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Abstract 

The growth of databases in the healthcare domain opens multiple doors for machine learning and artificial intel-
ligence technology. Many medical devices are available in the medical field; however, medical errors remain a severe 
challenge. Different algorithms are developed to identify and solve medical errors, such as detecting anomalous 
readings, anomalous health conditions of a patient, etc. However, they fail to answer why those entries are considered 
an anomaly. This research gap leads to an outlying aspect mining problem. The problem of outlying aspect mining 
aims to discover the set of features (a.k.a subspace) in which the given data point is dramatically different than others. 
In this paper, we present a framework that detects anomalies in healthcare data and then provides an explanation 
of anomalies. This paper aims to effectively and efficiently detect anomalies and explain why they are considered 
anomalies by detecting outlying aspects. First, we re-introduced four anomaly detection techniques and outlying 
aspect mining algorithms. Then, we evaluate the performance of anomaly detection techniques and choose the best 
anomaly detection algorithm. Later, we detect the top k anomaly as a query and detect their outlying aspect. Lastly, 
we evaluate their performance on 16 real-world healthcare datasets. The experimental results show that the latest 
isolation-based outlying aspect mining measure, SiNNE, has outstanding performance on this task and has promising 
results.

Keywords:  Outlying aspect mining, Healthcare, Outlier detection, Outlier explanation, Anomaly detection, Anomaly 
explanation

Introduction
Despite improvements in healthcare instruments, the 
presence of medical errors remains a severe challenge 
[1]. Applying machine learning (ML) and artificial intel-
ligence (AI) algorithms in the healthcare industry helps 
improve patients’ health more efficiently. According to 
[2], around 86% of healthcare companies use machine 
learning and artificial intelligence algorithms. These algo-
rithms help in many ways, such as medical image diagno-
sis [3, 4], disease detection/classification [5–7], medical 
data analysis [8], medical data classification [9, 10], drug 
discovery [8], robot surgery [8], detect anomalous read-
ing [11], etc. Recently, researchers have been interested 
in detecting abnormal activity in the healthcare industry. 

Anomaly or outlier1 is defined as a data instance that 
does not conform with the remainder of that set of 
data instances. In the healthcare domain, an anomaly is 
referred to as an unusual health condition or activity of a 
patient [12, 13]. A vast number of applications have been 
developed to detect anomalies from medical data [14–
17]. However, no study has been conducted to find out 
why these points are considered as an anomaly, i.e., on 
which set of features a data point is dramatically different 
than others, as far as we know. The problem of detect-
ing such an explanation leads to outlying aspect mining 
(a.k.a, outlier explanation, outlier interpretation, outly-
ing subspaces detection). Outlying aspect mining aims 
to identify the set of features where the given point (or a 
given anomaly) is most inconsistent with the rest of the 
data.

*Correspondence:  d.samariya@federation.edu.au
1 Institute of Innovation, Science and Sustainability, Federation University, 
Berwick, VIC, Australia
Full list of author information is available at the end of the article

1  Anomaly and outlier are the most commonly used terms in the literature. In 
this work, hereafter, we will use anomaly term only.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Page 2 of 23Samariya et al. Health Information Science and Systems (2023) 11:20

In many healthcare applications, a medical officer 
wants to know the most outlying aspects of a specific 
patient compared to other patients. For example, you 
are a doctor having patients with Pima Indian diabetes 
disease. While treating a particular patient, you want to 
know in which aspects this patient differs from others. 
For example, let’s consider the Pima Indian diabetes dis-
ease data set.2 For ‘Patient A’, the most outlying aspect 
will be having the highest number of pregnancies and 
low diabetes pedigree function (see Fig. 1), compared to 
other subspaces.

Another example is when a medical insurance analyst 
wants to know in which aspects the given insurance claim 
is most unusual. The above-given applications are dif-
ferent than anomaly detection. Instead of searching the 
whole data set for the anomaly, in outlying aspect min-
ing, we are specifically interested in a given data instance. 
The goal is to find out outlying aspects where a given data 
instance stands out. Such data instance is called a query 
q.

These interesting applications of outlying aspect min-
ing in the medical domain motivated us to write this 
paper. In this paper, we first introduce four anomaly 
detection techniques and outlying aspect mining meth-
ods. Later, we evaluate their performance on 16 health-
care datasets. To the best of our knowledge, it is the first 
time when these algorithms have been applied to health-
care data. Our results have verified their performance on 
anomaly detection and outlying aspect mining tasks and 
found that isolation-based algorithm presents promising 
performance, i.e., iForest perform well in anomaly detec-
tion and SiNNE perform well for outlying aspect mining 
task.

The rest of the paper is organized as follows. Section 2 
summarizes the principle and working mechanism of 

four outlying aspect mining algorithms and anomaly 
detection algorithms. Next, the experimental setup and 
results are summarized in Sects.  3 and 4, respectively. 
Finally, we conclude the paper in Sect. 5.

Existing methods
Before describing different outlying aspect mining algo-
rithms, we first provide the problem formulation.

Basic notations and definitions

Definition 1  (Problem definition) Given a set of n 
instances X  ( ‖X ‖ = n) in d dimensional space, a data 
point q ∈ X  , is called anomaly iff,

•	 q dramatically differs from others in full feature space.

and a subspace S is called outlying aspect of q iff,

•	 outlyingness of q in subspace S is higher than other 
subspaces, and there is no other subspace with the 
same or higher outlyingness.

Outlying aspect mining algorithms first require a scor-
ing measure to compute the outlyingness of the query 
in subspace and a search method to search for the most 
outlying subspace. In the rest of this section, we review 
different scoring measures only. For the search part, we 
will use Beam [18] search method because it is the latest 
search method and is used in different studies [18–23]. 
The flowchart of the complete process is presented in 
Fig. 2.

Existing anomaly detection scoring measures
LOF
The core idea of density-based anomaly detection is the 
density of the anomalous object is significantly different 

Fig. 1  Outlying aspects of Patient A on different features. The square point represents Patient A

2  The description of the data set is provided in Table 1.
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from the normal instance. The first local density-based 
approach, called LOF, which stands for Local Outlier Fac-
tor introduced by [24], which is the widely used local out-
lier detection approach. For any data object, the LOF score 
is the ratio of the average local density of its k-nearest 
neighbors to its local density [25]. The LOF score of data 
object q is defined as follows:

LOF (q) =

∑

x∈Nk (q)

lrd(x)

�Nk(q)� × lrd(q)

where lrd(q) = �Nk (q)�
∑

x∈Nk (q)

max(distk (x,D),dist(q,x))
 , Nk(q) is a set 

of k-nearest neighbours of q , dist(q, x) is a distance 
between q and x and distk(q,D) is the distance between q 
and its k-NN in X  . The LOF score represents the sparse-
ness of the data object. Data objects with higher LOF val-
ues are considered as anomalies.

iForest
Liu et  al. [26] presented a framework called Isolation 
Forest or iForest, which isolates each data point by axis-
parallel partitioning of the attribute space. To the best of 
our knowledge, iForest is the first technique that uses an 
isolation mechanism to detect anomalies.

iForest builds an ensemble of trees called isolation trees 
(iTree). Each iTree is built using a randomly selected sub-
sample without replacement from the data set. A random 
split is performed at each node on a randomly selected 
point from attribute space. The partition will terminate 
once all the nodes have only one data object or nodes 
reach the tree’s height limit for iTree. The anomaly score 
for q ∈ Rd based on iForest is defined as:

where li(q) is the path length of q in tree Ti.

Sp
Rather than searching for k-nearest neighbor in the data 
set, [27] employs scoring measure based on the nearest 
neighbor (k =1) in random sub-samples ( S ⊂ D ). The Sp 
score of data object q is defined as follows:

iForest (q) =
1

t

t
∑

i=1

li(q)

Fig. 2  The flowchart

Table 1  Characteristics of datasets used

Data set #datasize (N) #dimension (d) #anomalies

Annthyroid 7129 21 534

Arrhythmia 452 274 66

BreastW 683 9 239

Cardiotocography 2114 21 176

Diabetes 768 8 268

Heart disease 270 13 10

Hepatitis 80 19 13

Lympho 148 18 6

Mammography 11183 6 260

Musk 3062 166 97

Pima 768 8 268

Thyroid 3772 6 93

Vertebral 240 6 30

WBC 278 30 21

WDBC 367 30 10

WPBC 198 33 47
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where dist(q, x) is a distance between q and x.
In [27], authors have shown that Sp performs better 

than state-of-the-art anomaly detector LOF and runs 
faster than LOF.

iNNE
Bandaragoda et al. [28] proposed iNNE, which is stands 
for isolation using Nearest Neighbor Ensemble. The core 
idea behind iNNE is an anomaly is far away from its near-
est neighbor, and the inverse is true for the regular object. 
iNNE implementation is influenced by iForest and LOF. 
The critical difference between iNNE and iForest is that 
iForest builds a tree from subspaces while iNNE builds 
hyperspheres using all dimensions. An isolation score of 
q is defined as follows:

where cnn(q) = arg min
c∈S

{τ (c) : q ∈ B(c)} , S is set of ran-

domly selected sub-samples, �S� = ψ , B(c) is a hyper-
sphere centered at c with radius τ (c) = ||c − ηc|| , where 
ηc is nearest neighbour of c. The anomaly score for data 
object q is defined as:

where Ii(q) is isolation score based on sub-sample in ith 
set.

Outlying aspect mining algorithms
OAMiner
Duan et  al. [29] introduce Outlying Aspect Miner 
(OAMiner in short), which uses a Kernel Density Esti-
mation (KDE) [30] based scoring measure to compute 
the outlyingness of query q in subspace S:

where fS(q) is a kernel density estimation of q in sub-
space S, m is the dimensionality of subspace S ( |S| = m ), 
hi is the kernel bandwidth in dimension i.

Duan et  al. [29] have stated that density is a bias 
towards high-dimensional subspaces—density tends to 
decrease as the dimension increases. Thus, to remove 
the effect of dimensionality bias, they proposed using the 
query’s density rank as a measure of outlyingness. To find 

Sp (q) = min
x∈S

dist(q, x)

I(q) =

{

1−
τ(ηcnn(q))

τ (cnn(q)) , if q ∈
⋃

c∈S B(c),

1, otherwise

iNNE (q) =
1

t

t
∑

i=1

Ii(q)

fS(q) =
1

n(2π)
m
2
∏

i∈S

hi

∑

x∈O

e
−

∑

i∈S

(q.i−x.i)2

2h2i

the most outlying subspace of the query, the density of 
all data points needs to compute in each subspace, where 
the subspace with the best rank is selected as an outlying 
aspect of the given query.

OAMiner systematically enumerates all the possible 
subspaces. In OAMiner, the author has used the set enu-
meration tree approach [31], which is widely used by the 
data mining research community. OAMiner searches for 
subspaces by traversing a depth-first manner [32]. OAM-
iner used some anti-monotonicity properties to prune 
the subspaces. Given data set O , a query object q and 
subspace S, if rank(fS(q)) = 1, then every super-set of S 
cannot be a minimal subspace and thus can be pruned.

Beam
Vinh et  al. [18] captures the concept of dimensional-
ity unbiasedness and further investigates dimensionally 
unbiased scoring functions. Dimensionality unbiasedness 
is an essential property for outlying measures because 
the query object is compared in different subspaces with 
a different number of dimensions. They proposed two 
novel outlying scoring metrics (1) density Z-score and (2) 
isolation Path score (iPath in short). Their work showed 
that the proposed Z-score and iPath are dimensionally 
unbiased.

Therein, the density Z-score is defined as follows:

where µfS and σfS are the mean and standard devia-
tion of the density of all data instances in subspace S, 
respectively.

The iPath score is motivated by isolation Forest (iFor-
est) anomaly detection approach [26]. The intuition 
behind iForest is that anomalies are few and susceptible 
to isolation. iForest constructs t trees, where each tree 
is built from randomly selected sub-samples ψ ( ψ ≪ n ). 
Later, it divides using the axis-parallel random splits. 
Since in the outlying aspect mining context, the main 
focus is on the path length of the query; thus, authors 
have ignored other parts of the tree. In outlying aspect 
mining, the intuition behind the iPath score is that in the 
most outlying subspace, a given query is easy to isolate 
than the rest of the data.

The process of calculating the iPath of query q w.r.t. 
sub-samples ψ of the data is

where liS(q) is path length of q in ith tree and subspace S.

Z-Score(f̃S(q)) �
f̃S(q)− µ

f̃S

σ
f̃S

iPathS(q) =
1

t

t
∑

i=1

liS(q)
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Vinh et  al. [18] was the first to coin the term dimen-
sionality unbiasedness.

Definition 2  (Dimensionality unbiased [18]) A dimen-
sionality unbiased outlyingness measure (OM) is a meas-
ure of which the baseline value, i.e., average value for any 
data sample O = {o1, o2, · · · , on} drawn from a uniform 
distribution, is a quantity independent of the dimension 
of the subspace S, i.e.,

In [18, Theorem 3], it is proven that rank transforma-
tion and Z-score normalization have resulted in a con-
stant average value in any data distribution. Furthermore, 
it is worth noting that the Z-score scoring function is not 
only normalized but also the variance of the normalized 
measures that are constant to dimensions.

The overall beam search process is divided into three 
stages. All 1-D subspaces are inspected in the first stage 
to identify trivial outlying features. In the subsequent 
stage, an exhaustive search is performed on all possible 
2 dimensional subspaces. In the third stage, the beam 
search is implemented at level l. The beam algorithm only 
keeps top W subspaces (called beam width) in the search 
process. The total number of subspace considered by the 
beam algorithm is in the order of O(d2 +W dmax) where 
dmax is the maximum dimension of subspace, and W is 
the beam width.

sGrid
Wells and Ting [23] introduced a simple grid-based den-
sity estimator called sGrid. sGrid is a smoothed variant of 
a grid-based density estimator [30]. Let O be a collection 
of n data objects in D-dimensional space, x.S be a projec-
tion of a data object x ∈ O in subspace S. The sGrid den-
sity of point q is computed as points that fall in a bin that 
covers point q and its surrounding neighbors.

Their work showed that the proposed density estimator 
has advantages over the existing kernel density estimator 
in outlying aspect mining by replacing the kernel density 
estimator with sGrid. By replacing KDE with the sGrid 
density estimator, OAMiner [29] and Beam [18] run two 
orders of magnitude faster than their original imple-
mentation. However, sGrid is not a dimensionally unbi-
ased measure, requiring Z-Score normalization. Again, it 
makes sGrid computationally inefficient.

SiNNE
Very recently, [21] proposed a Simple Isolation score 
using Nearest Neighbor Ensemble (SiNNE in short) 

E[OMS(x)‖x ∈ O] =
1
n

∑

x∈O
OM(x)

= const. w.r.t ‖S‖

measure which from Isolation using Nearest Neigh-
bor Ensembles (iNNE in short) method for anomaly 
detection [28]. SiNNE constructs t ensemble of models 
( M1,M2, · · · ,Mt ). Each model Mi is constructed from 
randomly chosen sub-samples ( Di ⊂ O, �Di� = ψ < n) . 
Each model has ψ hyperspheres, where a radius of the 
hypersphere is the euclidean distance between a ( a ∈ Di) 
to its nearest neighbor in Di.

The outlying score of q in model Mi , I(q�Mi) = 0 if q 
falls in any of the ball and 1 otherwise. The final outlying 
score of q using t models is:

In their work, they argue that Z-score normalization is 
biased towards a subspace having high-density variance, 
and the definition of dimensionality unbiasedness needs 
to be revised. Furthermore, SiNNE is computationally 
faster than density and distance-based measures.

Experimental setup
Datasets
In this study, we used 16 publicly available benchmark-
ing medical datasets for anomaly detection; BreastW 
and Pima are from [33],3 Annthyroid, Cardiotocography, 
Heart disease, Hepatitis, WDBC and WPBC are from 
[34]4 and Arrhythmia, Lympho, Mammography, Musk, 
Thyroid, Vertebral, WBC, and Yeast are from [35].5 The 
summary of each data set is provided in Table 1.

Algorithm implementation and parameters
We use PyOD [36] Python library to implement anom-
aly detection algorithms. In terms of implementation of 
OAM algorithms, we used Java implementation of sGrid 
and SiNNE, which is made available by the authors [23] 
and [21], respectively. We implemented RBeam and 
Beam in Java using WEKA [37].

We used the default parameters of each algorithm as 
suggested in respective papers unless specified otherwise.

Anomaly detection algorithm:

•	LOF: the size of nearest neighbor (k) = 10;
•	iForest: number of sets t=100, and sub-sample size ψ

=256;
•	Sp: sub-sample size ψ=20; and

SiNNE (q) =
1

t

t
∑

i=1

I(q�Mi)

3  Available at https://​www.​ipd.​kit.​edu/​~muell​ere/​HiCS/
4  Available at https://​www.​dbs.​ifi.​lmu.​de/​resea​rch/​outli​er-​evalu​ation/​
DAMI/
5  Available at http://​odds.​cs.​stony​brook.​edu
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•	iNNE: number of sets t=100, and sub-sample size ψ
=8.

Outlying aspect mining algorithms:

•	Density rank and Density Z-score: KDE use Gaussian 
kernel with default bandwidth as suggested by [38];

•	sGrid: block size parameter w = 64;
•	SiNNE: sub-sample size ψ = 8, and ensemble size t = 

100; and
•	Beam search: beam width W = 100, and maximum 

dimensionality of subspace ℓ = 3.

Evaluation measure
We used the area under the ROC curve (AUC) [39] and 
precision at n (P@n)6 [40] as a measure of effectiveness 
for anomaly ranking produced by an anomaly detector. 
An anomaly detector with a high AUC indicates better 
detection accuracy, whereas a low AUC indicates low 
detection accuracy.

Samariya and Ma [20] proposed a new kernel mean 
embedding-based evaluation measure in the outly-
ing aspect mining domain. The intuition behind the 

evaluation measure is that in most outlying aspects, 
a query q is far from the distribution of data in those 
aspects.

Definition 3  The quality of discovered aspects (or 
subspace(s)) S for a query q is computed as

where KS(q, x) is a kernel similarity between q and x in 
subspace S.

Therein, authors used chi-square kernel [41], computed 
as follows.

All experiments were conducted on a machine with an 
Intel 8-core i9 CPU and 16 GB main memory, running on 
macOS Big Sur version 11.1. We run each job on multi-
ple single CPU treads, which is done using GNU parallel 
[42].

Empirical evaluation
In this section, we present the result of four anomaly 
detection methods; LOF, iForest, Sp, and iNNE and 
four outlying scoring measures; Kernel Density Rank 

(1)fS(q,X ) =
1

n

∑

x∈X

KS(q, x)

KS(q, x) = 1−
∑

i∈S

2
(qi − xi)

2

(qi + xi)

Table 2  AUC scores of LOF, iForest, Sp, and iNNE anomaly detection methods on 16 real-world healthcare datasets

Best AUC results are indicated in bold

Dataset AUC​ Runtime(seconds)

LOF iForest Sp iNNE LOF iForest Sp iNNE

annthyroid 0.64 0.68 0.52 0.56 0.10 0.38 0.01 0.50

arrhythmia 0.82  0.83 0.78 0.74 0.01 0.24 0.01 0.18

breastw 0.62 1.00 0.99 0.65 0.01 0.21 <0.01 0.13

cardiotocography 0.56 0.68 0.63 0.74 0.02 0.25 <0.01 0.13

diabetes 0.58 0.66 0.58 0.66 0.01 0.21 <0.01 0.10

heart_disease 0.41 0.71 0.52 0.53 0.01 0.19 <0.01 0.10

hepatitis 0.77 0.74 0.67 0.30 0.01 0.18 <0.01 0.10

lympho 1.00 1.00 0.95 0.99 0.01 0.18 <0.01 0.09

mammography 0.73 0.86 0.77 0.78 0.21 0.45 0.21 0.67

musk 0.39 1.00 0.03 1.00 0.04 0.43 0.02 0.39

pima 0.58 0.73 0.59 0.61 0.01 0.21 <0.01 0.13

thyroid 0.83  0.97 0.95 0.95 0.08 0.28 <0.01 0.26

vertebral 0.59 0.49 0.37 0.40 0.01 0.18 <0.01 0.09

wbc 0.95 0.94 0.92 0.83 0.01 0.19 <0.01 0.11

wdbc 1.00 0.90 0.78 0.76 0.01 0.19 <0.01 0.11

wpbc 0.46 0.30 0.51 0.51 0.01 0.18 <0.01 0.10

Avg. AUC​ 0.68 0.78 0.66 0.69 – – – –

6  Note that, hereafter, we denote precision at n by P@n.
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Table 3  Comparison of outlying aspects discovered by RBeam, Beam, sGBeam, and SiBeam on annthyroid, arrhythmia, 
breastw and cardiotocography datasets

q-id represents query point index; the numbers in the bracket are attribute indices (subspace); the numbers in the parenthesis are quality of subspace (lower the 
better)

Best results are underlined

q-id RBeam Beam sGBeam SiBeam

annthyroid 952 ‡ ‡ {17} (0.89) {2, 5, 17} (− 2.77)

1053 {14} (− 1.00) {2, 14} (− 1.26)

1204 {18} (0.84) {0, 18, 19} (0.41)

2286 {12} (− 0.98) {3, 12, 20} (− 1.03)

3305 {11} (− 0.97) {9, 11, 19} (− 3.07)

3337 {7} (− 0.97) {3, 7, 17} (− 2.96)

3606 {12} (− 0.98) {0, 3, 12} (− 3.04)

4921 {20} (0.09) {1, 18} (− 0.77)

5397 {7} (− 0.97) {7, 8, 16} (− 3.14)

6871 {11} (− 0.97) {0, 11, 13} (− 1.37)

arrhythmia 85 {0, 15} (− 0.03) {220} (0.79) {14, 258} (− 0.99) {26, 133} (− 0.99)

141 {0, 1} (− 0.95) {220} (0.79) {14, 69} (− 1.00) {2, 69} (− 2.52)

210 {0, 186} (− 0.44) {220} (0.89) {14, 89} (− 0.97) {53, 181, 196} (0.46)

297 {0, 35} (− 0.18) {51} (0.14) {14, 113} (− 0.99) {0, 16, 83} (− 1.18)

308 {36, 164, 166} (0.32) {220} (0.89) {14, 16} (− 1.00) {3, 16, 19} (− 1.16)

316 {0} (− 0.12) {220} (0.84) {2} (− 0.04) {2, 93, 246} (− 0.33)

379 {0, 24} (− 0.74) {47} (− 0.12) {14, 239} (− 1.00) {228, 257} (− 0.97)

403 {0, 9} (− 0.92) {220} (0.85) {14, 150} (− 0.99) {53, 214} (0.50)

424 {0, 11} (− 0.14) {51} (0.02) {14, 223} (0.49) {100, 108, 204} (0.12)

449 {0, 167} (− 0.94) {220} (0.77) {14, 219} (− 0.99) {65, 257} (− 0.80)

breastw 8 {0, 8} (− 0.22) {6} (0.46) {8} (0.23) {3, 6, 8} (− 0.72)

70 {0, 6} (− 0.37) {0, 6} (− 0.37) {6} (0.39) {0, 5, 6} (− 0.94)

108 {0, 6, 7} (− 0.56) {6} (0.64) {6} (0.64) {0, 5, 6} (− 0.62)

127 {0, 4} (− 0.87) {4} (− 0.10) {4} (− 0.10) {0, 4, 7} (− 1.29)

158 {5} (0.50) {5} (0.50) {8} (− 0.17) {0, 3, 8} (− 1.28)

161 {2, 5, 7} (− 1.27) {0} (0.16) {8} (− 0.79) {5, 7, 8} (− 1.77)

286 {0, 2} (− 0.06) {0} (0.43) {4} (0.68) {2, 4, 6} (− 0.36)

305 {0, 1, 4} (− 0.57) {0, 4} (− 0.09) {4} (0.68) {0, 1, 4} (− 0.57)

333 {4, 7} (0.07) {0, 7} (− 0.20) {8} (0.87) {4, 6, 7} (− 0.48)

673 {6} (0.46) {6} (0.46) {8} (− 0.37) {0, 4, 8} (− 1.34)

cardiotocography 140 {0, 14} (0.30) {0} (0.71) {15}(− 0.84) {0, 15} (− 1.13)

165 {1, 7} (− 0.41) {5} (0.55) {7}(− 0.27) {0, 7} (− 0.34)

383 {1, 12, 16} (0.00) {16} (0.78) {15}(0.32) {3, 16, 19} (− 0.43)

432 {5, 6} (0.48) {11} (0.52) {15} (− 0.45) {2, 15} (− 0.48)

784 {0, 3} (0.00) {3} (0.17) {3} (0.17) {3, 6, 7} (− 0.42)

1141 {1, 3, 8} (− 0.53) {4, 20} (0.10) {8} (− 0.03) {4, 8, 20} (− 0.94)

1476 {16, 19, 20} (− 0.02) {3} (0.70) {9} (− 0.99) {9, 14} (− 1.13)

1477 {3, 16, 20} (0.29) {16} (0.78) {9} (− 0.99) {3, 4, 9} (− 1.36)

1635 {0, 1} (− 0.62) {3} (0.45) {3} (0.45) {1, 20} (− 0.76)

2074 {3} (− 0.29) {3} (− 0.29) {3} (− 0.29) {1, 3} (− 0.50)
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Table 4  Comparison of outlying aspects discovered by RBeam, Beam, sGBeam, and SiBeam on diabetes, ecoli, 
heart_disease and hepatitis 

q-id represents query point index; the numbers in the bracket (subspace) are attribute indices

Best results are underlined

q-id RBeam Beam sGBeam SiBeam

diabetes 9 {5, 7} (− 77.23) {5} (− 62.99) {5} (− 62.99) {2, 5, 7} (− 94.57)

13 {0, 4} (− 1350.19) {1} (− 39.00) {4} (− 1345.59) {4, 5, 7} (− 1366.80)

106 {0, 2} (− 41.26) {2} (− 36.66) {2} (− 36.66) {1, 2, 6} (− 50.68)

125 {2, 5} (− 50.97) {5} (− 13.69) {5} (− 13.69) {2, 5} (− 50.97)

145 {3, 5, 6} (− 80.16) {5} (− 62.99) {5} (− 62.99) {0, 2, 5} (− 79.69)

177 {0, 5} (− 34.06) {5} (− 26.37) {5} (− 26.37) {0, 5} (− 34.06)

362 {2, 7} (− 49.59) {2} (− 24.59) {7} (− 24.00) {2, 3} (− 50.67)

459 {0, 7} (− 50.69) {7} (− 43.38) {7} (− 43.38) {3, 7} (− 66.01)

579 {0, 3} (− 117.26) {3} (− 113.96) {3} (− 113.96) {0, 3} (− 117.26)

672 {1, 2} (− 59.06) {2} (− 23.07) {2} (− 23.07) {0, 1, 2} (− 67.65)

heart_disease 1 {0, 4} (− 0.04) {1, 12} (− 1.49) {4} (0.15) {3, 4} (0.00)

13 {2} (− 0.45) {2, 6, 8} (− 2.13) {2, 6, 8} (− 2.13) {2, 7, 11} (− 1.36)

48 {2, 11} (− 0.78) {12} (0.13) {12} (0.13) {2, 11, 12} (− 1.65)

98 {1, 10, 12} (− 2.07) {1, 12} (− 1.49) {1, 12} (− 1.49) {1, 7, 12} (− 1.57)

101 {0, 7} (− 0.39) {7} (− 0.20) {7} (− 0.20) {7, 9, 11} (− 0.89)

103 {11} (− 0.34) {3} (0.70) {5} (− 0.70) {1, 3, 11} (− 1.28)

118 {1, 2, 7} (− 2.00) {10} (− 0.11) {10} (− 0.11) {2, 6, 10} (− 1.92)

175 {1, 6, 11} (− 2.72) {1, 7} (− 0.65) {5, 6} (− 1.73) {1, 5, 7} (− 2.35)

243 {9, 10, 11} (− 1.67) {10} (− 0.11) {10} (− 0.11) {8, 9, 10} (− 1.48)

256 {6, 8} (− 1.36) {2, 8} (− 0.54) {5, 6} (− 1.73) {0, 5, 8} (− 2.16)

hepatitis 4 {8, 16} (− 0.31) {4, 16} (0.04) {13} (0.71) {5, 13, 16} (− 0.32)

5 {5} (− 0.23) {2, 13} (− 0.29) {2, 6, 8} (− 2.70) {11, 14, 18} (− 1.68)

18 {2, 14} (− 0.94) {14} (0.11) {14} (0.11) {9, 14, 18} (− 1.09)

27 {0, 8, 17} (− 0.53) {0, 8, 17} (− 0.53) {2, 4, 5} (− 1.53) {0, 6, 17} (− 0.12)

29 {2, 8, 17} (− 1.17) {2, 4, 8} (− 2.30) {4, 8, 9} (− 2.88) {0, 4, 9} (− 2.06)

34 {2, 3, 4} (− 2.73) {2, 3, 4} (− 2.73) {2, 3, 4} (− 2.73) {3, 4, 17} (− 1.88)

39 {4, 16} (− 0.50) {4, 16} (− 0.50) {4, 16} (− 0.50) {4, 16} (− 0.50)

40 {2, 5, 8} (− 2.13) {2, 5} (− 1.18) {0, 4, 18} (− 0.71) {8, 16, 18} (− 0.88)

59 {3, 4, 18} (− 2.95) {3, 18} (− 1.65) {3, 18} (− 1.65) {0, 10, 15} (− 0.40)

63 {0, 2, 10} (− 2.22) {0, 2, 4} (− 1.54) {2, 6, 8} (− 2.70) {0, 7, 17} (− 0.53)

lympho 2 {1, 9} (− 0.69) {10} (− 0.23) {8} (− 0.93) {3, 8, 14} (− 2.80)

3 {5, 7} (0.20) {10} (− 0.23) {8} (− 0.93) {1, 8, 13} (− 2.24)

29 {9, 10} (− 0.68) {10, 14} (− 0.52) {5, 8} (0.01) {2, 8, 17} (− 1.73)

34 {1, 11, 15} (− 0.34) {7, 9} (0.12) {11, 16} (− 0.13) {4, 11, 16} (− 0.63)

47 {7, 9} (− 0.52) {7, 9} (− 0.52) {7, 9} (− 0.52) {7, 9, 16} (− 1.04)

53 {1, 12, 13} (− 3.30) {5, 12, 14} (− 0.33) {1, 2, 16} (− 0.37) {2, 12, 13} (− 3.55)

64 {11, 14, 15} (− 1.28) {10, 14} (− 0.52) {10, 14} (− 0.52) {11, 14, 16} (− 1.36)

95 {5, 17} (− 6.18) {14, 15, 17} (− 6.78) {5, 8} (0.01) {9, 15, 17} (− 7.67)

113 {9, 12, 13} (− 4.05) {11, 13} (− 2.94) {11, 13} (− 2.94) {9, 12, 13} (− 4.05)

127 {0, 12} (− 1.55) {7, 12} (− 1.00) {7, 12} (− 1.00) {0, 2, 12} (− 2.10)
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Table 5  Comparison of outlying aspects discovered by RBeam, Beam, sGBeam, and SiBeam on lympho, musk, pima and 
thyroid 

q-id represents query point index; the numbers in the bracket (subspace) are attribute indices

Best results are underlined

q-id RBeam Beam sGBeam SiBeam

mammography 539 {0, 1} (0.12) {0} (0.68) {4} (− 0.92) {0, 4} (− 1.24)

2774 {3, 5} (− 0.50) {0} (0.50) {0} (0.50) {0, 4} (0.10)

4653 {2} (0.94) {2} (0.94) {5} (0.33) {1, 2} (0.79)

5024 {3, 5} (− 1.11) {0} (0.78) {3} (− 0.58) {1, 3} (− 0.86)

5350 {2} (− 0.15) {2} (− 0.15) {2} (− 0.15) {2, 3} (− 0.31)

6104 {0} (− 0.86) {0} (− 0.86) {0} (− 0.86) {0} (− 0.86)

7096 {2} (− 0.27) {2} (− 0.27) {2} (− 0.27) {0, 2} (− 0.29)

8746 {2} (− 0.31) {2} (− 0.31) {2} (− 0.31) {0, 2} (− 0.34)

10144 {2} (− 0.89) {2} (− 0.89) {2} (− 0.89) {0, 1, 2} (− 1.06)

10606 {3} (− 0.61) {0} (0.67) {3} (− 0.61) {3} (− 0.61)

musk 348 ‡ ‡ {146} (1239.49) {138, 146, 162} (1350.06)

831 {112} (161.63) {77, 115, 150} (− 207.01)

845 {112} (161.63) {77, 93, 115} (− 224.55)

866 {65, 150} (32.41) {17, 41, 135} (− 407.11)

1270 {47, 107} (327.25) {30, 82, 143} (1621.84)

1283 {77, 88} (64.86) {50, 140, 157} (2108.53)

1287 {113} (43.94) {49, 82, 100} (2153.20)

2016 {47, 80} (617.47) {98, 101, 111} (151.13)

2827 {34, 91, 155} (559.94) {69, 161, 163} (− 484.13)

3054 {129, 130} (− 2002.80) {123, 149, 161} (1471.68)

pima 5 {2, 5} (0.48) {5} (0.78) {5} (0.78) {2, 3, 5} (0.16)

14 {0, 5} (0.14) {5} (0.59) {5} (0.59) {1, 5, 6} (0.44)

26 {0, 7} (− 0.64) {7} (− 0.21) {7} (− 0.21) {2, 3, 7} (− 0.51)

36 {4, 6} (− 1.57) {6} (− 0.20) {4} (− 0.37) {4, 6} (− 1.57)

124 {0, 2} (0.42) {2} (0.69) {2} (0.69) {2, 5} (0.61)

304 {0, 3} (− 0.36) {3} (− 0.16) {3} (− 0.16) {0, 3} (− 0.36)

306 {2, 7} (− 1.09) {7} (0.04) {2} (− 0.13) {1, 2, 7} (− 1.14)

410 {0, 4} (− 0.86) {1} (0.80) {4} (− 0.59) {0, 4, 7} (− 1.49)

430 {3, 5, 6} (− 0.24) {5} (0.05) {5} (0.05) {0, 2, 5} (− 0.48)

695 {5, 6} (− 0.71) {5} (0.05) {5} (0.05) {5, 6} (− 0.71)

thyroid 38 {0, 5} (− 0.28) {1} (0.97) {5} (− 0.16) {0, 5} (− 0.28)

704 {2, 3} (0.04) {3} (0.07) {5} (0.45) {1, 5} (0.44)

1344 {2} (0.75) {3} (0.79) {2} (0.75) {0, 2, 3} (0.43)

1376 {0, 2} (0.40) {3} (0.72) {2} (0.75) {2, 3} (0.47)

1881 {2} (− 0.14) {3} (0.77) {5} (0.57) {2} (− 0.14)

2503 {1} (− 0.96) {1} (− 0.96) {1} (− 0.96) {1, 3} (− 1.35)

2527 {3, 4, 5} (0.84) {3} (0.89) {5} (0.97) {3, 4, 5} (0.84)

2548 {4} (0.68) {0} (0.58) {4} (0.68) {0, 2, 4} (0.07)

2906 {0, 4} (0.26) {0} (0.71) {2} (0.79) {0, 4} (0.26)

2931 {1} (− 0.47) {1} (− 0.47) {1} (− 0.47) {1, 4, 5} (− 0.80)
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Table 6  Comparison of outlying aspects discovered by RBeam, Beam, sGBeam, and SiBeam on vertebral, wbc, wdbc and 
wpbc 

q-id represents query point index; the numbers in the bracket (subspace) are attribute indices

Best results are underlined

q-id RBeam Beam sGBeam SiBeam

vertebral 9 {4, 5} (− 74.48) {4} (− 10.37) {4} (− 10.37) {0, 4} (− 27.91)

51 {1, 2} (− 44.30) {0, 2} (− 27.48) {1, 5} (− 149.75) {1, 2} (− 44.30)

52 {0, 1, 3} (− 38.05) {3} (− 19.26) {3} (− 19.26) {0, 1} (− 17.79)

112 {1} (− 217.58) {1} (− 217.58) {1} (− 217.58) {0, 1, 2} (− 240.19)

115 {0} (− 50.18) {0} (− 50.18) {5} (− 673.90) {2, 3} (− 82.33)

118 {0, 2, 4} (− 16.63) {0, 4} (− 8.96) {4} (− 4.09) {1, 4, 5} (− 51.73)

134 {0, 2} (− 21.43) {0, 2} (− 21.43) {0, 2} (− 21.43) {0, 1, 2} (− 27.65)

167 {4} (− 22.75) {4} (− 22.75) {4} (− 22.75) {3, 4, 5} (− 78.99)

197 {0, 2} (− 68.02) {2} (− 63.13) {5} (− 126.66) {2, 4} (− 67.97)

237 {1} (− 61.31) {1} (− 61.31) {1} (− 61.31) {1, 5} (− 95.51)

wbc 22 {14, 21} (0.22) {4} (0.75) {4} (0.75) {8, 21, 29} (0.11)

56 {11, 24, 28} (0.29) {28} (0.68) {11} (0.67) {4, 18, 28} (0.50)

69 {0, 17} (− 0.25) {11} (0.62) {16} (− 0.66) {5, 11, 17} (− 0.77)

73 {0, 11} (0.62) {3} (0.84) {13} (0.94) {2, 3, 24} (0.38)

94 {0, 11} (− 0.28) {11} (− 0.17) {11} (− 0.17) {7, 11, 15} (− 0.63)

143 {8, 24} (0.50) {8} (0.63) {17} (0.43) {8, 17, 26} (− 0.03)

166 {0, 18} (0.03) {11} (0.59) {18} (0.24) {14, 18} (− 0.32)

299 {23, 28} (0.57) {3} (0.78) {23} (0.84) {3, 8, 15} (0.28)

332 {1, 9, 17} (0.20) {2} (0.65) {2} (0.65) {4, 17, 19} (0.39)

368 {0, 25} (− 0.29) {28} (0.70) {29} (− 0.23) {11, 28, 29} (− 0.65)

wdbc 79 {0, 17} (− 0.27) {8} (0.59) {16} (− 0.66) {16, 19} (− 2.20)

83 {0, 2, 7} (0.56) {3} (0.79) {3} (0.79) {0, 9, 11} (0.19)

89 {1} (0.31) {21} (0.22) {21} (0.22) {1, 8, 20} (0.05)

96 {4} (0.66) {4} (0.66) {4} (0.66) {4, 5, 9} (− 0.23)

103 {8, 10} (0.47) {12} (0.59) {12} (0.59) {12, 14, 27} (0.35)

104 {0, 11} (− 0.29) {24} (0.16) {11} (− 0.17) {11, 20, 21} (− 0.43)

153 {4, 8, 14} (0.02) {8} (0.56) {17} (0.42) {9, 17, 28} (0.26)

176 {1, 18} (− 0.18) {11} (0.59) {18} (− 0.10) {9, 14, 18} (− 1.17)

271 {8, 9} (0.58) {8} (0.71) {11} (0.66) {4, 8, 10} (0.52)

309 {0, 8} (0.34) {3} (0.71) {23} (0.78) {2, 4, 8} (0.27)

wpbc 2 {0, 1} (0.05) {0, 4} (0.05) {0, 4} (0.05) {0, 1, 19} (− 0.18)

8 {3, 18} (0.62) {18} (0.90) {18} (0.90) {3, 13, 20} (0.44)

9 {0, 30} (− 0.38) {10} (0.54) {30} (− 0.02) {9, 30, 31} (− 0.51)

34 {5, 20} (0.49) {16} (0.27) {16} (0.27) {0, 16, 21} (− 0.37)

56 {6, 19} (− 0.12) {10} (0.47) {19} (0.28) {26, 28, 29} (0.22)

58 {0, 5} (− 0.01) {5} (0.39) {15} (0.17) {8, 15, 25} (− 0.65)

68 {18, 31} (0.21) {31} (0.59) {19} (0.62) {0, 6, 18} (0.71)

90 {0, 17} (− 0.42) {15} (− 0.33) {15} (− 0.33) {8, 15} (− 0.45)

119 {1, 31} (− 0.58) {31} (− 0.02) {31} (− 0.02) {6, 21, 31} (− 1.13)

161 {0, 14} (− 0.75) {21} (0.30) {21} (0.30) {5, 12, 14} (− 0.53)
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(RBeam), Density Z-score (Beam), sGrid Z-score (sBeam) 
and SiNNE (SiBeam) using Beam search on medical 
datasets. All experiments were run for 1  h, and unfin-
ished tasks were killed and presented as ‘ ‡’.

Experiment‑1: Performance of anomaly detection 
algorithms
In this sub-section, we presented the results of four 
anomaly detection techniques: LOF, iForest, Sp, and 
iNNE in terms of AUC.

The AUC comparison of LOF, iForest, Sp, and iNNE is 
presented in Table  2 (c.f. columns 2 to 5 of Table  2). It 
is interesting to note that no specific anomaly detection 

algorithm performs best in each dataset. However, iFor-
est is the best-performing measure with having the best 
AUC in 10 datasets. In the last row of Table 2, the Avg. 
AUC of each anomaly detection method shows that iFor-
est produced the best AUC while Sp had a significantly 
low AUC. Whereas LOF and iNNE produce comparative 
results.

The total runtime, which includes pre-processing, 
model building, ranking n instances, and comput-
ing AUC, is presented in Table 2 (c.f. columns 6 to 9 of 
Table 2). Overall, Sp is the fastest measure compared to 
others. While iForest and iNNE almost take similar time.

Table 7  Visualization of discovered subspaces by RBeam, Beam, sGBeam, and SiBeam in the annthyroid data set
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Experiment‑2: Performance of outlying aspect mining 
algorithms
We first use the iForest anomaly detection method for 
each data set to detect top k=10 anomalies; then, they are 
used as queries. Each scoring measure identifies outlying 
aspects for each anomaly (queries). We detect the quality 
of subspace using Eq. 1.

Tables 3, 4, 5 and 6 shows the subspace found by four 
scoring measures and quality of discovered subspace on 
16 real-world medical datasets. RBeam and Beam cannot 
finish on annthyroid and musk in an hour; thus, we pre-
sented as ‘ ‡’.

Out of 160 queries, SiBeam detects a better subspace 
for 116 queries, and sGBeam detects a better subspace 
for only 23 queries. While RBeam detects better sub-
spaces for 40 out of 140 queries and Beam only for 6 
queries. Overall, SiBeam is the best-performing meas-
ure, and RBeam is a slow measure; however, it performs 

better than the Z-score-based measure. As mentioned 
in [20, 21], Z-score-based measures are biased towards 
subspace having high variance. Thus, both Z-score-based 
measures perform worst in this comparison.

Next, we visually present the discovered subspaces by 
different scoring measures of three queries from each 
data set. Note that each one-dimensional subspace is 
plotted using a histogram with 10 equal-width bins.

Tables  7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 
20, 21, and 22 provides the visualization of discovered 
sub-spaces by RBeam, Beam, sGBeam, and SiBeam on 
annthyroid, arrhythmia, breastw, cardiotocography, 
diabetes, heart disease, hepatitis, lympho, mammog-
raphy, musk, pima, thyroid, vertebral, wbc, wdbc and 
wpbc respectively. The query point is highlighted with 
a dark blue-green (teal) color and a golden color arrow. 
We highlighted visually better subspace with a green 
box.

Table 8  Visualization of discovered subspaces by RBeam, Beam, sGBeam, and SiBeam in the arrhythmia data set
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By visually comparing discovered subspaces by each 
measure, out of 48 queries (3 from each data set), 
SiBeam and sGBeam detect better subspaces for 39 and 
18 queries. In contrast, RBeam and Beam detect better 
subspaces for 29 and 11 out of 42 queries. Overall, visu-
ally we can say that SiBeam performs best or compara-
tive to RBeam, Beam, and sGBeam.

Conclusion
This paper shows an interesting application of OAM 
in the healthcare domain. We first introduced four 
anomaly detection and outlying aspect mining algo-
rithms. Then, we presented a framework that not only 

detects anomalies but also explains why a given query 
is an anomaly; by providing a set of features where it 
is most outlying compared to others. Our evaluation 
on 16 medical datasets shows that iForest is the best-
performing measure. Furthermore, our experiment on 
the task of anomaly explanation (outlying aspect min-
ing) shows that the recently developed isolation-based 
outlying scoring measure SiNNE outperforms other 
state-of-the-art outlying aspect mining scoring meas-
ures. In the medical domain, it is essential to have a fast 

Table 9  Visualization of discovered subspaces by RBeam, Beam, sGBeam, and SiBeam in the breastw data set
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Table 10  Visualization of discovered subspaces by RBeam, Beam, sGBeam, and SiBeam in the cardiotocography data set

Table 11  Visualization of discovered subspaces by RBeam, Beam, sGBeam, and SiBeam in the diabetes data set
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Table 12  Visualization of discovered subspaces by RBeam, Beam, sGBeam, and SiBeam in the heart_disease data set
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Table 13  Visualization of discovered subspaces by RBeam, Beam, sGBeam, and SiBeam in the hepatitis data set
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Table 14  Visualization of discovered subspaces by RBeam, Beam, sGBeam, and SiBeam in the lympho data set

Table 15  Visualization of discovered subspaces by RBeam, Beam, sGBeam, and SiBeam in the mammography data set
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Table 16  Visualization of discovered subspaces by RBeam, Beam, sGBeam, and SiBeam in the musk data set
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Table 17  Visualization of discovered subspaces by RBeam, Beam, sGBeam, and SiBeam in the pima data set

Table 18  Visualization of discovered subspaces by RBeam, Beam, sGBeam, and SiBeam in the thyroid data set
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Table 19  Visualization of discovered subspaces by RBeam, Beam, sGBeam, and SiBeam in the vertebral data set

Table 20  Visualization of discovered subspaces by RBeam, Beam, sGBeam, and SiBeam in the wbc data set
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Table 21  Visualization of discovered subspaces by RBeam, Beam, sGBeam, and SiBeam in the wdbc data set
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algorithm; thus, kernel density or Z-score-based scor-
ing measures are not suitable while the data set is huge.
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