tools to minimize the side effects and substantially enhance the therapeutic efficacy of chemotherapy. However, it is challenging to achieve biosafe, accurate, and efficient cancer therapy of liposomes with single function or single mechanism. To solve this problem, we designed a multifunctional and multimechanism nanoplatform based on polydopamine (PDA)-coated liposomes for accurate and efficient combinatorial cancer therapy of chemotherapy and laser-induced PDT/PTT. Methods: ICG and DOX were co-incorporated in polyethylene glycol modified liposomes, which were further coated with PDA by a facile two-step method to construct PDA-liposome nanoparticles (PDA@Lipo/DOX/ICG). The safety of nanocarriers was investigated on normal HEK-293 cells, and the cellular uptake, intracellular ROS production capacity, and combinatorial treatment effect of the nanoparticles were assessed on human breast cancer cells MDA-MB-231. In vivo biodistribution, thermal imaging, biosafety assessment, and combination therapy effects were estimated based on MDA-MB-231 subcutaneous tumor model. Results: Compared with DOX·HCl and Lipo/DOX/ICG, PDA@Lipo/DOX/ICG showed higher toxicity on MDA-MB-231 cells. After endocytosis by target cells, PDA@Lipo/DOX/ICG produced a large amount of ROS for PDT by 808 nm laser irradiation, and the cell inhibition rate of combination therapy reached up to 80.4%. After the tail vein injection (DOX equivalent of 2.5 mg/kg) in mice bearing MDA-MB-231 tumors, PDA@Lipo/DOX/ICG significantly accumulated at the tumor site at 24 h post injection. After 808 nm laser irradiation (1.0 W/cm2, 2 min) at this timepoint, PDA@Lipo/DOX/ICG efficiently suppressed the proliferation of MDA-MB-231 cell and even thoroughly ablated tumors. Negligible cardiotoxicity and no treatment-induced side effects were observed. Conclusion: PDA@Lipo/DOX/ICG is a multifunctional nanoplatform based on PDA-coated liposomes for accurate and efficient combinatorial cancer therapy of chemotherapy and laser-induced PDT/PTT.
Purpose: Nanomaterial-based photodynamic therapy (PDT) has been commonly used for the treatment of cancerous tumors. Despite significant achievements made in this field, the intrinsic impact of nanomaterials-based PDT on the mechanical properties of oral squamous cell carcinoma (OSCC) cells is not entirely understood. Here, we used atomic force microscopy (AFM) to measure the stiffness of OSCC cells subjected to PDT in co-culture systems to evaluate the T cell-mediated cancer cell-killing effects. Methods: In this study, AFM was used to assess the stiffness of PDT-subjected cells. The phototoxicity of graphdiyne oxide (GDYO) was assessed using confocal laser scanning microscopy (CLSM), measurements of membrane cholesterol levels, and assessments of the F-actin cytoskeleton. A co-culture system was used to evaluate the effects of CD8+ T cells (cytotoxic T lymphocytes), demonstrating how PDT modulates the mechanical properties of cancer cells and activates T cell responses. The antitumor immunotherapeutic effect of GDYO was further evaluated in a murine xenograft model. Results: GDYO increased the mechanical stiffness of tumor cells and augmented T-cell cytotoxicity and inflammatory cytokine secretion (IFN-γ and TNF-α) under laser in vitro. Furthermore, GDYO-based PDT exerted inhibitory effects on OSCC models and elicited antitumor immune responses via specific cytotoxic T cells. Conclusion: These results highlight that GDYO is a promising candidate for OSCC therapy, shifting the mechanical forces of OSCC cells and breaking through the barriers of the immunosuppressive tumor microenvironment. Our study provides a novel perspective on nanomaterial-based antitumor therapies.
Pathogenesis of sepsis-related liver injury and drug delivery nanosystems.
Mechanism of DOX-hyd-BSA NPs targeting pro-inflammatory neutrophils to induce their apoptosis for the treatment of septic inflammation. (A) The therapeutic mechanism of DOX-hyd-BSA NPs; (B) The preparation route of DOX-conjugated BSA NPs. Notes: Reprinted from Zhang CY, Dong X, Gao J, Lin W, Liu Z, Wang Z. Nanoparticle-induced neutrophil apoptosis increases survival in sepsis and alleviates neurological damage in stroke. Sci Adv. 2019;5(11):eaax7964. 34
Scheme for designing IME responsive and biofunctional nanoparticles (NPs) and for targeted delivery of nanotherapeutics at the site of infection. (A) The designing strategy of intercellular adhesion molecule-1 antibodies-modified multifunctional NPs; (B) The prepared NPs showed a preferential accumulation at a site of infection by interaction with intercellular adhesion molecule-1. Notes: Reprinted with permission from John Wiley and Sons. Zhang CY, Gao J, Wang Z. Bioresponsive nanoparticles targeted to infectious microenvironments for sepsis management. Adv Mater. 2018;30(43):e1803618. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 55
Preparation and efficacy assessment of PEG-HNPs for sepsis treatment. Notes: Reprinted from Koide H, Okishima A, Hoshino Y, et al. Synthetic hydrogel nanoparticles for sepsis therapy. Nat Commun. 2021;12(1):5552. https://creativecom 44
Summary of Drug Delivery Nanosystems for Bacterial Translocation in SRIL
Sepsis, which is a systemic inflammatory response syndrome caused by infection, has high morbidity and mortality. Sepsis-related liver injury is one of the manifestations of sepsis-induced multiple organ syndrome. To date, an increasing number of studies have shown that the hepatic inflammatory response, oxidative stress, microcirculation coagulation dysfunction, and bacterial translocation play extremely vital roles in the occurrence and development of sepsis-related liver injury. In the clinic, sepsis-related liver injury is mainly treated by routine empirical methods on the basis of the primary disease. However, these therapies have some shortcomings, such as serious side effects, short duration of drug effects and lack of specificity. The emergence of drug delivery nanosystems can significantly improve drug bioavailability and reduce toxic side effects. In this paper, we reviewed drug delivery nanosystems designed for the treatment of sepsis-related liver injury according to their mechanisms (hepatic inflammation response, oxidative stress, coagulation dysfunction in the microcirculation, and bacterial translocation). Although much promising progress has been achieved, translation into clinical practice is still difficult. To this end, we also discussed the key issues currently facing this field, including immune system rejection and single treatment modalities. Finally, with the rigorous optimization of nanotechnology and the deepening of research, drug delivery nanosystems have great potential for the treatment of sepsis-related liver injury.
(A) Schematic illustration showing the synthesis of NRA QDs, DEX-HA gel, and multifunctional NRA@DH Gel. (B) Schematic representation of the in vivo mechanisms underlying synergistic therapy with NRA@DH Gel including accumulation in tumor tissues, deep penetration, and sustained ROS generation.
(A) TEM images of NRA QDs. (B) SEM image and corresponding elemental mapping images of NRA@DH Gel. (C) FT-IR spectra of pure RP and NRA@DH Gel. (D) UV−vis absorption and fluorescence spectra of NRA@DH Gel. (E x = 610 nm; E m = 840 nm). Inset shows fluorescent image. (E) Fluorescence stability of NRA@DH Gel after one month. (F) Photographs of NRA QDs, DEX gel, and NRA@DH Gel. (G and H) Rheological properties of NRA@DH Gel at varying pH levels. (I) pH-controlled encapsulated NRA QDS release curves for NRA@DH Gel at pH 7.4, 6.5, and 5.5 over 72 h.
(A) Real-time in vivo fluorescence images (Ex = 610 nm; Em = 840 nm) of GL261 tumor-bearing mice after intratumoral injection of NRA QDs and NRA@DH Gel over a 6-day period (administered dose, 0.5 mg As kg −1 body weight). (B) Corresponding fluorescence signal-based CI values at tumor sites and adjacent normal brain tissue at different times post-administration (0-6 days). (C) Ex vivo fluorescence imaging of heart, liver, spleen, lung, kidneys, and tumor tissues collected after the injection of NRA@DH Gel at different times post-administration (1, 2, 3, and 6 days). (D) CLSM images of tumor cryosections after treatment with fluorescent NRA@DH Gel. Cell nuclei stained with DAPI are shown in blue and NRA@DH Gel is shown in red.
(A) Trajectory maps and (B) numerical statistics of open field tests in different groups. (C) Numerical statistics from the rotarod test in different groups. (D) Survival curves of mice in different groups (n = 8 per group).
Purpose: Realgar, as a kind of traditional mineral Chinese medicine, can inhibit multiple solid tumor growth and serve as an adjuvant drug in cancer therapy. However, the extremely low solubility and poor body absorptive capacity limit its application in clinical medicine. To overcome this therapeutic hurdle, realgar can here be fabricated into a nano-realgar hydrogel with enhanced chemotherapy and radiotherapy (RT) ability. Our objective is to evaluate the superior biocompatibility and anti-tumor activity of nano-realgar hydrogel. Methods: We have successfully synthesized nano-realgar quantum dots (QDs) coupling with 6-AN molecules (NRA QDs) and further encapsulated with a pH-sensitive dextran hydrogel carrier with hyaluronic acid coating (DEX-HA gel) to promote bioavailability, eventually forming a multifunctional nano-realgar hydrogel (NRA@DH Gel). To better investigate the tumor therapy efficiency of the NRA@DH Gel, we have established the mice in situ bearing GL261 brain glioblastoma as animal models assigned to receive intratumor injection of NRA@DH Gel. Results: The designed NRA@DH Gel as an antitumor drug can not only exert the prominent chemotherapy effect but also as a "sustainable reactive oxygen species (ROS) generator" can inhibit in the pentose phosphate pathway (PPP) metabolism and reduce the production of nicotinamide adenine dinucleotide phosphate (NADPH), thereby inhibiting the conversion of glutathione disulfide (GSSG) to glutathione (GSH), reducing GSH concentrations in tumor cells, triggering the accumulation of ROS, and finally enhancing the effectiveness of RT. Conclusion: Through the synergistic effect of chemotherapy and RT, NRA@DH Gel effectively inhibited the proliferation and migration of tumor cells, suppressed tumor growth, improved motor coordination, and prolonged survival in tumor-bearing mice. Our work aims to improve the NRA@DH Gel-mediated synergistic chemotherapy and RT will endow a "promising future" for the old drug in clinically comprehensive applications.
Identification of osteoblasts and osteoclasts. (A) BMM-NC: control group only treated with 50ng/mL M-CSF. The formation of mature osteoclasts was observed in the OC-RC group (treated with 50ng/mL M-CSF and RANKL) through TRAP staining (100×) and Phalloidin-DAPI staining (100 ×). (B) Compared with the NC group (control group only treated with 50ng/mL M-CSF), the relative expression of osteoclastic markers including NFATc1, c-Fos, CTSK and MMP-9 was sharply increased in RC group treated with 50ng/mL M-CSF and RANKL (****p<0.0001). (C) Ind group (cultured with osteogenic induction medium) showed higher alkaline phosphatase activity via ALP staining, while ARS staining confirmed more calcium nodules and mature osteoblasts formation compared with the control group.
Knockdown of lncRNA-MALAT1 suppressed osteoclastogenesis. (A) The level of lncRNA-MALAT1 in exosomes was sharply up-regulated after osteogenic treatment (**p<0.01). (B) In co-culture system and OB-exo stimulated BMMs, the level of lncRNA-MALAT1 was up-regulated, while exosomes inhibitor GW4869 could reverse the effect in co-culture model and miR-124 showed the opposite trend (**p<0.01, ***p<0.001, ****p<0.0001). (C) Small interference RNAs were transfected into BMMs to clarify its silence efficiency, in which si-MALAT1-1 and si-MALAT1-3 could effectively silence the expression of lncRNA-MALAT1. (D) si-NC and si-MALAT1 were transfected into BMMs. TRAP staining (40×) showed knockdown of lncRNA-MALAT1 suppressed osteoclastogenesis, with less formation of mature osteoclasts. Abbreviations: NC-exo, exosomes derived from osteoblasts cultured with H-DMEM and fetal bovine serum; Ind-exo, exosomes derived from osteoblasts cultured with Ind.
Binding site between lncRNA-MALAT1 and miR-124 was confirmed by Dual-Luciferase reporter assays. (A) LncRNA-MALAT1 competitively bound to miR-124 through complementary sequences. (B) miR-124 mimic reduced the luciferase activity compared with the NC group and MALAT1 mutated group (*p<0.05, **p<0.01). (C) The level of miR-124 in BMMs was up-regulated after si-MALAT1 transfection (** p<0.01). Abbreviations: MALAT1 WT, lncRNA-MALAT1 wild type; MALAT1 MUT, lncRNA-MALAT1 mutant type; NC+psiCHECK2, RAW264.7 which was mock transfected.
LncRNA-MALAT1 up-regulated NFATc1 expression and osteoclastogenesis through miR-124. (A) Transfection with si-MALAT1 reduced the formation of mature osteoclasts (40×), and co-transfection with si-MALAT1 and miR-124 inhibitor could reverse the trend, whether in maximum diameter, number and area (*p<0.05, **p<0.01). (B) Real-time PCR showed miR-124 inhibitor reversed the down-regulation of si-MALAT1 transfection on NFATc1 and CTSK expression (*p<0.05, **p<0.01, ***p<0.001). (C) Western blot was consistent with real-time PCR, indicating that lncRNA-MALAT1 influenced the process of osteoclastogenesis via NFATc1 rather than c-Fos.
Objective: Emerging studies have explained the crucial role of non-coding RNA (lncRNA) in various pathological progressions. The study was designed to examine the role of lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and miRNA-124 in the differentiation of osteoclasts, to provide new clues or evidences for the pathogenesis of periodontitis. Methods: We constructed an osteoblast-osteoclast Transwell co-culture system and osteoblast-derived exosomes (OB-exo) intervention model. We assessed the osteoclastogenesis as well as the level of lncRNA-MALAT1 and miRNA-124. The mechanism for lncRNA MALAT1 targeting miR-124 modulating the differentiation of osteoclasts was investigated by cell transfection, quantitative real-time reverse transcription PCR (RT-qPCR), Western blot, and Dual-Luciferase reporter assays. Results: Osteoblast-derived exosomes were isolated and identified. Co-culture and OB-exo intervention can promote osteoclastogenesis, also significantly up-regulate the expression of MALAT1, while the level of miR-124 is the opposite. Transfection of cells with small interfering RNA (si-MALAT1) and miR-124 mimic decreased the formation of TRAP+ osteoclasts and inhibited the expression of NFATc1. However, the effect was reversed when transfected with miR-124 inhibitor and si-MALAT1. The Dual-Luciferase reporter assay confirmed the binding sites between MALAT1 and miR-124, and miR-124 and NFATc1. Conclusion: LncRNA MALAT1 functioned as an endogenous sponge by competing for miR-124 binding to regulate NFATc1 expression, accelerating the progression of osteoclastogenesis.
Purpose: Pravastatin sodium (PVS) is a hypolipidemic drug which suffers from extensive first-pass metabolism and short half-life. Poly(d,l-lactide-co-glycolide) (PLGA) is considered a promising carrier to improve its hypolipidemic and hepatoprotective activities. Methods: PVS-loaded PLGA nanoparticles (PVS-PLGA-NPs) were prepared by double emulsion method using a full 32 factorial design. The in vitro release and the physical stability studies of the optimized PVS-PLGA-NPs (F5) were performed. Finally, both hypolipidemic and hepatoprotective activities of the optimized F5 NPs were studied and compared to PVS solution. Results: All the studied physical parameters of the prepared NPs were found in the accepted range. The particle size (PS) ranged from 90 ± 0.125 nm to 179.33 ± 4.509 nm, the poly dispersity index (PDI) ranged from 0.121 ± 0.018 to 0.158 ± 0.014. The optimized NPs (F5) have the highest entrapment efficiency (EE%) (51.7 ± 5%), reasonable PS (168.4 ± 2.506 nm) as well as reasonable zeta potential (ZP) (-28.3 ± 1.18mv). Solid-state characterization indicated that PVS is well entrapped into NPs. All NPs have distinct spherical shape with smooth surface. The prepared NPs showed a controlled release profile. F5 showed good stability at 4 ± 2°C during the whole storage period of 3 months. In vivo study and histopathological examination indicated that F5 NPs showed significant increase in PVS hypolipidemic as well as hepatoprotective activity compared to PVS solution. Conclusion: The PVS-PLGA-NPs could be considered a promising model to evade the first-pass effect and showed improvement in the hypolipidemic and hepatoprotective activities compared to PVS solution.
Introduction: Silver sulfadiazine (AgSD) is widely used in burn wound treatment due to its broad-spectrum antibacterial activity. However, its application in wound healing is greatly hindered by the low solubility of AgSD particles and their cellular cytotoxicity. Herein, we studied the safety and in vivo efficacy of nano-sized silver sulfadiazine loaded in poloxamer thermosensitive hydrogel (NS/Gel). Methods: In NS/Gel, silver sulfadiazine was prepared into silver sulfadiazine nanosuspension (NS) to improve the solubility and enhance its antibacterial activity, whereas the poloxamer thermosensitive hydrogel was selected as a drug carrier of NS to achieve slow drug release and reduced cytotoxicity. The acute toxicity of silver sulfadiazine nanosuspension was first evaluated in healthy mice, and its median lethal dose (LD50) was calculated by the modified Karber method. Furthermore, in vivo antibacterial effect and wound healing property of NS/Gel were evaluated on the infected deep second-degree burn wound mice model. Results: The mortality ratio of mice was concentration-dependent, and the LD50 for silver sulfadiazine nanosuspension was estimated to be 252.1 mg/kg (230.8 to 275.4 mg/kg, 95% confidence limit). The in vivo dosages used for burn wound treatment (40-50 mg/kg) were far below LD50 (252.1 mg/kg). NS/Gel significantly accelerated wound healing in the deep second wound infection mice model, achieving > 85% wound contraction on day 14. Staphylococcus aureus in the wound region was eradicated after 7 days in NS/Gel group, while the bacterial colony count was still measurable in the control group. Histological analysis and cytokines measurement confirmed that the mice treated with NS/Gel exhibited well-organized epithelium and multiple keratinized cell layers compared to control groups with the modulated expression of IL-6, VEGF, and TGF-β. Conclusion: The combination of silver sulfadiazine nanosuspension and thermo-responsive hydrogel has great potential in clinical burn wound treatment.
Background: Intestinal barrier dysfunction is an important complication of sepsis, while the treatment is limited. Recently, parthenolide (PTL) has attracted much attention as a strategy of sepsis, but whether nano parthenolide (Nano PTL) is therapeutic in sepsis-induced intestinal barrier dysfunction is obscured. Methods: In this study, cecal ligation and puncture (CLP)-induced sepsis rats and lipopolysaccharide (LPS)-stimulated intestinal epithelial cells (IECs) were used to investigate the effect of PTL on intestinal barrier dysfunction. Meanwhile, we synthesized Nano PTL and compared the protective effect of Nano PTL with ordinary PTL on intestinal barrier function in septic rats and IECs. Network pharmacology and serotonin 2A (5-HTR2A) inhibitor were used to explore the mechanism of PTL on the intestinal barrier function of sepsis. Results: The encapsulation rate of Nano PTL was 95±1.5%, the drug loading rate was 11±0.5%, and the average uptake rate of intestinal epithelial cells was 94%. Ordinary PTL and Nano PTL improved the survival rate and survival time of septic rats, reduced the mean arterial pressure and the serum level of inflammatory cytokines, and protected the liver and kidney functions in vivo, and increased the value of transmembrane resistance (TEER) reduced the reactive oxygen species (ROS) and apoptosis in IECs in vitro through 5-HTR2A. Nano PTL had better effect than ordinary PTL. Conclusion: Ordinary PTL and Nano PTL can protect the intestinal barrier function of septic rats by inhibiting apoptosis and ROS through up-regulating 5-HTR2A, Nano PTL is better than ordinary PTL.
Introduction: Metastasis is a major challenge in breast cancer therapy. The successful chemotherapy of breast cancer largely depends on the ability to block the metastatic process. Herein, we designed a dual-targeting and stimuli-responsive drug delivery system for targeted drug delivery against breast cancer metastasis. Methods: AS1411 aptamer-modified chondroitin sulfate A-ss-deoxycholic acid (ACSSD) was synthesized, and the unmodified CSSD was used as the control. Chemotherapeutic drug doxorubicin (DOX)-containing ACSSD (D-ACSSD) micelles were prepared by a dialysis method. The ACSSD conjugate was confirmed by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), dynamic light scattering (DLS), and transmission electron microscopy (TEM). In vitro cellular uptake and cytotoxicity of D-ACSSD micelles were studied by confocal laser scanning microscopy (CLSM) and MTT assay in breast tumor cells. The inhibition capability of D-ACSSD micelles in cell migration and invasion was carried out in 4T1 cells. In vivo antitumor activity of DOX-containing micelles was investigated in metastatic 4T1-bearing Balb/c mice. Results: D-ACSSD and DOX-loaded CSSD (D-CSSD) micelles exhibited high drug encapsulation content and reduction-responsive characteristics. D-ACSSD micelles were spherical in shape. Compared with D-CSSD, D-ACSSD showed higher cellular uptake and more potent killing activity in 4T1 and MDA-MB-231 cells. Additionally, D-ACSSD exhibited stronger inhibitory effects on the invasion and migration of highly metastatic 4T1 cells than unmodified D-CSSD. Among the DOX-containing formulations, D-ACSSD micelles presented the most effective inhibition of tumor growth and lung metastasis in orthotopic 4T1-bearing mice in vivo. It also revealed that ACSSD micelles did not exhibit obvious systemic toxicity. Conclusion: The smart D-ACSSD micelles could be a promising delivery system for the therapy of metastatic breast cancer.
Background: Abdominal aortic aneurysms (AAAs) are a global health and economic burden. Therapeutic strategies to inhibit the progression of AAAs are currently lacking. Recently, the therapeutic effect of metformin on aneurysms has attracted considerable interest. However, the unfavorable pharmacokinetic properties of metformin limit its feasibility for AAA treatment. Methods and results: We constructed a metformin-loaded netrin-1-responsive AAA-targeted nanoparticle (Tgt-NP-Met) for AAA management. Evaluation of the therapeutic effect of Tgt-NP-Met was performed by in vitro and in vivo experiments. Our results showed that the binding of netrin-1 monoclonal antibodies enhanced the AAA-targeting capability of nanoparticles (NPs). Moreover, Tgt-NP-Met administration prevented AAA development and reduced the aneurysm diameter in apolipoprotein E (ApoE)-deficient (ApoE-/-) mice that received continuous infusion of angiotensin II. Furthermore, metformin prevented AAA progression by inhibiting the transformation of vascular smooth muscle cells (VSMCs) from a contractile phenotype to a synthetic phenotype, which is mediated by macrophage infiltration and activation. Conclusion: Our findings identify metformin as a functional suppressor for macrophage-mediated phenotypic transformation of VSMCs and Tgt-NP-Met as an efficient therapeutic strategy for AAA management.
Scratch experiment of human dermal fibroblasts. (A) Scratch images of fibroblasts cultured by leaching four solutions of the scaffolds after 0, 12, and 24h (scale bars=400 µm); (B) migration area (%) of the fibroblasts in different scaffold groups (mean ± SD, **P < 0.01).
Histological analysis of wound tissues on day 14. (A) H&E staining of tissue sections. The area between black dash lines: incomplete wound healing, and high magnified views of the central area are within the black solid lines; (B) immunofluorescence images of CD31. The black arrows indicate new blood vessels; (C) length of the incomplete wound; (D) number of hair follicles per area and (E) number of new blood vessels per area (scale bars=100 µm; mean ± SD, **P < 0.01).
Collagen deposition and fibrotic genes expression of wound tissues on day 14. (A) Masson's Trichrome staining and (B) Sirius red staining of tissue sections (scale bars=100 µm), The red arrows and green arrows indicate the type I collagen and type III collagen, respectively. The NAC-GO-Gel group shows a remarkably decreased ratio of type I/III collagen which indicated a reduction of scar formation; (C) relative mRNA expressions of fibrosis-related genes 14 days post-wounding (mean ± SD, **P < 0.01).
Purpose: We aimed to develop an antioxidant dressing material with pro-angiogenic potential that could promote wound healing. Gelatin (Gel) was selected to improve the biocompatibility of the scaffolds, while graphene oxide (GO) was added to enhance their mechanical property. The loaded N-Acetyl cysteine (NAC) was performing the effect of scavenging reactive oxygen species (ROS) at the wound site. Materials and methods: The physicochemical and mechanical properties, NAC releases, and biocompatibility of the NAC-GO-Gel scaffolds were evaluated in vitro. The regeneration capability of the scaffolds was systemically investigated in vivo using the excisional wound-splinting model in mice. Results: The NAC-GO-Gel scaffold had a stronger mechanical property and sustainer NAC release ability than the single Gel scaffold, which resulted in a better capacity for cell proliferation and migration. Mice wound-splinting models revealed that the NAC-GO-Gel scaffold effectively accelerated wound healing, promoted re-epithelialization, enhanced neovascularization, and reduced scar formation. Conclusion: The NAC-GO-Gel scaffold not only promotes wound healing but also reduces scar formation, showing a great potential application for the repair of skin defects.
Purpose: Oxidative stress is one of the main pathogenic factors of atherosclerosis. However, no antioxidants have brought positive effects on the treatment of atherosclerosis. To selectively treat atherosclerosis, various means such as antioxidation, anti-apoptosis, and M2 polarization are used. The ultimate goal is that multiple regulatory pathways can help to treat atherosclerosis. Patients and methods: In this study, Simvastatin (SIM) as a model drug, EGCG as an antioxidant agent, and distearyl phosphatidylcholine (DSPC) as major carriers were used to make liposome nanoparticles (SE-LNPs). The cytotoxicity, phagocytosis, antioxidant, and anti-apoptotic properties of nanoparticles were tested in vitro. ApoE-/- atherosclerotic mice were treated with nanoparticles. The changes of aortic Oil red staining, blood lipid, HE, and Masson sections of the aortic root were observed. Results: SE-LNPs exhibited a sustained release profile, potentially enabling the accumulation of the majority amount of drugs at the atherosclerotic plaque. The phagocytosis effect was stronger in RAW. The anti-oxidative and anti-apoptotic effects of the formulation were verified in vitro. SE-LNPs promoted the polarization of M2 macrophages. The therapeutic effect of SE-LNPs was assessed in the ApoE-/- mice model of atherosclerosis. SE-LNPs reduced reactive oxygen species and lipids in vivo. The results of Oil red staining, blood lipid, HE, and Masson sections of the aortic root showed the recovery of the focus. Conclusion: Studies have shown that SE-LNPs could resist oxidation, and apoptosis, promote M2 polarization, and reduce blood lipids and lesions, which is a reliable and selective treatment for atherosclerosis.
Journal metrics
40 days
Submission to first decision
7.033 (2021)
Journal Impact Factor™
10.9 (2021)
Top-cited authors
Thomas J Webster
  • Northeastern University
Longquan Shao
  • Southern Medical University
Shameli Kamyar
  • Malaysia-Japan International Institute of Technology (MJIIT)
Ameer Azam
  • Aligarh Muslim University
Wim H De Jong
  • National Institute for Public Health and the Environment (RIVM)